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METRIZATION OF RANKED SPACES 
BY 

F U M I E I S H I K A W A 

ABSTRACT. K. Kunugi introduced the notion of ranked space as 
a generalization of that of metric spaces, (see [6]). In this note we 
define a metrizability of ranked spaces and study conditions under 
which a ranked space is metrizable. 

Introduction. K. Kunugi introduced the notion of ranked space as a 
generalization of metric spaces (see [6]). In this note we define metrizability of 
ranked spaces and study conditions under which a ranked space is metrizable. 
Throughout this note, the term "ranked space" will mean a ranked space of 
indicator o)0. (co0 is the first nonfinite ordinal). 

1. Preliminaries. We define ranked space. Let R be a non-empty set such 
that, to every point p of R, there corresponds a non-empty family Y(p) whose 
elements are subsets of R, denoted by V(p), U(p), etc. which are called 
preneighborhoods of p. Suppose that, for every p of R, every preneighborhood 
V(p) in Y(p) satisfies the following condition: 

(A) (Axiom (A) of Hausdorff [5]) V(p)3p. Define Y=\J{Y(p); peR}. 
Then the space R is said to be a ranked space if for every neN (throughout 

this note, N is the set {0 ,1 ,2 , . . .} ) , there is associated a subfamily of Y, 
denoted by Yn, satisfying the following axiom: 

(a) For every peR, every V(p)eY(p) and every neN, we can find a U(p) 
such that: 
(1) [ / (p)cV(p) , and 
(2) U(p) belongs to some Ym with m>n. 

A preneighborhood belonging to Yn is said to have rank n. Preneighborhoods 
of p with rank n are written V(p, n), U(p, n), etc. Moreover we assume that R 
is a preneighborhood of every point with rank 0. A ranked space is a 
non-empty set R with those families Y, Yn (neN), which is written (R, Y, Yn) 
(briefly, (R, ¥)). In a ranked space (R, Y) a sequence of preneighborhoods 
{Vj(pi, nt)} (briefly, {Vt}) is called a fundamental (or more precisely Y-
fundamental) sequence if the three conditions below are fulfilled. 

(1) V0(p0 , n0) => V ^ p i , nx) => • • • =5 V^p., m) => • • • , 
(2) n0<nx<' • -<n{ <• • • , 0 < n i < ° ° lim nt =<*> as i^oo. 
(3) For every neN, there exists an ieN such that i>n, Pi=pi+1 and 

nt<ni+1. 
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In particular, {V^p,, n,)} is called a fundamental sequence of center p, if pt = p 
for all i. A sequence {pt} in J? is called a Cauchy sequence if there exists a 
fundamental sequence of preneighborhoods {Vt(qi9 nt)} such that for every Vt 

there exists a / with the property that pk G Vf for all k > / . In this case, {V;} is 
called a defining sequence of the Cauchy sequence {pt}. A sequence {pf} in R is 
said to ortho- (or r-) [resp. para- (or IT-)] converge to p if {pt} is a Cauchy 
sequence for which we can find a defining sequence {V((p, nt)} [resp. {Vi(qi9 nt)} 
such that p e flieiv Vi(qi5 Hj).] We denote this by pe{ r - l imp i} [resp. 
pGJTT-limpi}]. 

A ranked space is said to be complete, if for every fundamental sequence {Vt} 
we have R ^ N V ^ 0 . 

For two fundamental sequences {Vt} and {Ut} we write {Vi}>{L/i} to mean 
that for every Vi9 there exists a Ui such that Vt => Uj and {VJ and {Ut} are said 
to be equivalent if {Vi}>{Ui} and {Vi}<{(7i}. 

Two ranked spaces (i^, Y) and (R, %) are said to be equivalent (with respect 
to fundamental sequence) if for every ^-fundamental sequence {Vt(p, nt)} 
[resp. {Vi(qi, nt)}] there exists an equivalent %-fundamental sequence 
{Ut(p, nii)} [resp. {Ui(ri7 mt)}] and for every °U-fundamental sequence {Ut(p, nt)} 
[resp. {Uiiqi, nt)}] there exists an equivalent Y -fundamental sequence 
{^(p, mi)} [resp. {V.fe mt)}]. 

2. Metrization of ranked spaces. A ranked space satisfies the axiom (1) and 
(2) of class (L) of Fréchet (see [4]) if we take r-convergence as the notion of 
limit. But in general, it is not a topological space. We define metrizability of 
ranked spaces. First we prove the following Proposition. 

PROPOSITION 1. In two equivalent ranked spaces (JR, Y) and (JR, %), r(ir)-
convergence and completeness are identical. 

