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Abstract

We make some comments on the existence, uniqueness and integrability of the scalar derivatives and
approximate scalar derivatives of vector-valued functions. We are particularly interested in the connection
between scalar differentiation and the weak Radon–Nikodým property.
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1. Introduction

A deep result of Dilworth and Girardi [8] shows that for an arbitrary infinite-
dimensional Banach space X, there exist Bochner measurable X-valued functions
defined on the unit interval of the real line whose indefinite Pettis integrals are not
weakly differentiable anywhere. Therefore, studying more general notions of function
differentiability, rather than that of weak differentiability, may be of some interest
in the vector-valued setting. The notion of a scalar derivative, which seems more
appropriate for vector-valued integration since in general a scalar derivative need not
be Bochner measurable, was first defined by Pettis [20] and termed pseudo-derivative.
However, we believe that the term scalar derivative [10, 11, 19] better indicates the
nature of this concept of derivative. It should also be noted that scalar differentiation
was used in [10, Theorem 2.19] and independently in [19, Theorem 5.1] to give a
descriptive definition of the Pettis integral [16, 26]. The purpose of this note is to
extend several important theorems that involve the scalar derivative.

In 1939, Pettis established the following relationship between differentiability
almost everywhere and scalar differentiability within the function class of strong
bounded variation: the Pettis differentiability theorem states that if a function of strong
bounded variation on [a, b] has a separably-valued scalar derivative on [a, b], then the
function is differentiable almost everywhere on [a, b] and its derivative is Bochner
integrable on [a, b] [21, Theorem 2.8]. In Theorem 3.2 we have been able to prove
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the Pettis integrability of a scalar derivative of a function of strong bounded variation
without assuming the separability of the range of the scalar derivative in question.

In 1967, Solomon studied the existence and uniqueness of a scalar derivative in
the case in which the range space has a countable norming set [23]. Corollary 3.4
extends Solomon’s uniqueness theorem [23, Theorem 1] by replacing his condition on
the range space with a weaker one involving the density character of the dual space
equipped with the w∗-topology. In Theorem 3.6 we are able to remove from Solomon’s
existence theorem [23, Theorem 2] his assumption that the range space has a countable
norming set.

A classical result of Dunford and Morse [9] states that if each Lipschitz function
mapping [0, 1] into a Banach space X is differentiable almost everywhere on [0, 1],
then each X-valued function of strong bounded variation mapping [0, 1] into X is
necessarily differentiable almost everywhere on [0, 1]; in other words, X has the so-
called Radon–Nikodým property (RNP) [1, 5–7, 16]. On the other hand, if X lacks
the RNP, then there exists an X-valued Lipschitz function defined on [0, 1] that is not
differentiable at any point of [0, 1] [25, Theorem 1]. In 1987, Gordon carried out a
comprehensive treatment of integration and differentiation in Banach spaces [10]. In
particular, he considered functions of generalised strong bounded variation (sVBG)
and proved that each sVBG (sVBG∗) function with values in an RNP space is
approximately differentiable (differentiable) almost everywhere [10, Theorems 6.24
and 6.26]. We should remark that Gordon’s theorem concerning the differentiability
of sVBG∗ functions with values in an RNP space was independently obtained by
using a different technique and published recently in [2]. The key result of [2] is
a characterisation of the RNP in terms of the differentiability properties of several
vector-valued function classes closely related to the variational Henstock integral
[2, Theorem 3.6]. In [3, Theorem 4.5], the same group of authors as in [2] applied
the notion of a scalar derivative in order to obtain an analogue of the above mentioned
result to functions with values in a Banach space that has the weak Radon–Nikodým
property (WRNP) [7, 15, 16, 26]. We complete the main result of [3] from two
opposite angles: Theorems 3.7 and 3.8 generalise the Dunford–Morse theorem and
Gordon’s theorem concerning the approximate differentiability of sVBG RNP-space-
valued functions, respectively, to functions that assume values in a WRNP space.

2. Definitions and preliminary facts

Before stating our main results, it is necessary to introduce some notation and
terminology. Throughout this note [a, b] will denote a fixed nondegenerate interval
of the real line and I its closed nondegenerate subinterval. X denotes a real Banach
space and X∗ its dual. Given F : [a, b]→ X, ∆F(I) denotes the increment of F on I.
Let E be a set; then E, χE , and µ(E) will denote the closure of E, the characteristic
function (or indicator) of E, and Lebesgue measure of E, respectively. For ease of
notation, we will drop the adjective Lebesgue and refer to measurable and negligible
sets.
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We first define the notions of strong bounded variation (sVB) and of generalised
strong bounded variation (sVBG).

