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1. Introduction. Let G = A*HB be the free product of the groups A and B
amalgamating the proper subgroup H and let R be a ring with 1. If H is finite and G is
not finitely generated we show that any non-zero ideal I of R(G) intersects non-trivially
with the group ring R(M), where M=M(I) is a subgroup of G which is a free product
amalgamating a finite normal subgroup. This result compares with A. I. Lichtman's results
in [6] but is not a direct generalisation of these.

We then apply this theorem together with results in [4] and [1] to obtain the
following theorems on JJR(G), the Jacobson radical of R(G), and on ZR{G), the right
singular ideal of R(G). We denote by NR(A+(G)) the nilpotent radical of R(A+(G)).

THEOREM. Let G = A *HB, where H is a finite group, and let R be a right noetherian
ring with 1. If G is not finitely generated then

(i) R(G) is semiprimitive if and only if R(G) is semiprime,
(ii) if R is a field, JR(G) = NR(A+(G))R(G).

THEOREM. Let G = A *HB, where H is a finite group, and let K be a field. If G is not
finitely generated then ZK(G) = NK(G).

Our notation will be that usually employed. In particular, A *HB will denote the free
product of groups A, B amalgamating the subgroup H; \A : H\ will denote the number of
cosets of H in A. If we choose right transversals S, T, respectively, for A, B modulo H
then every element g e G = A *H B can be written uniquely in the form

g = halbla2b2...anbn, (1)

where h e H, at e S, bt e T, at # 1 if i ¥=• 1 and fy / 1 if; # n. This is called the normal form of
g[7, p. 205]. If at / 1 / bn we say that g has AB form. We define similarly AA, BA and
BB form for elements of G. If b n / 1 we say g has —B form. We define -A, B - , and A-
form for elements of G in the same way.
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2. Preliminaries. We need the following group theoretic results. For any group G,
we define A+(G) by

A+(G) = {x e G: x has only a finite number of conjugates in G and x has finite order}.

LEMMA 1. If G = A*HB then A+(G)<A+(H).
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Proof. This is straightforward.

THEOREM 1. Let G = A *HB, where H is a group with minimum condition. If H is not
normal in G, and if H has no non-trivial subgroups which are normal in G, then there exists
ge G such that g~1HgDH = 1.

Proof. See [3, proof of Theorem 1].

THEOREM 2. Let P be a group having subgroups At (i e I) which intersect pairwise in a
common subgroup B. That is, for i, j e I with i ̂  /, we have A; D A, = B. If every element peP
has a normal form as defined in the introduction and if normal forms of different lengths
represent different elements of P, then P is the free product of the At amalgamating B.

Proof. See [8, p. 511].

3. The main result.

THEOREM 3. Let R be a ring with 1 and let G = A *HB, where H is finite. If G is not
finitely generated and if I is a non-zero ideal of R(G), then there exist subgroups C and Dof
G, strictly containing the finite normal subgroup A+(G), such that i n R ( M ) ^ 0 , where
M=C* A + ( G ) D.

Proof. By Lemma 1, A + (G)<H and is hence a finite normal subgroup of G. Now
A+(G/A+(G))= 1 (see [9, 19.3, p. 81]) and G/A+(G) = A/A+(G)*H/A+(G) B/A+(G). Since
A+(G/A+(G))= 1, no non-trivial subgroup of H/A+(G) is normal in G/A+(G). Hence we
know from theorem 1 that there exists g € G/A+(G) such that
g"1(H/A+(G))gnH/A+(G)=l. Let g be an inverse image of g in G. Then g ^ H g f l H s
A+(G). Since A+(G) is normal in G and a subgroup of H, g~1HgC\H = A+(G). As G is
not finitely generated, either A is not finitely generated or B is not finitely generated. We
suppose the former. If g has A— form, choose beB, b£H. Then if he g~1b~1Hbg(~)H,
h = g~ib~1hibg for some h^eH. Since g is A - , b^h^beH and so heg1Hgr\H =
A+(G). Thus g~1b~lHbgC\H= A+(G) and we may assume that g has B- form. Similarly
we may suppose without loss of generality that g has BB form, if H is not normal in A,
and that g has BA form otherwise. Let 0^ del and let L = (supp 6, H). Since A is not
finitely generated and L is finitely generated we can choose aeA such that for all ceL,
a~1ca has AA form or a~1ca e H. Let C = g~1a^1Lag. If H is not normal in A, g has BB
form and so for ceC, c has BB form or c e A+(G). If H is normal in A, either H is not
normal in B or H is normal in G. In the first case, the argument is analogous to what
follows with elements of C having AA form or belonging to A+(G). In the second case,
H = A+(G) and the result is trivial. Thus we may assume that H is not normal in A. Hence
we can choose a^eA such that at£H and a\£H. Let beB with b£H and let
D = (a1bau A+(G)>. Elements of D will have the form d(a^bai)

