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. 4 1  

U S E  OF GROWTH STANDARDS 

H I S T O R Y  
Just over a century ago Bowditch (1891) published the first account of growth standards, 
using curves based on Galton’s percentiles. Galton had invented anthropometric 
percentiles, as he called them, to summarize the distribution of body measurements of 
‘9337 persons measured in my Anthropometric Laboratory at the [ 18841 International 
Health Exhibition’ (Galton, 1885). He compared the distributions of measurements for the 
two sexes by identifying the percentile for each sex where the distributions crossed, 
counting up for the men and down for the women. Thus in ‘strength of squeeze’, for 
example, he observed that the 7th percentile for men was the same as the 93rd percentile 
for women. 

Bowditch (189 1) extended this idea by displaying percentiles of height for Massachusetts 
children on a chart, so they appeared as curves plotted against age. By putting age on the 
abscissa he allowed changes in size with age, i.e. notional growth, to be displayed at  the 
same time. 

During the first half of the twentieth century, the use of growth charts expanded 
considerably. Various sets of reference data for height and weight were developed, most 
notably the Harvard standards (Vaughan & McKay, 1975). More recently other types of 
chart have been devised, for example the clinical longitudinal chart of Tanner (Tanner et 
al. 1966), the American NCHS chart, adopted for international use by WHO (Hamill et al. 
1977; Lavoi-Pierre et al. 1983), and the conditional charts of Cameron (1980). At the same 
time other anthropometric measurements have been investigated, for example body 
circumferences and skinfold thicknesses. Tanner (198 1) provides a comprehensive history 
of the development of growth studies and growth standards. 

The methods of making standards, i.e. converting reference data to smooth percentile 
curves, have also changed enormously in recent years, with the advent of fast computers 
and improved statistical techniques. Originally the curves were drawn by eye, but in the last 
five years there has been something of an explosion in the statistical literature on the 
subject. 

The clinical value of displaying anthropometric status and growth together with 
reference curves on a growth chart has been repeatedly demonstrated. Ironically, though, 
there remains widespread misunderstanding, even now, as to how precisely the growth 
chart should be interpreted. 

The purpose of this review is twofold: to summarize how growth charts, and the 
reference standards that underlie them, are currently used and constructed, and to highlight 
ways in which their use might be extended in the future. 
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Fig. 1. Centile chart for Dutch girls’ weight in 1980 (Roede & Van Wieringen, 1985). showing seven 
centiles from the 3rd to the 97th. 

D E F I N I T I O N S  
A growth standard or growth reference is a dataset representing the distribution of a given 
anthropometric measurement as it changes with some covariate - usually age - in the two 
sexes, based on a specified reference sample of children. The distribution is usually 
summarized by selected centiles including the median (50th centile), and the mean and 
standard deviation (or SD) may also be given. Note that the term ‘centile’ is synonymous 
with Galton’s ‘percentile’. The set of centiles chosen to define the standard is conventionally 
symmetric about the median, with up to seven distinct centiles, and usually including 
extreme values such as the 3rd and 97th or the 5th and 95th. Centiles corresponding to 
- 2 s ~  or - 3 s ~  are also sometimes used. 

Thus a growth standard consists of several smooth centile curves, which when plotted 
out make up a growth chart, with the relevant anthropometric measure on the ordinate and 
age (usually) on the abscissa. As an example, Fig. 1 shows a growth chart for weight in 
Dutch girls (Roede & Van Wieringen, 1985). Sometimes another anthropometric measure 
is on the abscissa, e.g. height on a weight-for-height chart. 

R E F E R E N C E  O R  S T A N D A R D  
The term ‘growth standard’ is ambiguous, and this ambiguity has generated confusion and 
controversy over the years. The issue is to do  with the quality of growth that the standard 
represents. Does it represent ‘good’ growth, i.e. a norm to aspire to, or is it ‘reference 
growth’, a yardstick to be used for comparison purposes (WHO, 1986)? This question is 
not academic - a growth standard based on Western children and used in a developing 
country represents a size of child seen only in the most well-off sections of society. Clinically 
such a standard is unhelpful for the majority of children, and politically it may be 
unwelcome if it implies that their small size is due to poverty. Against this, there are 
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situations where growth clearly is inadequate, and the standard then provides a reminder 
of what might be possible in better conditions. 

Using a growth standard as a norm implies that it represents optimal growth. This is a 
dubious assumption -- a larger child is not necessarily a healthier child, and with obesity the 
reverse is true. In any case, even within the developed world there are clear differences in 
adult height. Young men in The Netherlands for example are more than 5 cm taller on 
average than young men from the USA (Hamill et af. 1977; Roede & Van Wieringen. 1985; 
Tanner & Davies, 1985). This is not easy to explain in health terms. 

To avoid arid arguments about the nature of healthy growth, the second definition is 
generally preferred - a reference standard provides a reference, not a norm. In practice this 
means that the standard should not be used in isolation to reach a clinical decision. To 
reduce ambiguity some authorities recommend use of the phrase ‘growth reference’, thus 
avoiding ‘standard’ altogether (WHO, 1986). This course is not followed consistently here, 
but the terms ‘growth standard’ and ‘growth reference’ should be viewed as synonymous. 

L O C A L  O R  I N T E R N A T I O N A L  
A distinct but related issue concerns the use of international as opposed to locally based 
standards. The advantage of an international standard, such as the NCHS standard 
adopted by WHO (Hamill et al. 1977; Lavoi-Pierre et al. 1983) is that it simplifies 
comparisons between regions or countries - they all have a common reference. The main 
disadvantage is that the pattern of growth shown by the standard may be quite 
inappropriate in particular regions of the world, for example India, where the children are 
considerably smaller than in the USA. Against this, some authors (Goldstein & Tanner, 
1980; Graitcer & Gentry, 1981) argue that if elite children in the region can achieve growth 
matching that of the standard, then the standard serves as a norm representing achievable 
growth for those who are less well-off. This then brings us back to the definition of the 
standard as norm. 