Proof. If {pt} is r-convergent to p in (R, Y), there exists a defining sequence 
{V((p, ft;)} such that for every V(p, nt) a k can be found with the property that 
Pk'eVi(P>ni) f ° r aU k'>k. From equivalence of (JR, T) and (R,°U), for 
{Vf(p, nt)} there exists an equivalent ^-fundamental sequence {Ut(p, mt)}. For 
every Ut(p, mt), there exists a Vv (p, nv) such that Ut(p, m;) => Vr(p, n r). There
fore for every U,(p, m() there exists k such that k < k ' implies pk>e L^(p, m^. 
Hence {pt} is r-convergent to p in (R, Gll). If {Pi} is r-convergent to p in (JR, %), 
then it is r-convergent to p in (J3, T). Similarly we can prove the case of 
77-convergence. 

Let (R, Y) be complete. Then for every °U-fundamental sequence {Ui(ph nt)} 
there exists an equivalent y-fundamental sequence {Vi(qi9 m^)}. Therefore for 
every L^(pt, nt), there exists VAqv, mv) such that Ui(pi7 n{)^ Vv(qv, mv). Since 
(R,Y) is complete, we have HieivViBp. Therefore we have D i e N ^ ^ P , 
hence (R, °ll) is complete. 
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Similarly if (R, %) is complete, we have (JR, Y) is complete. 

DEFINITION 1. Consider a metric space (R, d), where we shall use (R, d) to 
stand for a metric space R with distance function d. Let À 0 >À 1 >- • - > À n > 
• • • —>0 as n —» °°. If for all peR and n eN, S(p, An) = {q | d(p, q) < An} is taken 
as a preneighborhood of p with rank n, then JR becomes a ranked space and is 
called a ranked metric space. If we let l/*(p, h) = S(p, 2~n), %* = 
{LT*(p, n) : p G R} and %* = U{%* : n e N], then (R, U*, £/*) is a ranked metric 
space. 

DEFINITION 2. A ranked space (JR, Y) is said to be metrizable if we can define 
a distance function d in R such that the ranked metric space (R, %*) obtained 
from the metric space (JR, d) is equivalent to the ranked space (R, Y). 

PROPOSITION 2. A ranked space (R, Y) is metrizable if and only if there exists 
an equivalent ranked space (R, %, °Un) with the following property. 

For every point peR and every neN, preneighborhood with rank n consists of 
only one preneighborhood and is denoted by U(p, n). Let °Un = {U(p, n):pe R}, 
% = U{°Un:neN} and suppose that {°Un:neN} satisfies the following condi
tions. 

(1) For every neN and every peR, we have U(p, n) => U(p, n +1). 
(2) For every pair p, q of R and every neN, we have 

(i) U(p, n)sq implies U(q, n) 3 p. 
(ii) U(p, n) H U(q, n) =£ 0 implies U(p, n - 1) 3 q. 

(3) For every p of R and every sequence of preneighborhoods such that 
U(p, 0) =? U(p, 1) 3 • • • =) U(p, n) ^ • • • , f]i&N u(p, n) consists of p alone. 

Proof. If for any two points p and q of R, there exists U(p, n) that contains 
q, but for every m > n + l there exists no U(p,m) that contains q, we put 
p(p, q) = 2_ n . If for every n, there exists a U(p, n) that contains q, we put 
p(p, q) = 0. We shall prove p(p, q) determines a distance function. Because, 

(i) From the definition of ^ n , p{p, p) = 0. Suppose p(p, q) = 0. Then we have 
for every n, U(p, n)3q. Since U(p, n)3p, q, by condition (3) we have p = q. 

(ii) From 2 (i) we have p(p,q) = p(q,p). 
(hi) For any points p, q and r of JR if we have p(p, q )<2~ n and p(q, r )<2~n , 

then there exists U(p, n) and C/(r, n) which contain q. Therefore we have 
U(p, n) H LT(r, n)3q. From condition (2) (ii) we have U(p, n - 1) 3 r. Therefore 
p(p, r )<2 - ( n _ 1 ) . From Chittenden's Theorem [2] this function p determines a 
distance function. With this distance function d the metric space R is denoted 
by (R, d). 

From (JR, d) we have the ranked metric space (JR, %*). The two ranked spaces 
(R, %) and (JR, %*) have the same preneighborhoods for every point of i? and 
every rank n. Evidently (R, U ) and (JR, %*) are equivalent. Therefore (2?, T) 
and CR, ^/*) are equivalent. 
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Conversely if (R, Y) is metrizable, then we can define a metric function d in 
R such that the ranked metric space (JR, %*,%*) obtained from the metric 
space (JR, d) is equivalent with CR, V). Evidently {%* : n e N} satisfies the above 
three conditions (1), (2) and (3). 

