Summer Meeting, 10-12 July 2017, Improving Nutrition in Metropolitan Areas

## Full fat cheese intake and cardiovascular health: a randomised control trial

T.J. Butler<sup>1,2</sup>, I. Davies<sup>3</sup> and S. Mushtaq<sup>2</sup>

<sup>1</sup>Department of Clinical Sciences and Nutrition, University of Chester, Chester, CH1 4BJ, <sup>2</sup>Department of Health Professions, Manchester Metropolitan University, Manchester, M15 6BG and <sup>3</sup>School of Sport Studies. Leisure and Nutrition, LJMU, Liverpool, L2 2ER

Milk and milk products contribute approximately 22 % of the nation's saturated fat (SFA) intake. Recently, the role of dairy and its SFA composition and link to cardiovascular disease (CVD) has been analysed<sup>(1)</sup>, suggesting a beneficial action of this food group on reducing cardiovascular risk in high-risk groups<sup>(2,3)</sup>. The aim of this study was to examine the effects of 4 weeks full-fat cheese on</sup> circulating lipoprotein fractions, blood pressure and arterial stiffness in healthy adults.

Participants were recruited in the city of Chester, UK. Those meeting entry criteria of: 18-65 years of age, not taking antihypercholesterolaemic or antihypertensive medication took part in the study. Participants were randomised to receive either 50 g of a full-fat Red Leicester (FFC) or placebo (virtually zero fat Cheddar cheese, ZFC) per day for 4 weeks. Anthropometry, blood pressure, brachial and aortic augmentation index (BAIX and AAIX, respectively), pulse-wave velocity (PWV) and a full lipid profile were determined at baseline and post-intervention. Participants were asked to keep a 3-day food diary prior to and for the last 3 days of the protocol. All procedures were approved by the Faculty of Medicine, Dentistry and Life Sciences Research Ethics Committee at the University of Chester.

Table 1. Baseline (T<sup>0</sup>) and follow-up (T<sup>1</sup>) measurements

|              | Zero fat cheese (ZFC) |      |       |      | Full fat cheese (FFC) |      |       |      |           |              |
|--------------|-----------------------|------|-------|------|-----------------------|------|-------|------|-----------|--------------|
|              | T <sup>0</sup>        | SD   | $T^1$ | SD   | T <sup>0</sup>        | SD   | $T^1$ | SD   | Time      | Time × Group |
| Weight (Kg)  | 73.7                  | 16.7 | 74.5  | 16.5 | 70.6                  | 15.1 | 70.3  | 14.2 | P = 0.878 | P = 0.850    |
| LDL (mmol/L) | 2.2                   | 0.8  | 2.3   | 0.6  | 2.4                   | 0.8  | 2.4   | 0.9  | P = 0.307 | P = 0.728    |
| HDL (mmol/L) | 1.5                   | 0.4  | 1.4   | 0.4  | 1.4                   | 0.3  | 1.4   | 0.3  | P = 0.841 | P = 0.345    |
| AIX (%)      | 13.7                  | 11.2 | 10.8  | 16.7 | 14.5                  | 12.8 | 12.0  | 9.4  | P = 0.242 | P = 0.525    |
| BAIX (%)     | -25.5                 | 50.1 | -3.3  | 58.0 | -18.6                 | 48.8 | -6.6  | 54.1 | P = 0.052 | P = 0.751    |
| PWV (m/s)    | 5.8                   | 0.9  | 6.1   | 1.3  | 5.9                   | 1.1  | 5.9   | 0.9  | P = 0.149 | P = 0.691    |

T<sup>0</sup>, baseline; T<sup>1</sup> follow-up, LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein-cholesterol; BAIX, brachial augmentation index; AAIX, aortic augmentation index; PWV, pulse-wave velocity. Data show mean ± SD.

Eighty-six (86) individuals completed the study (43 per group). No significant changes were observed in any measured parameter (Table 1). Both ZFC and FFC groups showed a significant increase in calcium intake during the course of the study  $(1002 \cdot 1 \pm 639 \cdot 1)$ mg to  $1815.0 \pm 1340.1$  mg and  $1219.6 \pm 1169.1$  mg  $1845.8 \pm 1463.2$  mg, P < 0.001, respectively) showing good adherence to the protocol.

In conclusion, these results suggest that inclusion of 50 g full fat cheese into the diet of a healthy population does not impact negatively on traditional CVD risk markers. Future strategies to reduce SFA intake should focus on – and acknowledge the importance of the source - of SFA in the diet.

Lovegrove JA, Hobbs DA (2016) Proc Nutr Soc 75, 247–258. Díaz-López A, Bulló M, Martínez-González MA et al. (2016) Eur J Nutr 55, 349–360.

3. Nilsen R, Høstmark AT, Haug A et al. (2015) Food Nutr Res 59, 27651.