Definition 2.1. Let F : [a, b]→ X and let E ⊂ [a, b].

(a) The function F is sVB on E if

sup
{∑

k

‖∆F(Ik)‖
}

= V(F, E) <∞

where the supremum is taken over all finite collections {Ik} of nonoverlapping
intervals that have endpoints in E.

(b) The function F is sVBG on E if E can be expressed as a countable union of sets
on each of which F is sVB.

The adjective strong serves as an indication that the norm is inside the sum. It is an
easy exercise to prove that for each c in [a, b], V(F, [a, b]) = V(F, [a, c]) + V(F, [c, b])
whenever either side is defined.

We now define the derivatives, approximate derivatives, scalar derivatives, and
approximate scalar derivatives of vector-valued functions.

Definition 2.2. Let F : [a, b]→ X and let t ∈ [a, b].

(a) A vector w in X is the derivative of F at t if

lim
s→t

F(s) − F(t)
s − t

= w

in the norm topology. We will write F′(t) = w.
(b) A vector w in X is the approximate derivative of F at t if there exists a measurable

set E ⊂ [a, b] that has t as a point of density such that

lim
E3s→t

F(s) − F(t)
s − t

= w

in the norm topology. We will write F′ap(t) = w.
(c) Let E ⊂ [a, b]. The function f : E → X is a scalar derivative of F on E if for

each x∗ in X∗ the real-valued function x∗F is differentiable almost everywhere
on E and (x∗F)′ = x∗ f almost everywhere on E.

(d) Let E ⊂ [a, b]. The function f : E → X is an approximate scalar derivative
of F on E if for each x∗ in X∗ the real-valued function x∗F is approximately
differentiable almost everywhere on E and (x∗F)′ap = x∗ f almost everywhere
on E.

Some comments on the above definition are appropriate here. While (a) is standard,
in (b) we require the set through which the limit exists to be measurable, but we feel
that including measurability as part of the definition of an approximate derivative is
not limiting. In connection with (c) and (d), we underscore that the exceptional set
may vary with x∗.
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If (T,T ) is a topological space, then dens(T,T ) denotes the smallest cardinal
for which there is a dense set of that cardinality. This cardinal is called the density
character of (T,T ). Each cardinal number is identified with the first ordinal number
of that cardinality.

The cardinal number κ( µ) is defined to be the minimal cardinal number κ such that
there exists the union of κ negligible sets of positive outer Lebesgue measure. As is
usually done, we call Axiom M the statement that κ( µ) = c.

The reader who is not familiar with the classical theories of vector-valued
integration such as those of Bochner and Pettis may wish to consult [6, 16, 26]. These
sources also contain an interesting collection of more advanced results.

3. Existence, uniqueness and integrability of the scalar derivative

For the reader’s convenience, we recall that∫ b

a
F′ ≤ F(b) − F(a)

whenever F is a monotone nondecreasing real-valued function defined on [a, b] (see,
for example, [13, Theorem 4.10] for the details). The proof of the first new theorem of
this note showing that a scalar derivative of a function of strong bounded variation is
coordinatewise majorised in absolute value by a summable function relies on the same
idea. This theorem lays the basis for our result regarding the Pettis integrability of a
scalar derivative.

Theorem 3.1. Let F : [a, b]→ X. If F is sVB on [a, b] and f is a scalar derivative
of F on [a, b], then there exists a nonnegative Lebesgue integrable function ϕ defined
on [a, b] such that |x∗ f | ≤ ϕ almost everywhere on [a, b] (the exceptional set may vary
with x∗) and ∫ b

a
|x∗ f | ≤

∫ b

a
ϕ ≤ V(F, [a, b])

for each x∗ in X∗ with ‖x∗‖ ≤ 1.

Proof. Select integers p and q such that p − 1 < a ≤ p and q − 1 ≤ b < q. Then extend
the function F to [p − 1, q] by setting F(t) = F(a) on [p − 1, a) and F(t) = F(b) on
(b, q]. Define a sequence of step functions (a step function is a linear combination of
characteristic functions of intervals) by

fn =

q2n∑
k=(p−1)2n+1

{
F
( k
2n

)
− F

(k − 1
2n

)}
· 2nχ((k−1)/2n, k/2n].