The short answer to the question ‘International or Local?’ is ‘It depends’. Where 
international comparisons are required, an international standard simplifies the collection 
and classification of anthropometry. Conversely if clinical decisions are needed, or if a 
statistical analysis is used to adjust anthropometry for age, then a local standard is 
probably more appropriate. 

In practice, most Western countries have developed their own national standards, which 
are used as local norms for clinical purposes. Another class of growth standards applies to 
genetically unusual groups of children, where the pattern of growth differs significantly 
from the local norm, for example Down’s Syndrome (Cronk et al. 1988) or Turner’s 
Syndrome (Ranke et af. 1983; Lyon et al. 1985; Naeraa & Nielsen, 1990). In such cases 
there is no value in using an international standard, as the differing growth performance 
is due to the child’s genotype, and international comparisons are better made using the 
syndrome-specific standard. 

S C A L E S  O F  M E A S U R E M E N T  
Growth standards are used to compare individuals or groups relative to other children of 
the same age and sex. Growth monitoring relies on two simple principles: children growing 
normally are more likely to be found in the body than the tails of the anthropometric 
distribution, and when followed up they tend to maintain their position in the distribution. 
In detail, the process of growth is not as smooth as the use of a growth chart 
implies-during the first year at least, growth in individuals proceeds in fits and starts 
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(Lamp1 el af .  1992). However, for periods of time exceeding a few weeks the discrete nature 
of the growth curve is averaged out, so that the assumption of a smooth curve is not 
unrealistic. 

Thus when anthropometry is age--sex adjusted and plotted against age, the expected 
pattern of growth is seen as a horizontal line on the chart. This form of presentation, 
discussed in detail in a later section, makes abnormal growth easier to detect. There are 
three ways to adjust anthropometry for age and sex. 

Cent ile 
The growth chart displays anthropometric measurements in terms of centiles. Centiles 

indicate the proportions of the distribution that lie below them; 50% of the reference 
population lies below the median (or 50th centile), and 3 O h  below the 3rd centile. A child’s 
value plotted on the chart can, with reasonable accuracy, be converted to a centile by 
interpolating between adjacent centile curves. This is fine so long as the value is between 
the highest and lowest curves. However, if it falls above the highest or below the lowest, 
then the conversion is inaccurate - the centile scale is bounded between 1 and 99, and in the 
tails of the distribution the centiles are very widely spaced. As a result, children with a 
growth deficit who fall below the 3rd or 5th centile, including many in the developing 
world, have only poorly specified centiles. This is a serious deficiency of the centile chart, 
which has led to the use of other scales of measurement. 

Against this, an important advantage of centiles is that they can be derived whatever the 
form of the distribution, even for measurements with frequency distributions of unusual or 
unknown shape. 

Percentage of median 
A simple and widely used alternative to classification by centile is to express data as a 

percentage of the median for age and sex. For example, the protein+nergy malnutrition 
(PEM) classification scheme of Waterlow (1972) is based on Yo weight-for-age, defined as 

) x 100. weight 
median weight for age and sex 

This also applies to supine length and height, and it avoids the problems that centiles pose 
in the extremes of the distribution. In addition it is easy to calculate and to understand. 

The major disadvantage of percentage-of-the-median is the interpretation of a given 
deficit - it depends on both the measurement and the age when it is measured. Fig. 2 shows 
the Dutch girls’ weight centiles of Fig. 1 expressed as percentages of the median. The 25th 
centile is about 92 YO of the median until puberty, when it falls to 88 YO. The corresponding 
centile for height in early life (not shown) is higher, about 97 % of the median. Thus a given 
deficit in height-for-age is more extreme in centile terms than the same deficit in weight-for- 
age. Also, both deficits are more serious at  9 months of age than at 12 years. 

A cutoff of 120% of the median for Body Mass Index (BMI; weightlheight’) is often 
used to define obesity, and this suffers from the same problem. Waterlow et af. (1977) urged 
that centiles and percentage-of-the-median should not be used; instead they recommended 
the use of SD scores. 

SD score 
In certain special cases where the underlying distribution is known, centiles can be 

expressed in terms of the mean and standard deviation of the distribution. This has 
important advantages in terms of the precision of the estimated centiles (Healy, 1974). By 
far the most common example is the normal (or Gaussian) distribution, where because it 
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Fig. 2. The Dutch girls’ weight centiles of Fig. 1 redrawn as percentages of the median. The median 
appears as a straight line at 100°/~. 

is symmetric, the mean and median are the same. Thus a given centile is defined simply by 
its distance, in standard deviation units, from the mean. For example, the 97th centile is 
1.88 SD above the mean, while the 3rd centile is the same distance below the mean. Normal 
distribution tables provide the conversions for other centiles. Height is known to have a 
distribution close to normal for most of childhood. 

The SD equivalent to each centile is known as its SD score, or Z score or SDS. SD scores 
are by definition normally distributed, with a mean of 0 and an SD of 1. The SD score for 
height is defined as: 

height -median height for age and sex 
SD of height for age and sex 

where the median and the SD are obtained from a published standard. SD scores are 
interchangeable with centiles wherever the underlying distribution is known, and they 
avoid the boundary problems of centiles - they can be as large or as small as necessary. 
Thus they represent the most appropriate scale of measurement for anthropometry, and 
their only disadvantage is that they cannot easily be applied to measurements that are not 
normally distributed. 

The relationship between SD score and percentage-of-the-median can be illustrated by 
combining equations (1) and (2). Divide equation (2) by median height and multiply by 
100 to give : 

lOO[height/median height for age and sex] - 100 
lOO[su of height for age and sex/median height for age and sex] 

or 
Yoheight-for-age - 100 

O h  cv (3) 
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Fig. 3.  Seven centiles, from the 3rd to the 97th, drawn as percentages of the median with varying degrees 
of skewness, showing the Box-Cox power transformation needed to make them normally distributed. 
The chart is based on equation ( 5 ) .  using a CV of 16%. 

where % c v  is the percentage coefficient of variation of height for age and sex. The cv  is 
usually defined as sD/mean, but here the mean and median are the same, so either can be 
used. Equation (3) shows that if the % c v  is a constant, the SD score and percentage-of-the- 
median are exactly equivalent. 

