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Abstract

In this study, we characterize the equilibrium behavior of spatial migration processes
that represent population migrations, or birth–death processes, in general spaces. These
processes are reversible Markov jump processes on measure spaces. As a precursor, we
present fundamental properties of reversible Markov jump processes on general spaces.
A major result is a canonical formula for the stationary distribution of a reversible
process. This involves the characterization of two-way communication in transitions,
using certain Radon–Nikodým derivatives. Other results concern a Kolmogorov criterion
for reversibility, time reversibility, and several methods of constructing or identifying
reversible processes.
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1. Introduction

In this study, we develop Markovian models of spatial migration, or particle systems whose
dynamics are reversible. In doing this, we also extend several classical results for reversible
Markov jump processes on countable spaces to the case of uncountable state spaces. This
involves technicalities about communication in general spaces that are not issues in countable
spaces.

The notion of reversibility of Markov processes was introduced by Kolmogorov [10]; see the
review article [1]. An ergodic continuous-time (or discrete-time) Markov chain on a countable
state space is reversible if, in equilibrium, the expected number of transitions per unit time
from one state to another is equal to the expected number of transitions in the reverse direction.
This is also equivalent to a time-reversibility property; namely that, at any instant, viewing the
future of the process is stochastically indistinguishable from viewing the process in reverse
time. More importantly, one can readily obtain the stationary distribution of a countable-state
reversible Markov chain using the canonical formula (4), below, which is simply a product of
ratios of the chain’s transition rates (or transition probabilities).

The first part of our study is on fundamentals of reversible Markov jump processes on general
state spaces (e.g. measure-valued processes and discrete-time Markov chains on general spaces).
Section 2 contains preliminaries, including an example of multiclass birth–death processes.
Section 3 contains a canonical formula for invariant measures (or stationary distributions)

Received 9 February 2005; revision received 24 April 2005.
∗ Postal address: School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332,
USA. Email address: rserfozo@isye.gatech.edu
Research supported in part by NSF grant DDM-9821123.

801

https://doi.org/10.1239/aap/1127483748 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483748


802 R. F. SERFOZO

of reversible Markov processes. This result involves characterizing two-way communication
between any two of the chain’s states, in a general state space, in terms of a Radon–Nikodým
derivative involving the transition kernel. This derivative for a countable-state chain is the
classical ratio of the transition rate between the states to the rate for the reverse transition. Our
analysis also involves extending Kolmogorov’s classical reversibility criterion to irreducible
chains on general spaces. Although the material in Sections 2 and 3 applies to discrete-time
Markov chains, we present it for continuous-time jump processes, which tend to have more
applications.

The second part of our study focuses on applications. In Section 4, we describe stationary
distributions for spatial migration and birth–death processes. These have potential applications
in the modeling of mobile phone systems and related spatial queueing systems [4], [12], [15],
[16]. Related countable-state reversible Markov network models, beginning with Kingman’s
[9] population process, can be found in [6], [18], and [16]. Other works on spatial birth–death
processes are [11], [3], [7], [8], and [15].

In Section 5, we show how reversible processes arise from functions of reversible kernels
and from interacting reversible processes. The results are useful for identifying reversible
processes and modeling reversible systems. One proposition says that a process with multiple
instantaneous reversible jumps is also reversible. This applies to birth–death or queueing
systems with batch or synchronous movements.

2. Preliminaries

We will use the following notation throughout this study. Suppose that X ≡ {Xt : t ≥ 0} is
a Markov jump process on a general measurable space (E, E) with transition rate kernel

q(x,A) = lim
t→0

t−1 P{Xt ∈ A | X0 = x}, A ∈ E .

Assume that q(x,E) is finite and positive, and that the process X has no instantaneous or
absorbing sets and is regular (i.e. the number of jumps it takes in any finite time interval is
finite). We adopt the convention that q(x, {x}) ≡ 0, which means that fictitious jumps from x

back to itself are not considered. (Beware that some studies use q as the infinitesimal generator,
where q(x, {x}) ≡ −q(x,E): we will not use this convention.) Unless specified otherwise,
all the processes (or kernels) we use herein will satisfy these assumptions. The construction of
such a Markov jump process is discussed, for instance, in [5].

The process X evolves as follows. Each sojourn time of the process X in a state x is
exponentially distributed with rate q(x,E). At the end of such a sojourn, the process jumps
into a set A with probability P(x,A) = q(x,A)/q(x,E). The sequence of states visited by
X is a discrete-time Markov chain on E (called the embedded chain) with one-step transition
probability kernel P(x,A).

Definition 1. The transition rate kernel q (or the Markov process X) is reversible with respect
to a measure π on E if

π(dx)q(x, dy) = π(dy)q(y, dx) on E
2. (1)

The equality of measures (1), called detailed balance, implies the total balance

π(dx)q(x,E) =
∫

E

π(dy)q(y, dx).

https://doi.org/10.1239/aap/1127483748 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483748


Reversible Markov processes 803

Consequently, π is an invariant measure for q. By Proposition 2, below, it is also an invariant
measure for the transition probability of X. When π is finite, it can be normalized to be the
stationary probability measure of the process.

The preceding definition of reversibility and the results below for continuous-time processes
also apply to discrete-time Markov chains – just interpret q(x,A) in the results as a one-step
transition probability kernel.

If q is reversible with respect toπ then it follows, by induction on n, that, for x0, . . . , xn ∈ E,

π(dx0)q(x0, dx1) · · · q(xn−1, dxn) = π( dxn)q(xn, dxn−1) · · · q(x1, dx0) on E
n+1. (2)

This equality of measures is the basis for the Kolmogorov criterion and the canonical form
of invariant measures in the next section. Property (2) is also used to prove other properties,
such as the fact that processes with batch or multiple instantaneous reversible transitions are
reversible (Proposition 4).