Fix x∗ ∈ X∗ such that ‖x∗‖ ≤ 1 in the remainder of this proof. We will prove that the
sequence {x∗ fn} converges to x∗ f almost everywhere on [a, b]. Set

Ex∗ = {t ∈ (a, b) : t is not a dyadic rational and (x∗F)′(t) = x∗ f (t)}.
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Then µ(Ex∗) = b − a. Fix t in Ex∗ . For each positive integer n choose an integer kn such
that t ∈ (an, bn) where an = (kn − 1)2−n and bn = kn2−n. Then limn an = limn bn = t and

lim
n
{x∗ fn(t) − x∗ f (t)} = lim

n

{ x∗F(bn) − x∗F(an)
bn − an

− x∗ f (t)
}

= lim
n

{ bn − t
bn − an

·

( x∗F(bn) − x∗F(t)
bn − t

− x∗ f (t)
)

+
t − an

bn − an
·

( x∗F(t) − x∗F(an)
t − an

− x∗ f (t)
)}

= 0.

Hence for all t in Ex∗ we obtain the result that limn x∗ fn(t) = x∗ f (t).
Note that for each positive integer n,∫ b

a
‖ fn‖ ≤

∫ q

p−1
‖ fn‖ ≤ V(F, [a, b]).

Define ϕ(t) = lim infn ‖ fn(t)‖ for each t in [a, b]. Then for each t in Ex∗ ,

|x∗ f (t)| = lim
n
|x∗ fn(t)| = lim inf

n
|x∗ fn(t)| ≤ ϕ(t).

By Fatou’s lemma it follows that∫ b

a
ϕ ≤ lim inf

n

∫ b

a
‖ fn‖ ≤ V(F, [a, b]).

The proof is complete. �

We are now in a position to prove our generalisation of the Pettis differentiability
theorem.

Theorem 3.2. Let F : [a, b]→ X. If F is sVB on [a, b] and f is a scalar derivative of
F on [a, b], then f is Pettis integrable on [a, b] and

V
(∫ ·

a
f , [a, b]

)
≤ V(F, [a, b]).

Proof. Let the nonnegative function ϕ be as in the preceding theorem. We first make
note of the fact that

sup
x∗∈X∗:‖x∗‖≤1

∫ b

a
|x∗ f | ≤

∫ b

a
ϕ ≤ V(F, [a, b]).

Fix ε > 0. Then there exists η > 0 such that
∫

E ϕ < ε whenever µ(E) < η.
Consequently,

sup
x∗∈X∗:‖x∗‖≤1

∣∣∣∣∣∫
E

x∗ f
∣∣∣∣∣ ≤ sup

x∗∈X∗:‖x∗‖≤1

∫
E
|x∗ f | ≤

∫
E
ϕ < ε

whenever µ(E) < η. Define T f : X∗ → L1[a, b] by T f x∗ = x∗ f for each x∗ in X∗. By
the Dunford–Pettis theorem (see, for example, [14, Theorem 3.24]), the operator T f is
weakly compact.
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Let the function sequence { fn} be as in the proof of the preceding theorem. Denote
the closed linear span of

⋃
n fn([a, b]) by Y and note that Y is separable. Then, for

each x∗ in X∗ such that x∗|Y = 0, the relation

x∗ f = lim
n

x∗ fn = 0

holds almost everywhere on [a, b]. Now it follows from [24, Theorem 2.8] that the
function f is Pettis integrable on [a, b]. Hence, for each finite collection {Ik} of
nonoverlapping intervals,∑

k

∥∥∥∥∥∫
Ik

f
∥∥∥∥∥ =

∑
k

sup
x∗∈X∗:‖x∗‖≤1

∣∣∣∣∣∫
Ik

x∗ f
∣∣∣∣∣

≤
∑

k

sup
x∗∈X∗:‖x∗‖≤1

∫
Ik

|x∗ f | ≤
∑

k

∫
Ik

ϕ ≤

∫ b

a
ϕ ≤ V(F, [a, b]),

which is what we desired. �

A fairly simple example can be given to demonstrate that two scalar derivatives of a
single function may differ on a set of full Lebesgue measure [23, Section 2]. However,
we have a sufficient condition, Corollary 3.4, for a function to have no more than one
approximate scalar derivative (compare [23, Theorem 1]). We first need the following
familiar fact, which we have been unable to find in print (although similar questions
have received some attention by Rodrı́guez [22]).

Theorem 3.3. Suppose that dens(X∗,w∗) < κ( µ). Let f : [a, b]→ X and let E ⊂ [a, b].
If, for each x∗ in X∗, x∗ f = 0 almost everywhere on E (the exceptional set may vary
with x∗), then f = 0 almost everywhere on E.

Proof. Let λ denote dens(X∗,w∗). By [14, Fact 4.10], there exists a set {x∗α}α<λ ⊂ X∗

with ‖x∗α‖ ≤ 1 for each α < λ that separates the points of X. For each α < λ set

Eα = {t ∈ E : x∗α f (t) = 0}.