Measurements that are not normally distributed can be transformed to make them closer 
to normal. A logarithmic transformation is often used for weight to reduce the skewness. 
Here the SD score is again defined in terms of the median and c v  of the measurement (Cole, 
1988): 

(4) 
100 [ % weig:;for-age 

A more general approach to the problem of non-normal distributions is to use a power 
transformation (Box & Cox, 1964). The measurement is raised to some power A, which is 
chosen to remove the skewness in the distribution. If h = 1 this is equivalent to using the 
untransformed measurement, while h = 0 is the same as the log transform. Equation (3) 
can be extended to obtain SD scores in the general case, again illustrated with weight (Cole 
& Green, 1992) : 

1 0 0 [ O / 0  weight-for-age/lOOJA- 100 

I. - log, % c v  

h YOCV 1. ( 5 )  ( 
Substituting h = 1 in ( 5 )  converts it  back to (3). Fig. 3 shows how the centile spacings 
change, as percentages of the median, when the power h varies over the range - 1 to +2. 
When h is 1 the centiles are symmetric; smaller values introduce progressively more positive 
skewness, while larger values provide negative skewness. 

So this approach provides a convenient way of handling measurements whose 
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distributions are neither normal nor log-normal. It also provides a flexible framework for 
constructing growth standards (see later sections). 

D I S T A N C E  A N D  V E L O C I T Y  S T A N D A R D S  
The previous section has shown how to quantify a child’s position in the distribution as a 
centile or SD score. Usually this is a one-off measure, based on a single measurement, which 
gives no clues as to the growth pattern that has led the child to its current position. I t  
indicates only how extreme the child is in terms of current size or status. 

If two successive measurements for the same child are available they are unlikely, in 
centile terms, to be exactly the same. The growth standard provides no information as to 
how different the two centiles ought to be. Ironically, in growth terms the growth standard 
is no standard at  all. 

This is widely misunderstood. Changes in centile are often quantified in terms of the 
number of channel shifts occurring over a period of time, where a channel is the distance 
between two adjacent centile curves (usually about 0 6  of an SD score unit). Yet the centile 
curves are based on single measurements, and contain no information about the extent to 
which measurement centiles change over time. This form of classification is largely 
meaningless. Another problem is that channel shifts can be defined either in terms of the 
number of centile curves actually crossed (which depends on how close the child is to a 
centile curve initially), or else in units of the distance between neighbouring centile curves. 
The two definitions usually give different answers. 

This distinction between size or status on the one hand, and growth on the other, needs 
to be reflected in the standards used to quantify them. There are essentially two ways this 
can be done, one due primarily to Tanner (1962) and the other to Emery et al. (1985). 

A child’s size at  any age represents growth since conception, and it is a measure of how 
far he or she has travelled on the road to adult size. Tanner (1962) uses this analogy to refer 
to growth standards involving a single measurement as ‘distance’ standards, while 
standards based on growth measured over a period of time he terms ‘velocity’ standards. 
Fig. 4 shows median distance and velocity curves for girls’ height (Tanner et al. 1966). The 
alternative curves are discussed in the next section. 

There are important differences between distance and velocity standards, both in terms 
of their use and their construction. Velocity standards measure growth rather than status, 
and require two measurements instead of one, so they need to be constructed using 
longitudinal rather than cross-sectional data. Height velocity is calculated as ( V  = 
( H 2 - H l ) / A t ) ,  where H I  and H ,  are the two measurements, and A t  is the time interval 
between them. Since each height measurement has its own measurement error, the variance 
of V is given by 

2 2  
A t  var( V )  = r,,’ + -, 

where c: is the measurement error and rz, is the population standard deviation of true height 
velocity (Bairagi, 1986). This shows that the variability of velocity (and hence the spacing 
of the centile curves) depends on the time interval A t  between measurements. The velocity 
standard must therefore be tied to a particular time interval, to ensure that the two 
components of error are weighted appropriately. For height during childhood this is 
conventionally one year (Tanner et al. 1966), which has the added advantage of cancelling 
out any seasonal variation in height (Marshall, 1971). For length and weight during infancy 
a period of a year is too long, and intervals between 2 weeks and 3 months have been 
proposed (Emery et al. 1985; Bairagi, 1986; Healy et al. 19886; Guo et al. 1991). 
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Fig. 4. Charts of girls' height distance and annual height velocity based on the Tanner Whitehouse 1966 
standard. The charts show the difference between tempo-conditional (or clinical longitudinal) and 
unconditional standards. 

The variability of height, i.e. the distance equivalent of equation (6),  is given by (var[D] 
= gd2 + c2), where B,  is the standard deviation of true height and e is the measurement error 
from (6 ) .  As with velocity, this includes two components of variation, but they have equal 
weightings. The signal to noise (S:N) ratio for distance and velocity can be defined as the 
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true variance divided by the measurement error variance. Taking a boy aged 8 years as an 
example, ud is 5.7 cm and ul, is 0.8 cm/year (Tanner er al. 1966), while E is 0.4 cm at best. 
So at this age the S : N  ratio for height distance is about 200, while for height velocity over 
a period of a year it is 2, a hundred times smaller. So at this age velocity is very poor 
compared to distance for screening purposes. At 12 months the ratio of ratios is much 
smaller, at just over 3, so that distance and velocity are fairly similar. In general the ratio 
of the two S:N ratios is 2ud2/u1,*, which is independent of E ,  the measurement error. 

This discussion refers to normally growing children, and so is a statement about the 
relative specificity of distance and velocity, i.e. how accurately the two measures recognize 
healthy children. In terms of sensitivity - correctly identifying ill children - velocity is likely 
to be more effective than distance, in that it changes more rapidly during growth failure. 