The following results describe how the reversibility of X is manifested in its embedded
Markov chain, its transition probabilities, and its evolution in time.

Proposition 1. The rate kernel q is reversible with respect to π if and only if the transi-
tion probability kernel P(x,A) for its embedded Markov chain is reversible with respect to
q(x,E)π(dx).

This result follows directly from the definition of reversibility. The next result is obvious
for discrete-time Markov chains on countable state spaces, but it is a little more involved when
there are exponential sojourn times. The memoryless property of a sojourn time acts like a local
reversibility condition. Here and below, if π is a measure on E and q(x, dy) is a rate kernel,
we let πq denote the measure on the product space E

2 defined by

πq(dx × dy) ≡ π(dx)q(x, dy).

Proposition 2. The rate kernel q is reversible with respect to π if and only if the transition
probability kernel

Pt(x,A) := P{Xt ∈ A | X0 = x}
is reversible with respect to π for each t .

Proof. Suppose that q is reversible with respect to π , and let Pt,n(x,A) be the probability
of X starting in state x and being in A at time t , with this being the nth state visited by the
process. We can then write

Pt(x,A) =
∞∑
n=0

Pt,n(x,A).

To prove that Pt(x,A) is reversible with respect to π , it suffices to show that Pt,n(x,A) is
reversible with respect to π for each n ≥ 0. We will show this by induction on n.

The claim is true for n = 0, since

πPt,0(A× B) =
∫
A∩B

e−q(x)tπ(dx) = πPt,0(B × A),
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where q(x) := q(x,E). Now assume that the induction hypothesis is true for n. Then,
conditioning on a jump out of state x, we have

πPt,n+1(dx × dy) =
∫ t

0
π(dx)

∫
E

q(x, dz)Pt−s,n(z, dy)e−q(x)s ds

=
∫ t

0

∫
E

q(z, dx)π(dz)Pt−s,n(z, dy)e−q(x)s ds

= π(dy)
∫ t

0

∫
E

q(z, dx)Pt−s,n(y, dz)e−q(x)s ds

= π(dy)
∫ t

0

∫
E

q(z, dx)Pu,n(y, dz)e−q(x)(t−u) du

= πPt,n+1(dy × dx).

The second equality follows by the reversibility of q, the third equality follows by the reversibil-
ity ofPt−s,n, and the fourth equality follows by the change of variable u = t−s. Consequently,
Pt,n+1 is reversible with respect to π and, hence, the induction is complete.

To prove the converse, suppose that Pt is reversible with respect to π for each t . From the
well-known relation Pt(x,A) = tq(x,A)+ o(t), it follows that

πq(dx × dy) = lim
t↓0

t−1πPt (dx × dy)

= lim
t↓0

t−1πPt (dy × dx)

= πq(dy × dx).

Thus, q is reversible with respect to π .

The reversibility of X is also related to it being ‘reversible in time’. Specifically, for a fixed
τ > 0, the time reversal of X at τ is the process Xτt = Xτ−t , 0 ≤ t ≤ τ. Each sample path
of this process corresponds to a sample path of X in reverse time starting at τ (like viewing a
videotape in reverse). The processX is reversible in time if, for each τ > 0, the processXτ has
the same distribution as X on the interval [0, τ ]. In other words, the evolution of X backward
in time is equal in distribution to its evolution forward in time.

The time reversibility of X is related to its reversibility as follows. Although this result is
more technical than that for countable states, its proof is short since it uses Proposition 2, which
is not needed in the case of countable states.

Proposition 3. The Markov process X is reversible in time if and only if it is stationary and
reversible.

Proof. Suppose that X is reversible in time. Then each Xτ is equal in distribution to X0,
which implies that the Markov process X is stationary. Let π denote the distribution of X0.
Then, using stationarity and reversibility in time at τ = s + t , we have

π(dx)Pt (x, dy) = P{(Xs,Xs+t ) ∈ dx × dy}
= P{(Xs+t , Xs) ∈ dx × dy}
= π(dy)Pt (y, dx).

This says that Pt is reversible with respect to π and, so, q is also reversible with respect to π ,
by Proposition 2.
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Conversely, suppose thatX is stationary and reversible, with stationary distribution π . Now
X will be reversible in time if, for any 0 < t1 < · · · < tn < τ ,

P{Xτ−t1 ∈ dx1, . . . , Xτ−tn ∈ dxn} = P{Xt1 ∈ dx1, . . . , Xtn ∈ dxn}.
Since X is Markovian and stationary, this equality of measures is equivalent to

π(dxn)
n∏
k=2

Ptk−tk−1(xk, dxk−1) = π(dx1)

n∏
k=2

Ptk−tk−1(xk−1, dxk).

However, this equality, which is analogous to (2), follows by the reversibility of Pt .

Quintessential examples of reversible processes are birth–death processes. Here are some
variations on the classical birth–death process.

Example 1. (Up–down processes on partially ordered spaces.) Suppose that the process X
resides on a partially ordered space E (e.g. E = R

m) with a measurable order relation ‘<’.
Assume that its transition rate kernel is

q(x,A) =
∫
A

[q1(x, dy) 1(x < y)+ q2(x, dy) 1(y < x)],

where 1(·) is an indicator function. When X is in a state x, it may jump into a higher or
lower set. Clearly, X is reversible with respect to measures π for which π(dx)q2(x, dy) =
π(dy)q1(y, dx).