Applications. By the method of ranked space we can prove certain well 
known metrization theorems as follows. 

ALEKSANDROV-URYSOHN'S THEOREM [1]. In order that a Tx-space X be met
rizable it is necessary and sufficient that there exists a countable sequence of open 
coverings M0, Mly..., satisfying: 

(1) For all neN, Mn+l3 Ml9 M2 and M1HM2i
z 0 imply there exist Me Jin 

such that M1UM2
CZM. 

(2) For every point x of X, if MneMn contains x for all neN, then 
{Mn :neN} is a neighborhood base of x. 

Proof. We may assume for every n, Mn is a refinement of Jtn-\ (where Mn is 
a refinement of Mn^ means for any set MneJin there exists a set Mn_x e Mn^x 

such that M n c M n _ i ) and M0 consists of X alone. For every x of X, put 
U(x, n) = St(x, Jin), where St(x, Jin) means the union of the sets M of Jin such 
that x e M, and call it a preneighborhood of x with rank n. Put °Un = 
{U(x, n):xe X} and % = U{°Un :neN}. Suppose that {U(x, n) : n e N} is not a 
neighborhood base of x. Then for any open set O such that OBX and every 
n e N w e have U(x, n)^0. Therefore for every neN there exists an M'neMn 

such that Mn 3 x and Mn> ^ O. Hence {Mn : n G N} is not a neighborhood base at 
x, which is a contradiction of (2). Therefore {U(x, n) : n G AT} is a neighborhood 
base in the topological space X and (X, °U, °Un) is a ranked space such that 
r-convergence and convergence in the topological sense are identical. {%n : n e 
N} clearly satisfies the condition of Proposition 2. Therefore the ranked space 
(X, °lt) is metrizable. 

FRINK'S THEOREM [3]. A T±-space X is metrizable if and only if there exists a 
countable open neighborhood base {Vt(x):ieN} for each point x in X which 
satisfies the following condition: 

For each point x in X and each number i there exists a number j = j(x, i) such 
that Vj(x)nVi(y)^0 implies VJ(y)c: V.(X). 

To prove this theorem set Wt(x) = P|j<i V,(x). Take an arbitrary point x in X 
and an arbitrary number i. Set j1 = /(x, 1 ) , . . . , jt = j(x, i). If /0 = max {/ l5..., jt}, 
then, as can easily be seen, WJo(x) H Wio(y) j= 0 implies W,o(y) <= Wt(x). There
fore we assume without loss of generality that V0(x) = X for any point x and 
the original {V^x)} is monotone: V0(x) => Vx(x) =5 V2(x) =>•••. 

For any point x let l(x) = K 2 ( x ) = j(x, l(x))<3(x) = j(x, 2(x))<- • • . Set 
Ui(x)=Vi(x)(x), Ui={Ui(x):xeX} î = 0 , 1 , and P(x, i) = St(x, %) i = 
0 , 1 , 2 , . . . . Then {P(x, i):ieN} forms a neighborhood base of x. We call 
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P(x, i) a preneighborhood of x with rank i. Set 0>t = {P(x, i) : x e X} and 
0* = U { î : i G N}. Moreover we assume X is a preneighborhood of every point 
with rank 0. Then (X, 0>, ̂ ) is a ranked space. Let us show (X, 3P, ^ ) satisfies 
the condition of Proposition 2. 

Evidently 
(1) P(x, 0 z> P(x, i +1) for i e N. 
(2) (i) Since P(x, i) = St(X, Ut), P(x, i) 9 y implies P(y, i) 3 x. 

(ii) Suppose P(x,i)C\P(y,i)Bz. Then there exist Ui(a)e% such that 
Ui(a)3x, z, and tli(b)e% such that Uj(b)9y, z. 
Ui(a) H Ui(b) ± 0 implies LTj.^a) => U;(6) 3 y, z and l / ^^a ) => 
Lrf(a)3x, z. Since P(x, i- l)=> LT^^a), P(x,i-l)sy. 

Since {P(x, i) : i e N} is a neighborhood base in the topological sense and X is a 
T\-space, we have HieN^C** 0 = W . Therefore (X, 0>, &{) is metrizable such 
that r-convergence and convergence in the topological sense are identical. 

The author acknowledges her thanks to the referee who made valuable 
suggestions on contents and descriptions of this paper. 
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