Define
N =

⋃
α<λ

E\Eα

and note that N is negligible. Then for each α < λ and for each t in E\N we have
x∗α f (t) = 0. Since {x∗α}α<λ separates the points of X, it follows that f = 0 on E\N. The
proof is complete. �

Corollary 3.4. Suppose that dens(X∗,w∗) < κ( µ). Let F : [a, b]→ X and let E ⊂
[a, b]. If f and g are approximate scalar derivatives of F on E, then f = g almost
everywhere on E.

We should note at this point that if we assume Axiom M, then the above corollary
is valid provided that dens(X∗,w∗) < c.

The conclusion of the next lemma is not surprising, but we have not found the
details in the literature.
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Lemma 3.5. Let F : [a, b]→ X and let E ⊂ [a, b]. If E can be written as a countable
union of sets on each of which F has a scalar derivative (an approximate scalar
derivative), then F is scalarly differentiable (approximately scalarly differentiable)
on E.

Proof. We will prove the approximate scalar derivative case. Suppose that E =
⋃

n En

and F is approximately scalarly differentiable to fn : En → X on En for each n. Set
H1 = E1 and

Hn = En

∖ n−1⋃
k=1

Ek for each n > 2.

Define f : E → X by f (t) = fn(t) for each t in Hn. Fix x∗ in X∗. For each n,
set N x∗

n = Hn\{t ∈ Hn : (x∗F)′ap(t) = x∗ fn(t)}. Since each N x∗
n is negligible, it follows

that (x∗F)′ap = x∗ f almost everywhere on E. Hence F is approximately scalarly
differentiable to f on E. The proof is complete. �

The next theorem relates the notion of scalar differentiability on a closed set to a
local scalar differentiability condition. The key notion for this theorem is that of a
portion of a set. To be clear, recall that a portion of a set E ⊂ [a, b] is a nonempty set
of the form (c, d) ∩ E.

Theorem 3.6. Let E be a nonempty closed subset of [a, b] and let F : [a, b]→ X. Then
each of the following two statements about the function F implies the other:

(i) F has a scalar derivative (an approximate scalar derivative) on E;
(ii) given any perfect set P ⊂ E, there is a portion Q of P such that F has a scalar

derivative (an approximate scalar derivative) on Q.

Proof. We will prove the approximate scalar derivative case.
Obviously (i) implies (ii).
Now assume that (ii) holds and suppose if possible that F has no approximate scalar

derivative on E. Set

F = {(c, d) : F has an approximate scalar derivative on (c, d) ∩ E}

and note that F , ∅. Then there is no loss of generality in supposing that F =

{(cn, dn)} without affecting the set of points of E covered by F . Next, if

P = E
∖⋃

n

(cn, dn),

then P is perfect and, by Lemma 3.5, P is nonempty. This is impossible since it follows
from the definition of the family F that F has no approximate scalar derivative on any
portion of P. �

The last two theorems of this note apply to spaces with the WRNP. Recall that X
has the WRNP if each function of strong bounded variation mapping [a, b] into X
has a scalar derivative on [a, b] (see [3] for the details behind this definition). Also,
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the reader should compare our Theorem 3.8 with [3, Theorem 4.5] to realise how
closely the sVBG function class parallels the sVBG∗ function class in terms of its
differentiability properties.

Theorem 3.7. Any one of the following statements about a Banach space X implies all
the other statements:

(i) X has the WRNP;
(ii) each Lipschitz function mapping [a, b] into X has a scalar derivative on [a, b];
(iii) each Lipschitz function mapping [a, b] into X has a scalar derivative on some

portion of any perfect set P ⊂ [a, b].

Proof. Obviously (i) implies (ii). Theorem 3.6 applies to yield the equivalence of (ii)
and (iii).

To see that (ii) implies (i), let F : [a, b]→ X be sVB on [a, b]. We now apply
a classical argument [9, Section 4] to show that F has a scalar derivative on [a, b].
Define a strictly monotone increasing real-valued function on [a, b] by

σ(t) = t + V(F, [a, t]) for each t in [a, b],

and let E = σ([a, b]). Let τ : E → [a, b] be the inverse of σ. Define G(s) = F(τ(s)) for
each s in E. Then for any two points s < s′ in E we obtain the result that

‖G(s) −G(s′)‖ ≤ V(F, [τ(s), τ(s′)]) ≤ τ(s′) − τ(s) + V(F, [τ(s), τ(s′)])
= τ(s′) − τ(s) + V(F, [a, τ(s′)]) − V(F, [a, τ(s)])
= σ(τ(s′)) − σ(τ(s)) = s′ − s.