As an example, suppose that, on the space E = R
m, Xt represents the state ofm continuous

or discrete quantities at time t (amounts of fluids at m stations, outstanding orders at m part-
suppliers, stock levels of m products in a warehouse, for example). Assume that the transition
rate kernel of X is

q(x, A) =
∫
A

[u(y)u(x)−1 1(x < y)+ v(x)v(y)−1 1(x > y)]ψ(dy), (3)

where u(·) and v(·) are positive functions and ψ is a measure on E. Viewing ũ(x) :=
− log u(x) as a potential function, u(y)u(x)−1 = e−(ũ(y)−ũ(x)) reflects the change in potential
by component ‘increases’from x to y. Similarly, v(x)v(y)−1 reflects a ‘decrease’ in a potential.
In this case, X is reversible with respect to π(A) = ∫

A
u(x)v(x)−1ψ(dx).

A special case of (3) is

q(x, A) =
∫
A

exp

{
−

m∑
j=1

[αj (xj , yj ] 1(yj > xj )+ βj (yj , xj ] 1(yj ≤ xj )]
}
ψ(dy),

where αj and βj are measures on R+. Think of e−αj (xj ,yj ]ψ(dy) as the birth rate of size yj −xj
in component j , and e−βj (yj ,xj ]ψ(dy) as the death rate of size xj − yj in component j . These
rates are compounded (multiplied) over the m components to form the entire transition rate.
Then X is reversible with respect to

π(A) =
∫
A

exp

{
−

m∑
j=1

(αj (0, xj ] − βj (0, xj ])
}
ψ(dx).
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A classical example of this process is anm-dimensional, nonnegative, integer-valued birth–
death process with transition rates

q(x, y) =
m∑
i=1

[αi(xi) 1(x + ei = y)+ βi(xi) 1(x − ei = y)].

Here ei is the unit vector with a 1 in position i and 0s elsewhere, the αi(xi) and βi(xi) are the
birth and deaths rates in dimension i, and only one xi changes in a transition. An invariant
measure for this process is

π(x) =
m∏
i=1

xi∏
k=1

αi(k − 1)

βi(k)
.

3. Invariant measures

For a countable-state Markov jump process, there is a well-known Kolmogorov criterion for
it to be reversible, and this criterion yields a canonical representation for its invariant measures.
In this section, we describe similar results for processes on general spaces. The novelty is
that one-step communication between a pair of states of the process is characterized by certain
Radon–Nikodým derivatives. This characterization is not needed in the case of countable
states, where one-step communication is obviously characterized by a direct observation of the
transition rate kernel.

To put our results into perspective, we first review the known canonical characterization of
invariant measures for the Markov jump process X when its state space E is countable. For
simplicity, we write q(x, y) = q(x, {y}). Assume that X has the two-way communication
property that, for each x 
= y ∈ E, the rates q(x, y) and q(y, x) are either both positive or both
equal to 0. We say that a sequence of states x0, x1, . . . , xn in E is a path if q(xi−1, xi) > 0,
i = 1, . . . , n, and n+ 1 ≥ 2. We also define the ratio of rates ρ(x, y) := q(x, y)/q(y, x) for
a path x, y.

The following well-known result characterizes invariant measures for reversible processes
on countable state spaces (see, e.g. [6], [16], [18]).

Theorem 1. The following statements are equivalent.

(i) The transition rate function q is reversible.

(ii) (Kolmogorov criterion.) For each n ≥ 3 and x1, . . . , xn in E with xn = x1, we have

n−1∏
i=1

q(xi, xi+1) =
n−1∏
i=1

q(xi+1, xi).

(iii) For each path x0, x1, . . . , xn in E with n + 1 ≥ 2, the product
∏n
i=1 ρ(xi−1, xi) (in

general a function of x0, . . . , xn, and n) is only a function of x0 and xn.

If any one of the preceding statements holds then X is reversible and an invariant measure
for it is

π(x) =
n∏
i=1

ρ(xi−1, xi), x ∈ E \ {x0}, π(x0) = 1, (4)

where x0 is an arbitrary state viewed as an origin and x0, . . . , xn = x is any path from x0 to xn.
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We will now prove an analogue of Theorem 1 for general state spaces. We will use the
following shorthand notation. A measure µ on E

2 is symmetric if µ = µ, where µ(dx×dy) ≡
µ(dy × dx) is the reversal of µ. Recall that, for a measure π on E, we define the measure πq
on the product space E

2 by πq(dx × dy) ≡ π(dx)q(x, dy). Then q is reversible with respect
to π if and only if πq is symmetric.

Our first task is to define two-way communication with the use of the following result of [17].

Lemma 1. For any σ -finite measure µ on E
2, there is a symmetric set Rµ ∈ E2 such that µ

on Rµ is symmetric, and the Radon–Nikodým derivative µ(dx × dy)/µ(dx × dy) is positive
µ-almost everywhere (µ-a.e.) on Rµ. Furthermore, µ and µ are orthogonal on Rc

µ (the
complement of Rµ).

Consider the Markov jump process X, as in the preceding sections. We will characterize
invariant measures for X that are σ -finite. Some preliminaries are in order about its commu-
nication structure. Suppose, for now, that X is reversible with respect to a σ -finite measure ψ
on E such that ψq is σ -finite. By applying Lemma 1 to the measure µ = ψq, we see that the
Radon–Nikodým derivative

ρψ(x, y) ≡ ψq(dx × dy)

ψq(dx × dy)

is positive for ψq-a.e. (x, y) in R1(ψ) =: Rψq . To avoid repeating the last phrase, we will
assume that ρψ(x, y) > 0 for each (x, y) ∈ R1(ψ). In addition, the measures ψq and ψq
vanish on R1(ψ)

c, since they are equivalent and orthogonal on R1(ψ)
c.