n, where de&+(G).
Consider the group M~(C, D). Any element of M can be written

ai)niml{a1bax)n*m2 . .. mn, (2)
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where m; has BB form for i = 1 , . . . , n - 1, nt is an integer for i = 1 , . . . , n, nt ^ 0 for
i = 2 , . . . , n and mn has BB form or mn = \. Thus every element of M has a normal form
and normal forms of different lengths represent different elements in M. Hence by
Theorem 2, M= C*A*(O)D: Since A+(G) is normal in G it is normal in M and
0 / g~1a~16ageR(M)r\ I, giving the required result.

NOTE. It is not known to the author whether the condition in Theorem 3, that G be
not finitely generated, is necessary.

4. Applications. When H is a normal subgroup of G = A *H B we have the following
results for JR(G).

THEOREM 4. Let R be a ring and let G = A *HB with H normal in G and | A : H\ / 2 or
B :H\ * 2. Suppose that R(H) is a right (left) noetherian ring. Then JR(G) = 0 if and only
if R(H) is semiprime.

THEOREM 5. Let K be a field of characteristic p^O. Let G = A*HB with H normal in
G. Suppose that H is a polycyclic-by-finite group. Then JK(G) = NK(H) K(G) = NK(G).

(Note that if the characteristic of K is 0, then JK(G) = NK(G) = 0 by Theorem 4 and
[9, 3.3, p. 9].)

These results can be obtained by modifying the proof of [4, Theorem 2], and
considering the case \A:H\ = \B:H\ = 2 separately. Details may be found in [5].

We use our main theorem to prove

THEOREM 6. Let G = A *H B, where H is a finite group, and let R be a right noetherian
ring. If G is not finitely generated then

(i) R(G) is semiprimitive if and only if R(G) is semiprime,
(ii) if R is a field, JR(G) = NR(A+(G)) R(G).

Proof. If H is normal in G, the result follows from Theorem 4 and Theorem 5. Thus
we may assume that H is not normal in G. Let O#0eJR(G); then, by the proof of
Theorem 3, there is g e G and aeA with g^a^dageR(M)PlJR(G), where M =
C*A

+(G)D. But R(M)njR(G)cJR(M) (see [9, 16.9, p. 68]). Thus JR(M)=^0. Since
A+(G) is finite, R(A+(G)) is right noetherian and so Theorem 4 shows ihat R{A+(G)) is
not semiprime. Now NJR(A+(G)) is nilpotent and so NR{A+(G))R(G) is a nilpotent ideal
in R(G) and R(G) is not semiprime. Clearly if R(G) is not semiprime R(G) is not
semiprimitive and we have proved (i). For (ii) we apply Theorem 5 to obtain JR(M) =
NR(A+(G))R(G) = NR(G). Thus g"1Gr10ageNR(A+(G))R(G). Since NR(A+(G)) is a
nilpotent ideal of R(A+(G)) and invariant under automorphisms, iVR(A+(G)) R(G) is a
nilpotent ideal of R(G). Thus 0eNR(A+(G))R(G) and we have shown that JR(G)^
NR(A+(G))R(G). NR(A+(G))R(G)cJR(G) since it is nilpotent, and we have the
required equality.

The following result is a special case of Theorem 3.4 in [1].
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THEOREM 7. Let K be a field and G = A *HB, where H is finite and normal in G. Then
ZK(G) = NK(G).

We use this to obtain

THEOREM 8. Let K be a field and G = A*HB with H finite and G not finitely
generated. Then ZK(G) = NK(G).

Proof. If HoG, the result follows by Theorem 7. Thus we may assume that H is not
normal in G. Let 0j=8eZK(G). Then, by the proof of Theorem 3, g^oT^age
K(M)r\ZK(G), where M=C*^iG)D. Thus g'1 a'1 Oag e K(M) = ZK(M) = NK(M) by
Theorem 7 and [2, Lemma 4.7]. Now since A+(G) is finite and normal in M, NK(M) =
NK(A+(G))K(M), which is a nilpotent ideal invariant under automorphisms. Thus
OeNK(A+(G))K(M) and hence 0eNK(A+(G))K(G)<=NK(G). Thus ZK(G)<=NK(G)
and hence ZK(G) = NK(G).
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