The velocity standard is one tool to quantify changes in measurement centile over time. 
The other is a distance standard marked with an extra set of centile-like curves (Emery et 
al. 1985; Cole, 1994), which indicate how much a child’s centile can be expected to change 
over a given time period. Emery et a / .  (1985) developed the Sheffield Weight Chart on this 
principle; serial weights during infancy are plotted on a set of tramlines (strictly speaking 
they are not centiles), which are spaced so that there is a 5 YO chance of an infant’s weight 
shifting the width of one tramline over a two-week period, or shifting two tramline widths 
over 8 weeks. In addition there is the usual set of weight distance centile curves. This form 
of chart is very powerful as it deals with both single and multiple measurements, and the 
significance of changes over time is shown graphically. 

Weight for height 
The primary purpose of growth standards is to adjust for age, but other forms of 

adjustment can be useful, e .g  weight adjusted for height (Hamill et al. 1977). The value of 
a weight-for-height standard is that it measures ‘wasting’ (Waterlow et al. 1977), while at 
the same time requiring no knowledge of the child’s age. This is useful when the child’s age 
is unknown, as is often the case in the developing world. 

However, i t  has become clear that weight for height without reference to age can be 
misleading (Cole, 1985), and the BMI is preferred where age is known (Cole, 1979; Cronk 
& Roche, 1982; Rolland-Cachera et al. 1982). Standards for BMI versus age in children 
and adults from France and the USA have been published (Rolland-Cachera et a / .  1984; 
Hammer et al. 1991; Must et al. 1991 ; Rolland-Cachera et al. 1991). 

Chinn (Chinn & Morris, 1980; Chinn, 1992) has described two other approaches to 
weight for height that adjust for age, both applied to the age group 4-12 years. The first 
involves age-specific charts of weight for height, while the second uses the index 
(weight-9)/height3”, with weight in kg and height in m. The index is less skew than the 
BMI, and has a constant cv. 

M A R G I N A L  A N D  C O N D I T I O N A L  S T A N D A R D S  
As described above, there are distance standards (based on single measurements) and there 
are velocity standards (based on pairs of measurements separated in time). Each type of 
standard may or may not use other available information. 

Marginal or unconditional 
A marginal or unconditional standard is constructed from a reference population where 

each individual contributes a single measurement, unadjusted for other information. This 
is by far the most common form of standard, and it expresses individual subjects in terms 
of a centile relative to the reference population on which the standard is based. 
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Marginal standards can be applied equally to distance and velocity - individuals from 
the reference population provide either a single measurement or a single velocity. Velocity 
standards in infancy tend to be unconditional (Guo et al. 1991), although in practice such 
infants are followed longitudinally, and often provide several velocity measurements. 
During puberty, velocity standards can be either unconditional or conditional (Tanner et 
al. 1966), as described in the next section. 

Conditional 
The alternative to the marginal standard is the conditional standard. It works on the 

principle that a child's measurement should be expressed conditional on, or adjusted for, 
another covariate in addition to age and sex. Conditional standards have been described 
for height and height velocity during puberty adjusted for tempo as defined in the next 
paragraph (Tanner et al. 1966), height conditional on mid-parent height (Tanner et al. 
1970; Himes et al. 1981), birthweight adjusted for sibling birthweight (Tanner et al. 1972), 
height adjusted for height one year earlier (Healy, 1974; Cameron, 1980; Cole, 1994), and 
weight and height in early life conditional on previous measurements (Berkey et al. 1983). 

The first of these, height and height velocity during puberty, are known as tempo- 
conditional or clinical longitudinal standards. The period of puberty involves a sudden 
acceleration in height followed by an equally sudden deceleration, and the time (or tempo) 
varies considerably from one child to another. Analysing such data cross-sectionally 
smooths out the details of the growth spurt, and the average curve (be it distance or 
velocity) is not the same shape as the individual curve for a typical child (Boas, 1930). 
Individuals plotted on the cross-sectional distance chart during puberty follow a steeper 
slope than the median curve, and on the cross-sectional velocity chart they have a higher 
and narrower peak of velocity, as shown in Fig. 4. Tanner (Tanner et al. 1966) modified the 
charts to take the variation in tempo into account. His conditional charts are effectively 
marginal distance and velocity charts for children of a particular age at peak velocity, so 
that their individual growth curves run parallel to the median curve. Children whose tempo 
differs follow similar paths, but shifted to earlier or later ages. 

Unlike tempo-conditional standards, most other conditional standards are based on an 
underlying linear regression equation. The standard of height conditional on height a year 
earlier (Cameron, 1980) is an example. Consider two heights, H I  and H,, separated in time. 
The linear regression of H ,  on H ,  is given by: 

(7) 

where b is the regression coefficient, a is the intercept, and the error term is obtained by 
minimizing the sum of squares of the residuals ( H ,  - a - b H , ) .  The residual standard 
deviation is, say, s,. The median of the standard of H ,  conditional on H ,  is a line given by 
the regression equation, while the other centiles are lines parallel to the median, the 
spacings being determined by the residual standard deviation s, from the regression. For 
example, the 97th conditional centile is 1.88 s, units above the median. 

The intercept a in equation (7) is the same for all children, so a simpler form of residual 
for each child is given by ( H ,  - bH,) .  This has a mean value of a and a standard deviation 
of s,. It is a compact way of saying ' H ,  adjusted for H I  ', and it is uncorrelated with H ,  by 
definition - if it were not, its variability could be reduced by altering b. 

The value of b, the regression coefficient, is important. If it takes the value 1 the residual 
simplifies to ( H ,  - H , ) ,  which is just the increment in height over time, corresponding to the 
velocity. Conversely, if b is very different from 1 the conditional standard and the velocity 
standard are quite different. Fig. 5 shows the value of h by age for boys and girls, based 

H ,  = a + bH, +error, 
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Fig. 5.  The regression coefficient of height on height one year earlier during childhood, for boys and girls. 
The curves are based on data from the French Growth Study ( S e m ~  et a/. 1979; Cole, 1994). 
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on data from the Frerich Growth Study (Sempl et al. 1979). The regression coefficient is 
below 1 in infancy and puberty, when centile crossing is relatively common (Cameron, 
1980; Cole, 1994), while in mid-childhood it is just above 1. 