From these observations, the elements in the set R1(ψ) can be viewed as the pairs of states
that may communicate with each other in one step. Indeed, if (x, y) ∈ R1(ψ)

c then y cannot
be reached from x in one step, and vice versa. On the other hand, if (x, y) ∈ R1(ψ) then
y might be reached from x in one step, and vice versa. However, the probability of a jump
from x to the singleton set {y} is q(x, {y})/q(x,E), which may be 0. Because of this property,
the phrase ‘may communicate’ pertains to ‘communication via derivatives’ of transition rates,
which differs from the usual notion of communication for a Markov process.

Note that if the state space E is countable and ψ is a counting measure, then the derivative
ρψ(x, y) equals the ratio ρ(x, y) = q(x, y)/q(y, x) in Theorem 1. It turns out that, for general
state spaces, ρψ(x, y) plays a role similar to that of ρ(x, y) for countable state spaces. The
preceding observations justify the following terminology.

Definition 2. The set of routes of length n ≥ 2 for the process X is

Rn(ψ) := {(x1, . . . , xn) ∈ E
n : (xi−1, xi) ∈ R1(ψ), 2 ≤ i ≤ n}.

The rate kernel q has two-way ψ-communication on E if the following conditions are satisfied.

(a) The measure ψ is σ -finite such that ψq is σ -finite and

sup
(x,y)∈R1(ψ)

ρψ(x, y) < ∞.

(b) The measures ψq and ψq vanish on R1(ψ)
c.

(c) For x, y ∈ E, there exist x1, . . . , xn ∈ E such that (x, x1, . . . , xn, y) ∈ Rn+2(ψ).

Condition (a) ensures thatX has a σ -finite invariant measure. Condition (b) is necessary for
reversibility. If condition (c) were not to hold, there would be states that could not communicate
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with each other in a finite number of steps (or within a finite time), and we could delete these
from the state space E.

The following analogue of Theorem 1 characterizes invariant measures for reversible pro-
cesses on general state spaces.

Theorem 2. Suppose that q has two-way ψ-communication and define

ρψ(x1, . . . , xn) ≡
n−1∏
i=1

ρψ(xi, xi+1), (x1, . . . , xn) ∈ Rn(ψ). (5)

The following statements are equivalent.

(i) The transition rate kernel q is reversible with respect to a σ -finite measure that is
equivalent to ψ .

(ii) ρψ(x1, . . . , xn, x1) = 1 for any (x1, . . . , xn, x1) ∈ Rn+1(ψ) and any n ≥ 2.

(iii) For any (x0, . . . , xn, x) ∈ Rn+2(ψ) and n ≥ 1, the function ρψ(x0, . . . , xn, x) depends
only on x0 and x.

If these statements hold then X is reversible with respect to

π(dx) = f (x)ψ(dx), (6)

where f (x0) = 1, for a fixed x0 viewed as an origin, and

f (x) := ρψ(x0, x1, . . . , xn, x), x ∈ E \ {x0}, (7)

for any (x0, x1, . . . , xn, x) ∈ Rn+2(ψ).

Remark 1. (Construction of the function f .) Fix x0 ∈ E and let E0 = {x0} and

En+1 =
{
x ∈ E \

n⋃
k=0

Ek : (x′, x) ∈ R1(ψ) for some x′ ∈ En

}
, n ≥ 0.

Now define f inductively on these disjoint sets according to f (x0) = 1 and

f (x) := f (x′)ρψ(x′, x), x ∈ En, for any x′ ∈ En−1.

Note that
⋃∞
n=1 En = E and that if Em is empty, then En is empty for n ≥ m.

Proof of Theorem 2. We first prove that part (i) implies part (ii). Suppose that q is reversible
with respect to a σ -finite measure π which is equivalent toψ . Let r(x) denote a positive version
of the Radon–Nikodým derivative π(dx)/ψ(dx). The reversibility of q implies the equality of
measures

r(x)ψq(dx × dy) = r(y)ψq(dx × dy).

Then ρψ(x, y) = r(y)/r(x) in R1(ψ). Using this in the definition (5) of ρψ and canceling
terms yields part (ii).

We now prove that part (ii) implies part (iii). Assume that part (ii) is true. Fix x0 and x,
choose any routes, (x0, x1, . . . , xm, x) in Rm+2(ψ) and (x0, y1, . . . , yn, x) in Rn+2(ψ), from
x0 to x, and define

a := ρψ(x0, x1, . . . , xm, x), b := ρψ(x0, y1, . . . , yn, x).
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To prove part (iii), it suffices to show that a = b. Define

a := ρψ(x, xm, . . . , x1, x0), b := ρψ(x, yn, . . . , y1, x0).

By the definition of ρψ , we know that ρψ(x, y) = 1/ρψ(y, x) and, so, a = 1/a and b = 1/b.
In addition, part (ii) implies that ab = ba = 1. Consequently, a = 1/a = b.

Finally, we prove that part (iii) implies part (i). Suppose that part (iii) holds. Then f (x)
defined by (7) is a function only of x, viewing x0 as being fixed. The measure π(dx) =
f (x)ψ(dx) is well defined and is σ -finite by property (a) of two-way communication (see
Definition 2). Now, from the definitions of π , ρψ , and f , we have

πq(dx × dy) = f (x)ψq(dx × dy)

= f (x)ρψ(x, y)ψq(dy × dx) 1((x, y) ∈ R1(ψ))

= f (y)ψq(dy × dx) 1((y, x) ∈ R1(ψ))

= πq(dy × dx).

Thus, q is reversible with respect to π , which completes the proof.