We first extend the domain of G to E in the natural way. We further let G denote
the function defined on the interval [a, b + V(F, [a, b])] that is linear on the intervals
contiguous to E with respect to [a, b + V(F, [a, b])]. It is easy to see that for any
two points s and s′ in [a, b + V(F, [a, b])] we obtain the same Lipschitz condition
‖G(s) −G(s′)‖ ≤ |s′ − s|. Thus G has a scalar derivative, g say, on [a, b + V(F, [a, b])].
Fix x∗ in X∗ and set N x∗ = E\{s ∈ E : (x∗G)′(s) = x∗g(s)}. Since τ satisfies the Lipschitz
condition |τ(s) − τ(s′)| ≤ |s′ − s| on E and the set N x∗ is negligible, we see that the set
τ(N x∗) is negligible. That is, we have the relation

(x∗G)′(σ(t)) = x∗g(σ(t)) for each t in [a, b]\τ(N x∗).

Set
N = {t ∈ [a, b] : σ is not differentiable at t}.

Since σ is increasing in a strictly monotone manner on [a, b], it follows that the set N
is negligible. Thus, for each t in [a, b]\(N x∗ ∪ N),

lim
h→0

x∗F(t + h) − x∗F(t)
h

= lim
h→0

x∗G(σ(t + h)) − x∗G(σ(t))
σ(t + h) − σ(t)

· lim
h→0

σ(t + h) − σ(t)
h

= x∗g(σ(t)) · σ′(t),
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so that f = g ◦ σ · σ′ is a scalar derivative of the function F on [a, b]. The proof is
complete. �

Theorem 3.8. Suppose that X has the WRNP and let F : [a, b] → X be Bochner
measurable on [a, b]. If F is sVBG on a set E ⊂ [a, b], then F has an approximate
scalar derivative on E.

Proof. Our proof is patterned after a proof in Gordon [10, Theorem 6.24].
Let E =

⋃
n En where F is sVB on each En. Since F is Bochner measurable on

[a, b], for each n we use a result of Gordon [11] (see [17, Theorem 2] for a published
version of the proof) to choose a measurable set An ⊂ [a, b] such that F is sVB on An.
By Lemma 3.5, it is sufficient to prove that F has an approximate scalar derivative on
each An.

Fix n and let ε > 0. Choose a closed set H ⊂ An such that µ(An\H) < ε and let
G : [a, b]→ X be the function that equals F on H and is linear on the intervals
contiguous to H. Then G is sVB on [a, b] by [12, Theorem 3]. Since X has the
WRNP, the function G has a scalar derivative, g say, on [a, b].

Fix x∗ in X∗. Let Hx∗
1 be the set of all points t in H such that t is a point of density

of H and (x∗G)′(t) exists. Then the set H\Hx∗
1 is negligible and, for each t in Hx∗

1 ,

(x∗G)′(t) = lim
H3s→t

x∗G(s) − x∗G(t)
s − t

= lim
H3s→t

x∗F(s) − x∗F(t)
s − t

.

This shows that (x∗F)′ap(t) = x∗g(t) for each t in Hx∗
1 . Hence, the function F is

approximately scalarly differentiable to g on the set H and µ(An\H) < ε. Once again,
since ε > 0 was arbitrary, it follows from Lemma 3.5 that F has an approximate scalar
derivative on An. This completes the proof. �

Our discussion reveals the following two potentially interesting questions.

Question 3.9. Under the hypothesises of Theorem 3.8, can the approximate scalar
derivative be written as a sum g + h, where g is Bochner measurable and, for each x∗

in X∗, x∗h = 0 almost everywhere on E (the exceptional set may vary with x∗)?

Question 3.10. Which proper subclasses of the Lipschitz function class may replace
the latter within the hypothesis of a Dunford–Morse type theorem for either the RNP
or the WRNP or both these properties?

We wish to make an observation about the nature of the second question. Indefinite
Riemann integrals make up a function class that is a proper subclass of the Lipschitz
function class (we refer to a recent paper by Thomson [27] for a thorough discussion
of real-valued indefinite Riemann integrals). Surprisingly, the indefinite Riemann
integral function class is not sufficient to resolve our question in the affirmative even
for separable spaces: a rather delicate counterexample is the Bourgain–Rosenthal
subspace of L1 denoted by E in their original 1980 paper [4]. Indeed, the Bourgain–
Rosenthal space E has the strong Schur property but lacks the RNP (see [1, 5] for better
adapted details of the Bourgain–Rosenthal construction). Since E is a Schur subspace
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of L1, E has the Lebesgue property (see [18] and the references therein). As a result,
each E-valued indefinite Riemann integral must be differentiable almost everywhere.
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