A regression coefficient below 1 indicates appreciable regression to the mean. Individuals 
in the tail of the distribution on the first occasion are likely to be less extreme subsequently, 
so that those who start small grow faster, and vice versa. A conditional standard takes this 
association between distance and velocity into account, whereas a velocity standard does 
not. 

The need for a conditional standard rather than a velocity standard during puberty has 
been emphasized repeatedly by Tanner (1 962), and his clinical longitudinal and velocity 
standards achieve this. However, in infancy, the need for a conditional standard is less well 
recognized (Wright et al. 1994), even though catch-up growth is known to have a major 
effect on centile position (Smith et al. 1976). 

Between infancy and puberty, b is slightly greater than 1. This reflects the fact that the 
centile curves are expanding, so that for a child to remain on, say, the 97th centile, he or 
she needs to grow faster than a median or 3rd centile child (Cole, 1994). In practice the 
association is small, so that an average child growing along the 3rd centile is on the 30th 
velocity centile (Bailey, 1994). There is less need for a conditional standard at this stage of 
childhood. 

A conditional standard reduces the variability of the measurement. In the example above 
the standard deviation s, of the residual ( H ,  -bH,) is given by s 2 y (  1 - r*) ,  where r is the 
correlation between H ,  and H,. Thus the conditional standard is useful when r is large. If 
i t  takes the value 0.8, the residual standard deviation is 0.6 s2, a 40 % reduction compared 
to the unadjusted measurement. Height adjusted for mid-parent height, and birthweight 
adjusted for sibling birthweight, are two examples where conditioning leads to a more 
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precise estimate. Note though that the reduction in standard deviation depends on a high 
correlation - -  if the correlation falls from 0-8 to 0.6, the reduction is 20% rather than 40%. 
Conditional standards require a strong correlation between the measurement and the 
conditioning variable. 

For conditional standards such as height on previous height, the comparison should be 
with the height velocity standard. In this case there is little advantage in terms of a reduced 
standard deviation - 5 % or less for a correlation of 0.8. Here the benefit of a conditional 
standard lies in the reduced bias rather than the increased precision. Conditional 
predictions for individuals in the tails of the distribution are unbiased, whereas velocity 
standard predictions are often biased. 

P U R P O S E  O F  S T A N D A R D S  
The ways in which growth standards are used can be viewed in two broad categories: 
monitoring growth in individuals, and summarizing mean growth in groups. Within each 
category there are subcategories that apply to particular age groups and anthropometric 
measurements. 

Education 
In the developing world growth, particularly in infancy, is often compromised due to the 

effects of factors including poor hygiene, diet and infection. Providing mothers with 
information about their child’s health is a powerful way of counteracting these influences 
as recognized by UNICEF (Grant, 1984). GOBI is UNICEF’s acronymic name for a four- 
pronged strategy to influence child survival, of which the G stands for Growth Monitoring 
and Promotion, and the other components are Oral rehydration, Breast feeding and 
Immunization. 

Growth monitoring is achieved through charts such as the ‘Road to health’ chart 
(Morley, 1973). This is a simplified weight chart, usually with just two curves representing 
the boys’ median and the girls’ 3rd or 5th centile from an international standard, and the 
aim is to keep the child growing along the road between the curves. Thus longitudinal 
measurements of weight in infancy are the primary focus, although other measurements 
such as length, arm circumference or head circumference are also used. 

Screening 
Anthropometry is widely used as a screening tool for disease in children and adults. Here 

the anthropometry acts as a proxy for disease - small size or poor growth does not of itself 
constitute disease, it is simply a marker for it. The process of screening involves identifying 
individuals below some prespecified cut-off, on the assumption that their chance of being 
ill is greater than for the population as a whole. 

Screening is used in many different contexts, from refugee camp to school entry. In 
refugee camps the purpose is triage, to optimize the allocation of food aid by identifying 
children most in need. Weight adjusted for height is the usual criterion here, as age may be 
unknown. This process assumes that low weight for height predicts increased risk of 
mortality, which is true in the emergency situation (Toole & Malkki, 1992). In the longer 
term, weight for age and height for age perform better than weight for height (Chen et al. 
1980; Bairagi et al. 1985; Pelletier, 1991), but the sensitivity and specificity of the screening 
process when applied in the community is low (Van Lerberghe, 1988). 

Velocity screening during infancy is of value, both in the developing and the western 
world, for identifying failure to thrive. It is important to use the appropriate form of 
longitudinal standard, since this is the age group where centile shifts are often observed, 
and incorrectly interpreted, using a distance chart. Following the recommendations of the 
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WHO Working Group (WHO, 1986) there has been an upsurge of interest in the use of 
velocity measurements during infancy (Healy et al. 1988b; Guo et al. 1991; Piwoz et al. 
1992). Previously there was not an appropriate standard, and there has always been the 
difficulty of providing data for several different time intervals. 

For school entry, height screening is used to identify children with possible growth 
problems (Voss et al. 1992). The height centile used as the cut-off (usually the 3rd in the 
UK) defines the level of false positives (Healy, 1991), so that the specificity is set to 97%. 
In theory the sensitivity should be similarly high, with virtually all the abnormally growing 
children falling in the lower tail of the distribution. In practice, however, there will always 
be children whose growth problems have not yet surfaced, so that the sensitivity is difficult 
to quantify. 

Screening of height velocity at school entry has been suggested, but the low signal-noise 
ratio of height velocity makes it unspecific. In addition, the measurement error of height 
at school entry is relatively high (Voss et ul. 1990), which increases the false positive rate 
even more. One way forward is to insist on two successive height velocities below the cut- 
off (Healy er al. 1988b), as they are relatively uncorrelated with each other. For example, 
the chance of a normal child falling below the 10th velocity centile for two successive years 
is only 10% of 10 YO, or 1 %. But even this does not approach the performance of screening 
based on a single measurement, and it also takes two years to reach an answer. 