Note that if the state space E is countable, then Theorem 2 (with ψ({y}) ≡ 1) reduces to
Theorem 1. The following corollary is another special case of Theorem 2.

Corollary 1. (Kernels with densities.) Suppose that the rate kernel is of the form

q(x, dy) = r(x, y)ψ(dy),

where r is a nonnegative function on E
2. Then Theorem 2 holds with

ρψ(x, y) = r(x, y)

r(y, x)
,

and the invariant measure in (6) is

π(dx) =
n∏
i=1

ρψ(xi−1, xi)ψ(dx),

where xn = x.

Here is an example of a process with a special communicating state.

Example 2. (Ōsawa [13], [14].) Suppose that, for the process X, there exists an x0 ∈ E such
that

q(x, {x0}) > 0 for q(x0, ·)-a.e. x ∈ E1 := E \ {x0}.
This means that, as the process X moves within E1, it can reach x0 in one jump from almost
every state x ∈ E1. Therefore, q is reversible with respect to a measure having x0 as an atom
if and only if

q(x0, dx)q(x, dy)q(y, {x0}) = q(x0, dy)q(y, dx)q(x, {x0}) on E
2
1. (8)

In this case, q is reversible with respect to a measure π defined by π({x0}) = 1 and

π(dx) := q(x0, dx)

q(x, {x0}) on E
2
1.

This result is a special version of Theorem 2 with no σ -finiteness technicalities, where f (x) = 1
in (6), and (8) is equivalent to ρψ(x, y) = 1 for π -a.e. x and y.
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4. Spatial migration and multiechelon processes

In this section, we describe migrations of populations and birth–death systems that take
place in a general space. The results also apply to abstract multiechelon processes.

Consider a system in which particles or items occasionally enter a space S from outside
and visit one or more locations in S before departing. A typical state of the system is a finite
counting measure x on S of the form x(B) = ∑n

k=1 δsk (B), where δs(·) is the Dirac measure
with a unit atom at s. This x(B) is the number of items in the set B ∈ S, the σ -field on S. We
let x0 denote the zero measure on S. We model the system as a Markov process X on the set E

of finite counting measures on S, such that Xt(B) denotes the number of items in the set B at
time t . The σ -field on E is the smallest one for which the function x �→ x(B) is measurable
for each B ∈ S.

We assume that the rate of a transition of X from state x0 into A ∈ E is

q(x0, A) =
∫
S

α(x0, ds1) 1(δs1 ∈ A),

and that, from any state x = ∑n
i=1 δsi , it has the three-action kernel

q(x,A) =
∫
S

α(x, ds) 1(x + δs ∈ A)+
n∑
i=1

β(x, si) 1(x − δsi ∈ A)

+
n∑
i=1

∫
S

λ(x, si, ds) 1(x − δsi + δs ∈ A). (9)

Here, α(x, B) is the arrival rate kernel for an item entering a state in B, β(x, si) > 0 is the
departure rate for an item at si , and λ(x, si, B) is the migration rate kernel for a one-step
movement of an item from si to another location in B. The process X is a spatial migration
process. We call it a spatial birth–death process when λ(·, ·, ·) ≡ 0.

It is natural to express the state space as E = ⋃∞
n=0 En, where E0 = {x0} and En ≡

{x : x(S) = n}, the set of counting measures of size n. According to the kernel (9), when X is
in a state x ∈ En, it can only jump into a state in En−1 ∪ En ∪ En+1. Furthermore, from any
x ∈ En, the process can reach x0 in n transitions along a path in En−1 × · · · × E0. In a slight
abuse of notation, we let ξn := ∑n

i=1 δsi , where ξ0 = x0 (the zero measure).
For each n ≥ 1, we define a measure Mn on Sn by

Mn(dsn) ≡
n∏
k=1

α(ξk−1, dsk)

β(ξk, sk)
,

where sn = (s1, . . . , sn). The measure Mn is symmetric if Mn(dsn) = Mn(ds̃n) on Sn for any
permutation s̃n of sn.

Theorem 3. For the spatial migration process X, the following statements are equivalent.

(i) The process X is reversible with respect to a measure that has an atom at x0.

(ii) For any � ≥ 1 and x� = x0, we have

�∏
k=1

q(xk−1, dxk) =
�∏
k=1

q(xk, dxk−1) on E
�. (10)
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(iii) For each n ≥ 1, the measure Mn is symmetric and, for each i,

Mn(dsn)λ(ξn, si, ds) = Mn(d(sn − (si − s)ei ))λ(ξn − δsi + δs, s, dsi). (11)

When these statements hold, X is reversible with respect to

π :=
m∑
n=0

πn, (12)

where π0(A) := 1(x0 ∈ A) and, for n ≥ 1,

πn(A) := 1

n!
∫
Sn
Mn(dsn) 1(ξn ∈ A), A ∈ E .

Proof. If part (i) holds then part (ii) follows by (2).
Assume that part (ii) holds. To prove that Mn is symmetric, fix sn ∈ E

n and let s̃n be any
permutation of it. Define ξk := ∑k

i=1 δsi , ξ̃k := ∑k
i=1 δs̃i , and

(x1, . . . , x2n) := (ξ1, . . . , ξn, ξ̃n−1, ξ̃n−2, . . . , ξ̃0).

For this sequence, (10) (with � = 2n and ξ0 = x0 = ξ̃0) is

n∏
k=1

q(xk−1, dxk)
n−1∏
j=0

q(xn+j , dxn+j+1) =
n−1∏
j=0

q(xn+j+1, dxn+j )
n∏
k=1

q(xk, dxk−1);

that is,

n∏
k=1

α(ξk−1, dsk)
n−1∏
j=0

β(ξ̃n−j , s̃n−j ) =
n−1∏
j=0

α(ξ̃n−j−1, ds̃n−j )
n∏
k=1

β(ξk, sk−1).