Clinical 
The arena in which height velocity is of particular value is the specialist growth clinic. 

Children with a diagnosis of growth disorder need to be monitored to evaluate the effect 
of treatment, and height velocity is the direct measure of growth response. Measurement 
error in the growth clinic is lower than elsewhere, so there is the opportunity to detect a 
differential response. 

In principle a conditional standard approach is more appropriate than a velocity 
standard, even here. For example, in idiopathic growth hormone deficiency treated with 
growth hormone, the growth response is known to be greater in children with a smaller 
initial height centile (Ranke & Gilbaud, 1990). The statistical advantage of the conditional 
standard is that it can be extended naturally to a full regression model with other 
covariates. 

Group summary 
Anthropometry is often used to summarize the growth status of groups, with the aim of 

identifying groups at particular risk of growth faltering. Use of a growth standard enables 
distinct age-sex ranges to be combined, which increases the ability to summarize the results. 
However, the standard needs to be appropriate for the data, or else the summary statistics 
may be misleading. 

An extreme example of this would be the use of a growth standard to compare the 
efficacy of different treatments, say food supplementation or growth hormone therapy, in 
groups of children unmatched for age. If the standard were inappropriate for the data, it 
could show apparent differences in growth between the groups due to their differing ages 
which would, quite wrongly, be attributed to the treatment. 

E F F E C T  O F  A N  I N A P P R O P R I A T E  S T A N D A R D  
Whatever type of growth standard is used, it  is important to know the possible effects of 
using a standard which is inappropriate for the data. The mismatch between the standard 
and the data can be expressed in terms of the offset and the trend, as applied to a particular 
age range. The offset is defined as the mean SD score of the data, while the trend is the 
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Fig. 6. Hypothetical data to show the effect of adjustment with an inappropriate growth standard. The 
SD score of the adjusted measurement is shown plotted against age: (a) is the ideal outcome. with no 
offset and no trend; (b) shows an offset but no trend; (c) is a constant negative trend and ( d )  is a varying 
trend. 

regression coefficient of the SD scores of the data on age. If both the offset and the trend 
are near to zero, the standard and the data are well matched - this is the ideal (see Fig. 6a) .  

If the trend is small but the offset is appreciable (Fig. 66), this suggests that the standard 
is inappropriate - the mean SD score of the data is non-zero. This might occur if, say, 
children from the North and South of England were compared. However, since the trend 
is zero the data are appropriately adjusted for age, and this may be quite sufficient for the 
particular purpose. The offset provides an age-independent summary of the data. 

One particular case where a non-zero offset is important is screening for growth 
disorders. Applying a standard to children of the same reference population, the 3rd centile 
used as cut-off should provide a false positive rate of 3 YO. If there is a mismatch between 
standard and data (perhaps because the standard is out of date), the basis of the screening 
procedure is invalidated. Thus the proportion of British children falling below the 3rd 
centile of the Tanner standard is currently 1.3 YO (Voss ef al. 1992), indicating that about 
1.7 YO of the population is not being followed up simply because the standard is outdated. 
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A third possibility is that the trend of SD score with age is non-zero, so that the standard 
fails even to adjust for age (see Fig. 6 c ) .  In this case the value of the offset is meaningless, 
as it changes with age. This happens when a developed world standard such as the NCHS 
(Hamill et al. 1977) is applied to infant growth in the developing world. It converts the 
trend to increasing anthropometry during the first year to a trend of falling SD score 
(Rowland et al. 1977). 

Another possibility involves the timing of puberty. If peak height velocity occurs earlier 
in the data than in the reference population, the mean SD score for height distance is higher 
at the reference age of peak height velocity, and subsequently lower for a short time. The 
mismatch in age at  peak velocity generates a transient rise followed by a fall in mean 
distance SD score, as shown in Fig. 6 d .  

As another example, the pattern of growth during infancy in the Western world has 
changed significantly over the last 20 years (Whitehead & Paul, 1984). Modern infants 
assessed on the NCHS or Tanner-Whitehouse charts appear to rise across centiles for the 
first three months of life, but then to fall back again (Fig. 6 4 .  This is a worrying pattern 
of growth for those who do not realize that it arises from the inadequacy of the standard. 

Statistically speaking, these examples should not matter so long as the residual age trend 
is adjusted for. However, if the age trend is assumed to have been removed when it has not 
(as in Fig. 6c) ,  it may generate a spurious correlation between the anthropometry and other 
age related variables. To be safe in such situations, age should always be tested for using 
regression. Furthermore, if infancy or puberty occur in the age group, a quadratic age trend 
may be required to compensate for patterns similar to Fig. 6d.  

In clinical terms, an out-of-date growth standard causes problems (Voss et al. 1987; 
Chinn et al. 1989). Currently a new UK growth standard is being developed to replace the 
venerable Tanner-Whitehouse 1960s standard. The new standard will provide national 
height and weight distance charts, along with information about regional variation. 

F U T U R E  D E V E L O P M E N T S  U S I N G  S D  S C O R E S  

Display of SD scores 
With recent statistical developments (Cole, 1988; Healy et al. 1 9 8 8 ~ )  and the availability 

of desktop computers, it is now straightforward to convert anthropometry into SD scores. 
This is an important advance, because multiple anthropometry measures can be combined 
very easily - across measurements, across ages, across subjects - since SD scores are on a 
unified scale. Thus one can display, say, a series of height and weight measurements for a 
brother and sister, all on the same graph (Cole et al. 1989). 

This form of presentation not only puts more information into the chart, it is also better 
suited to identifying growth faltering. Normal growth appears on the chart as a horizontal 
line, so a child whose centile position is slowly falling is more obvious on an SD score chart 
than on a conventional chart. 

Specialist growth software is starting to appear which should simplify the use and 
construction of growth charts (Anon. 1993). Computers can easily calculate and print out 
a chart that is specific to an individual subject, for example, height adjusted for previous 
anthropometry (Berkey et al. 1983). 