The second and fourth products are positive, since β(ξk, sk) > 0. Dividing this equality by
these two products, and changing the indices j to k = n− j , yields Mn(dsn) = Mn(ds̃n).

To prove (11), fix sn ∈ Sn and, for a fixed i and s, define

sin := (s1, . . . , si−1, s, si+1, . . . , sn).

Let s̃in be any permutation of sin, and define the measures ξ ik = ∑k
j=1 δsj , where si = s, and

ξ̃ ik = ∑k
j=1 δs̃j . Consider the sequence of states

(x1, . . . , x2n+1) := (ξ1, . . . , ξn, ξ
i
n, ξ̃

i
n−1, ξ̃

i
n−2, . . . , ξ̃

i
0).

For this sequence, (10) is

n∏
k=1

α(ξk−1, dsk)λ(ξ
i
n, si , ds)

n−1∏
j=0

β(ξ̃ in−j , s̃n−j )

=
n∏
k=1

α(ξ̃ ik−1, ds̃k)λ(ξ
i
n, s, dsi)

n−1∏
j=0

β(ξn−j , sn−j ).
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By dividing both sides by the second and fourth products as we did above, we obtain (11). This
completes the proof that part (ii) implies part (iii).

We end the proof by showing that part (iii) implies that X is reversible with respect to π as
defined in (12). To show that πq = πq on E

2, it suffices, because of the structures of π and q,
to show that

πnq = πn+1q on En × En+1, for n ≥ 0,

πnq = πn−1q on En × En−1, for n ≥ 1,

πnq = πnq on E
2
n, for n ≥ 1.

(13)

Now, for any nonnegative (measurable) functionf on En×En+1, it follows, by the definitions
of πn, q, and ξk , that

πnqf :=
∫

En×En+1

πnq(dx, dy)f (x, y)

=
∫
Sn

Mn(dsn)

n!
∫
S

α(ξn, dsn+1)f (ξn, ξn+1).

Then, by the definition and symmetry of Mn, we have

πnqf =
∫
Sn+1

Mn+1(dsn+1)

n! β(ξn+1, sn+1)f (ξn, ξn+1)

=
n+1∑
i=1

∫
Sn+1

Mn+1(dsn+1)

(n+ 1)! β(ξn+1, si)f (ξn+1 − δsi , ξn+1)

=
∫

En+1×En

πn+1q(dx, dy)f (x, y).

This proves the first line of (13). The second line follows by a similar argument.
To prove the third line of (13), let f be a nonnegative function on E

2. Then, using property
(11) and letting ηn := ξn − δsi + δs , we have

πnqf =
∫
Sn

Mn(dsn)

n!
n∑
i=1

∫
S

λ(ξn, si, ds)f (ξn, ηn)

=
∫
Sn

Mn(d(sn − (si − s)ei ))

n!
n∑
i=1

∫
S

λ(yn, s, dsi)f (ξn, ηn)

= πnqf.

This completes the proof.

Example 3. (Spatial birth–death process with interactions.) Recall that the process in Theo-
rem 3 is a spatial birth–death process when λ(·, ·, ·) ≡ 0. Consequently, Theorem 3 applies to
this case with the minor change that statement (iii) does not include the condition (11). The
stationary distribution is still given by (12), since Mn does not depend on λ. Using another
approach, Preston [15] established the existence of the stationary distribution of such processes
without specifying its form.

We now describe another special case of Theorem 3. For the spatial migration process
described above, suppose that the measures

α(x,A) =: α(A), β(x,A) =: β(A), λ(x, s, A) =: λ(s, A) (14)
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are independent of x, and that the measure γ (ds) := β(s)−1α(ds) is finite. Extend λ and γ to
S ∪ {0}, where 0 represents the ‘outside’ of S, by letting

λ(0, A) = α(A), λ(s, 0) = β(s), γ ({0}) = 1 − γ (S).

In this setting, items arrive at the system according to a space–time Poisson process with mean
intensity α(ds) dt and, until it exits, each item moves independently in S according to the
Markov kernel λ.

Theorem 4. Under the preceding assumptions, the spatial migration process X is reversible
with respect to a measure that has an atom at x0 if and only if the kernel λ on S∪{0} is reversible
with respect to γ . WhenX is reversible, its stationary distribution π is that of a Poisson process
on S with intensity measure γ ; that is,

π(A) = e−γ (S)
[

1(x0 ∈ A)+
m∑
n=1

1

n!
∫
Sn

n∏
k=1

γ (dsk) 1(ξn ∈ A)
]
. (15)

This distribution is also the limiting distribution of X if and only if γ (S) < 1
2 .

Proof. Under the assumption that the measures (14) are independent of x, it follows that
Mn(dsn) = ∏n

k=1 γ (dsk) in Theorem 3, meaning that statement (iii) there is clearly equivalent
toλ onS∪{s0} being reversible with respect to γ . In this setting, the Poisson process distribution
(15) is the stationary distribution when X is reversible.