Indices based on SD scores 
The conditional standard described by Berkey et al. (1983) provides a very powerful tool 

for the interpretation of longitudinal growth data. However, it makes the twin assumptions 
that height and log (weight) are normally distributed, which cannot be relied on (Cole, 
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1989a, 6). Berkey’s method is considerably simplified if, instead of using height and log 
(weight), it is based on the SD scores of height (Tanner et af. 1966; Cole, 19896) and weight 
(Cole, 1989~) .  

Consider two anthropometry measurements, with SD scores Z, and Z,, with a correlation 
between them of r .  The conditional standard of 2, on Z, is given by 

2, = a + bZ,  +error 

as for equation (7) above, where a and h are the intercept and coefficient from the linear 
regression equation. However, because Z ,  and 2, are SD scores, the equation can be 
simplified. If used with children appropriate to the underlying reference population, then 
the means of Z ,  and 2, are both 0, so that the intercept a is also 0 by definition. In addition, 
the standard deviations of Z ,  and 2, are both 1, and the regression coefficient b is equal 
to the correlation r by definition. So the equation simplifies to 

Z ,  = rZ,  +error, (9) 
the expected value of 2, is rZ,,  and the expression (2, - r Z , )  is a measure of Z ,  conditional 
on Z,. The residual standard deviation of Z,, and hence the standard deviation of 
( Z , - r Z l ) ,  is given by v’( 1 - P ) ,  since the standard deviation of Z,  is 1. This allows a 
further simplification: if the index is divided by its standard deviation, it becomes an SD 
score in its own right. So the conditional index 

(10) 

has a mean of 0 and a standard deviation of 1 - it is an SD score of Z,  conditional on Z,. 
This conditional SD score index is very flexible. The measurements providing the SD 

scores 2, and 2, are quite general; they could be two measurements on the same occasion 
(e.g. height and weight), o r  the same measurement on two different occasions, or even 
measurements from two different individuals (e.g. child and parent, or siblings). The first 
example corresponds to an index of weight for height, the second to an index of height 
conditional on previous height, and the third to parent-adjusted height or sibling-adjusted 
birthweight. In each case, the only information required is (a)  the growth standard(s) to 
convert the measurements to SD scores, and (b)  the correlation r between the two 
measurements. The required correlation will usually depend on the age and sex of the 
particular child and may well be available in the literature (Cameron, 1980; Berkey et af. 
1983; Cole, 1986). 

One area of assessment which could benefit from this form of index is growth velocity 
in infancy. Infants are usually measured at  irregular time intervals, and the growth rate to 
expect between any two ages is generally not known. Current standards of weight and 
length velocity are geared to fixed periods of weeks or months (Emery et af. 1985; Guo et 
af. 1991). There is also the difficulty (discussed above) that velocity is related to distance in 
infancy, so that a conditional standard is preferable to a velocity standard. 

The extra information required for the conditional index is the age-on-age correlation r .  
In general this correlation is higher the closer together in time the two measurements are, 
and it increases with increasing age (Berkey et af. 1983). It is also higher for length and 
height than for weight. It would be straightforward to construct a mathematical model for 
r ,  using existing longitudinal data, which would then predict the appropriate correlation for 
any pair of ages. Using this model, an infant followed up at  a growth clinic could be 
assessed using the conditional SD score index based on equation (10). 

A second use of the index is to measure weight for height as an alternative to the BMI. 
It happens that for much of childhood after infancy until puberty, the correlation between 
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age-adjusted height and weight is close to 0.7 (Cole, 1986). Substituting this correlation into 
equation (10) and rounding gives the index 1.4 2, - Z, ,  where 2, is weight and Z ,  is height. 
It shows that children on the median for weight and height (i.e. Z,  = Z,  = 0)  are also on 
the median for weight for height. The same is true (approximately) for children on the 97th 
height centile and 90th weight centile, or the 3rd height centile and 10th weight centile. 
Perhaps surprisingly, children whose height and weight centiles are the same are generally 
not median weight for height unless they are also median weight and median height. 

The conditional index is designed to be distributed as an SD score, with a mean of 0 and 
an SD of 1. However, it assumes that the parent SD scores 2, and 2, are distributed as 
bivariate normal with mean 0 and SD 1, and that the value of r is appropriate for age and 
sex. If these assumptions are not met, one or more of the following will occur: the index 
will have a non-zero mean, a non-unity SD, a non-normal distribution or a non-zero 
correlation with Z , .  The error in r will be of greater significance the closer r is to 1. 

A relevant consideration here is measurement error - the bigger it is, the smaller the 
correlation. So modelling the correlation in, say, a research study, and then applying it to 
routinely collected data, may lead to poorly specified SD scores. In such cases it may be 
possible to ‘shrink’ the correlation to take into account the increased measurement error. 

GROWTH STANDARD CONSTRUCTION 

P R I N C I P L E S  
Constructing a growth standard involves several distinct operations -- identifying the 
reference population, making the measurements, and then calculating the required centiles. 
Waterlow er a/. (1977) have provided a useful set of criteria for the separate stages of the 
process. In brief they require the reference population to be well nourished, the sampling 
procedure to be clearly defined and reproducible, the sample to be cross-sectional and of 
adequate size, the measurements to include all those that are relevant and to be of good 
quality, and finally the data and the smoothing procedures to be available. None of these 
requirements is controversial, except in detail, and yet they rule out most existing standards 
(Johnston & Ouyang, 1991). The exceptions are mainly standards derived from national 
stratified random samples, such as those of Cuba (Jordan et a/ .  1975) and Holland (Roede 
& Van Wieringen, 1985). The British Tanner-Whitehouse and the American NCHS 
standards both fail because the reference data include a longitudinal component. 

The issues of choice of population, sampling procedure and measurement technique are 
not pursued further here, as excellent accounts are available elsewhere (Cameron, 1986; 
Goldstein, 1986). The rest of the review concentrates on the statistical procedures available 
for converting a set of anthropometric data into a centile chart. This involves two distinct 
concerns -. the shape of each centile curve, and the spacing between curves. 