Since X is Markovian, if its limiting distribution exists then it equals its stationary distribu-
tion. Clearly, X is a regenerative process with regeneration point 0 and, so, by the key renewal
theorem, its limiting distribution exists if and only if Eτ < ∞, where τ is the time between
two successive visits to 0. It remains to show that

Eτ < ∞ ⇔ γ (S) < 1
2 . (16)

We can interpret τ as the duration of a busy period in an M/G/∞ service system having
Poisson arrivals with rate λ(0, S) and independent service times distributed in the same way
as the time T it takes for a Markov process, denoted by Yt , with rate kernel λ to travel from 0
back to 0. For such a system, it is known (see, e.g. [2]) that

Eτ < ∞ ⇔ λ(0, S)E T < 1. (17)

To establish the last inequality, note that, since Yt has a stationary distribution γ , we know
that γ ({0}) = 1/λ(0, S)ET0, where T0 is the time interval between two successive entrances to
0. However, T0 is also the time T taken to travel from 0 to 0 plus a sojourn time at 0. Therefore,

E T0 = 1

λ(0, S)γ ({0}) = E T + λ(0, S)−1.

Then, clearly, we have

λ(0, S)ET = γ ({0})−1 − 1 < 1 ⇔ γ ({0}) > 1
2

⇔ γ (S) < 1
2 .

These equivalences and (17) prove (16).
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Remark 2. When the spatial migration process described in Theorem 4 is stationary, one can
show, as in [16, p. 262, Exercise 6], that the departure process is a space–time Poisson process
with intensity α(ds) dt .

Two important features of spatial migration processes, and the process in Example 2, are
that, first, they can reach an origin state in a finite number of steps from any state and, second,
the origin is an atom of the stationary distribution. A class of processes with these features is
as follows.

Example 4. (Multiechelon processes.) Consider a processX with an origin state x0 and whose
other states are generated by vectors with components in a measurable space (S,S). Specifically,
suppose that g is a measurable function from

⋃m
n=1 S

n onto E \ {x0} such that g(sn) = g(s̃n)

if and only if s̃n is a permutation of sn. That is, each x = g(sn) is generated by the vector
sn, viewed as a multiset (a set that may include multiple entries). Also, E = ∑m

n=0 En, where
En = {g(sn) : sn ∈ Sn}.

Assume that a transition of the process X from any x in the nth echelon E
n into A ∈ E is

triggered, in analogy to (9), by the following three actions.

• A new component sn+1 is appended to sn with rate α(x, ds), resulting in a transition from
x ∈ En to g(sn+1) ∈ En+1.

• A component si is deleted from sn with rate β(x, si) > 0, resulting in a transition from
x ∈ En to g(sn − siei ) in En−1.

• A component si in sn is replaced by s with rate λ(x, si, ds), resulting in a transition from
x ∈ En to g(sn − (si − s)ei ) in En.

This process is then of the form Xt = g ◦ h(X̃t ), where X̃t is a spatial migration process as
above and h : x �→ s is the measurable function that identifies the atoms of x. The equilibrium
behavior of X can therefore be characterized by the above results for X̃t .

5. Inheritance of reversibility

We now show that a reversible transition rate kernel gives rise, via various functions of the
kernel, to a host of reversible processes. The results in this section are useful in recognizing
whether a process is reversible and for constructing reversible processes.

We begin by describing reversible processes in which each transition consists of multiple
instantaneous transitions triggered by a reversible kernel. Let X̃ denote a Markov jump process
on E with transition rate kernel q̃(x, A). Consider a variation of this process in which each
transition consists of up tom transitions of X̃ occurring simultaneously, such that the transition
rate kernel of this new process X is

q(x,A) =
m∑
n=1

qn(x,A), (18)

where m ≤ ∞ is fixed and

qn(x,A) :=
∫

En−1
q̃(x, dx1)q̃(x1, dx2) · · · q̃(xn−1, A).

The compounding (or multiplication) of the rates of n single jumps under q̃ represents a ‘macro’
transition rate for n ‘instantaneous jumps’ of X̃. Note that X is a random time transformation
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Xt = X̃τt of the original q̃-process, where the random time process τt is piecewise linear
(having slope 1), with random increments at instants when multiple instantaneous jumps occur.
Each increment in the random time process τt is the sum of the exponential sojourn times of
the q̃-process in those states associated with the multiple instantaneous jumps. The following
result says that the process X inherits its reversibility from the reversibility of q̃.

Proposition 4. (Multiple instantaneous jumps.) The process X with rate kernel given by (18)
is reversible with respect to π if q̃ is reversible with respect to π .

Proof. Suppose that q̃ is reversible with respect to π . Then, by (2), we have πqn = πqn for
each n, and, so, πq = ∑m

n=1 πqn = ∑m
n=1 πqn = πq. Thus,X is reversible with respect to π .

Example 5. (Batch birth–death processes.) Suppose that X is a batch birth–death process on
E = R

m in which a batch of n births or a batch of n deaths (each of a general size) may occur
instantaneously according to the kernel (18), where q̃ is given by (3). Since q̃ is reversible with
respect to π(A) = ∫

A
u(x)v(x)−1ψ(dx), X is also reversible with respect to this measure.

The processX described in Proposition 4 can be viewed as anm-action process, in that each
of its transitions is triggered bym actions with associated kernels q1, . . . , qm. In this case, each
qn has a special structure generated by the single kernel q̃. Is there an analogue of Proposition 4
for multiaction processes with general kernels qn? Here is an example with an analogous proof.

Proposition 5. (Multiaction processes.) Suppose that the rate kernel of the process X is q =∑m
n=1 qn, where each qn is a rate kernel and m ≤ ∞. Assume that there exists a measure π

on E and a permutation k1, . . . , km of 1, . . . , m such that πqn = πqkn for each n ≤ m. Then
q is reversible with respect to π .

In the rest of this section, we consider a Markov process X with a compound transition rate
kernel

q(x, dy) = r(x, y)q̃(x, dy), (19)

where r(x, y) is a nonnegative function on E
2 and q̃ is a transition rate kernel for a process X̃

on Ẽ ⊇ E. The process X can be viewed as a transformation of X̃, in that the state space and
set of possible transitions of X may be smaller than those of X̃, and the exponential sojourn
rate q̃(x,E) of X̃ in state x becomes

∫
E
r(x, y)q̃(x, dy) for X.

The next two results address the issue of how the reversibility of X is related to that of X̃.
The first result is a special case of the second.

Proposition 6. For the transition rate kernelq given by (19), suppose that r(x, y) is a symmetric
function. Then q is reversible with respect to π on E if and only if q̃ is reversible with respect
to π on Ẽ.

Proposition 7. Let π̃ be a measure on E and f be a positive function on E, both associated
with the transition rate kernel q given by (19). Then any two of the following statements imply
the third:

(a) q̃ is reversible with respect to π̃ ;

(b) the function f (x)r(x, y) is symmetric π̃ q̃-a.e.;

(c) q is reversible with respect to π(dx) = f (x)π̃(dx).
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Proof. Clearly, parts (a) and (b) imply part (c), since

πq(dx × dy) = f (x)r(x, y)π̃ q̃(dx × dy) = πq(dy × dx).

Similarly, parts (b) and (c) imply part (a), since

π̃ q̃(dx × dy) = [f (x)r(x, y)]−1πq(dx × dy) = π̃ q̃(dy × dx),

where 0−1 = 1, by convention. Finally parts (a) and (c) imply part (b), since

f (x)r(x, y)π̃ q̃(dx × dy) = πq(dx × dy)

= πq(dy × dx)

= f (y)r(y, x)π̃ q̃(dy × dx)

= f (y)r(y, x)π̃ q̃(dx × dy).

We close with examples of the preceding propositions. The process X with rate kernel (19)
represents X̃ with its transitions restricted to a symmetric set C ∈ E2 if

r(x, y) = 1((x, y) ∈ C).
These restrictions are equivalent to

r(x, y) = 1(h(x, y) ≤ b),

where h is a symmetric function and b is a constant. In particular, X is a truncation of X̃ to E

when C = E
2. Proposition 6 yields the following result.

Corollary 2. Suppose thatX represents X̃ with its transitions restricted to a symmetric set, or
that X is a truncation of X̃. If X̃ is reversible with respect to π on Ẽ, then X is reversible with
respect to π restricted to E.

For instance, if the reversible spatial migration process described in Theorem 4 is restricted to
contain at mostm items, then it is a truncation of the process to the subset

⋃m
n=0 E

n ⊂ ⋃∞
n=0 E

n.
Hence, its invariant measures are simply restrictions to the smaller subset of those measures
for the original process.

Example 6. (Restrictions on multidimensional processes.) There are many natural transition
restrictions and truncations for processes with state space E ⊆ R

m+. Here are a few illustrations
of functions for which Corollary 2 applies.

• Taking r(x, y) = 1(x ≤ y) + 1(x ≥ y) restricts transitions to be either up or down
(where the vector inequalities are component-wise).

• Suppose that X̃ represents a system that requires certain resources to sustain it. Specif-
ically, whenever it is in a state x = (x1, . . . , xm), let it require a quantity aij xj of a
resource i ∈ I for each component j , and let bi be the maximum amount of resource i
that is available. Then, setting r(x, y) = 1(

∑
j aij xj ≤ bi, i ∈ I ) constrains the system

to not exceed the resources.

• Taking r(x, y) = 1(maxj {|yj − xj |} ≤ b) limits the difference in any component at a
transition to not exceed b.
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Reversible processes arise in many contexts in which several independent reversible pro-
cesses are linked together by certain interactions; see [16, Chapter 2]. Here is an example.

Example 7. (Independent spatial processes with interactions.) Consider a multiclass migra-
tion process X̃t = (X̃1

t , . . . , X̃
m
t ) consisting of m independent spatial, reversible migration

processes, as in Theorem 4, where the m classes of item move within the same space S. The
stationary distribution is the product measure

∏m
k=1 π̃k for them independent processes. Now,

consider the modification of the system with the constraint that the total number of items in the
space S cannot exceed a limit �. The items that arrive when � items are already in the system
are turned away and never return. A feasible vector of measures must therefore satisfy

m∑
k=1

xk(S) ≤ �. (20)

In addition, assume that the level � varies according to a nonnegative reversible processLt that is
independent of X̃ and has stationary distribution πL(·). Under this constraint, the independent
processes X̃it and Lt are linked together into dependent processes, resulting in a new process
Yt = (Lt , X

1
t , . . . , X

m
t ) on the set E of vectors (�, x1, . . . , xm) that satisfy (20). Corollary 2

implies that Y is reversible with respect to the product measure πL(A)
∏m
k=1 π̃k(Bk) restricted

to E.

Example 8. (Jumps affected by a random environment.) Suppose that the rate kernel q̃ rep-
resents a system that is subject to a random environment which affects its jumps as follows.
Whenever the system is in state x, a jump to a new state y is allowed with probability r(x, y) and
is forbidden with probability 1 − r(x, y). This jump modification is independent of everything
else. The resulting system state over time is a Markov process with transition rate kernel (19).
According to Proposition 7, if q̃ is reversible with respect to π̃ then q is reversible if and only if
there exists a function f such that f (x)r(x, y) is symmetric π̃ q̃-a.e. In this case, q is reversible
with respect to f (x)π̃ .

Example 9. (Kernels with densities.) Suppose that q(x, dy) = r(x, y)ψ(dy), as in Corol-
lary 1. Then it follows, by Proposition 7, that q is reversible if and only if there exists a function
f such that f (x)r(x, y) is symmetric for ψ-a.e. x and y. In this case, q is reversible with
respect to f (x)ψ(dx).
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