G R O W T H  C U R V E S  

Smoothing 
Modelling of the human growth curve can be applied to individuals or to group means. 

Either way, the shape of the curve is complex. In the past the most effective way to model 
it was to draw it by hand - this had the benefit of flexibility, but at  a cost of subjectivity. 
With the advent of computers, the drawing hand has been replaced by a cubic spline or 
kernel smoothing procedure (Stutzle et af. 1980; Cole & Green, 1992), which has reduced 
but not eliminated the element of subjectivity. It is important to remember that smoothing 
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involves a trade-off between smoothness and goodness of fit, and there is no single correct 
curve. Splines and kernels are essentially moving averages of the data (Guo et al. 1990~) .  

One minor disadvantage of free-form curves, be they drawn by hand or computer, is that 
they are cumbersome to describe mathematically - they have to be specified as a table of 
values. Another weakness is that in situations where the form of the curve is known, for 
example asymptotic growth in height, the curve cannot easily be constrained appropriately. 
An alternative is to express the growth curve as a simple mathematical function. Many 
different types have been suggested over the years, falling into two distinct classes: those 
applicable to the early part of life, when growth velocity is falling steadily, and those 
covering the whole of childhood including the pubertal growth spurt. 

Infancy models 
The simplest function for any period of childhood is the polynomial in age; it  is easy to 

fit, and the degree of complexity can be extended indefinitely by increasing the order of the 
polynomial. However, polynomials have bad habits - they are restricted in the shape of 
curve they can model, their behaviour at  the extremes of the data is unpredictable, and the 
addition of higher-order terms does not guarantee a suitable curve. The growth process is 
essentially smooth and gradual, and exponential functions are generally more suitable than 
polynomials for modelling it. 

Two early models of infant growth were those of Jenss & Bayley (1937): 

y = afbt-exp(c+dt)+error  

and Count (1943): 
y = a + bt + clog ( t )  +error, 

where y is the measurement (height or weight), t is age, log (1) is the natural logarithm of 
age, and a, h, c and d a r e  parameters to be estimated. Both models combine a linear and 
a decaying age term, which means that their first derivative, the velocity, falls steeply 
initially and then flattens off. The Jenss-Bayley model, with 4 fitted parameters, provides 
a better fit than the 3-parameter Count model (Berkey, 1982). 

Several variants of the Count model have been proposed, involving different power 
transformations of age. Berkey & Reed (1  987) suggest the Reed family of models, which 
add a series of inverse age terms: 

y = a+bt+clog(t)+d/ t+e/ t '+  ... +error, 

while Guo et al. (1990b), modelling weight in infancy, replace linear age with the square 
root of age: 

y = a + b. t . / t  + clog(t) + error. 

All three models are special cases of the family of fractional polynomials described by 
Royston & Altman (1994). A fractional polynomial is a regression function where the terms 
are powers of age, but the choice of powers is widened to include negative as well as positive 
integers, and in addition 0.5 (square root), 0 (natural log) and -0.5 (inverse square root). 
The model combines power terms as necessary, so that the Guo model above has the two 
powers 0.5 and 0. Even with only two power terms, the form of the fitted curve is very 
flexible, and in many cases a single term is sufficient. The fractional polynomial family is 
likely to have very wide applicability in growth curve analysis. 

The ICP model (Karlberg, 1987) quantifies the human growth curve by splitting it into 
three sections, Infancy, Childhood and Puberty (hence ICP). For the infancy component 
Karlberg uses the 3-parameter model 

y = a + b[ 1 - exp ( - ct)]  +error. 
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The Kouchi model (Kouchi et al. 1985) is another 3-parameter model of the form 

y = a+btc+error.  

Simondon et al. (1 992) have compared the Count, Reed, ICP and Kouchi models for 
weight during infancy, and find that the ICP is the best-fitting 3-parameter model, while the 
4-parameter Reed model is the best overall. However, they warn that their conclusions 
probably do not apply generally. 

There are many variables that affect the fit of a model - the measurement, the age range 
and the children’s growth pattern - so different models are likely to be optimal in different 
situations. However, a general conclusion is that during early childhood about 4 
parameters are needed to model growth adequately. 

Models that contain logarithmic or inverse age terms cannot handle zero or negative 
ages. A constant interval, e.g. 1 month or 9 months, can be added to each age to get round 
this. However, the choice of constant affects the fit of the model, so it is possible to improve 
the fit by optimizing the constant. In this case the model’s number of parameters is 
effectively increased by one. Other models by contrast, for example the Jenss-Bayley, are 
invariant to changes in age scale and origin. 

All childhood models 
Moving from infancy to all childhood, the complexity of the model required increases 

substantially. The first derivative of the model should match the pattern of height velocity, 
which falls through childhood until puberty and then peaks briefly (Fig. 4). The earliest 
parsimonious model to achieve this was the 5-parameter curve of Preece & Baines (1 978): 

B 
y = A -  +error, { exp [F] + exp [ 4 

which has been widely applied since. The parameter A is adult height, B is another height, 
E is an age offset, and D, and D, are rate constants. However, the fit of the model is poor 
below about 5 years, and it gives a biased estimate of the age at peak height velocity 
(Jolicoeur et al. 1988; Guo et af. 1992). 

Another early height model was the triple logistic (Bock & Thissen, 1976), requiring 9 
parameters : 

+ + +error. 
1+exp [ -- l+exp[-?] l+exp[-?] 

This has not proved as popular as the Preece-Baines model. More recently, Shohoji & 
Sasaki (1987) have proposed a general 6-parameter function of the form 

y = Afl t )+[l- f l t )]c( t )+error,  

whereflt) is the Gompertz functionf= exp( -exp(a- bt)), c( t )  is the Count function (see 
above), and A is adult height. The model is thus a weighted combination of infant growth 
c(z) and adult height A ,  where the weighting function is effectively zero until about age 10, 
and then rises steeply until adulthood. 

In practice other infancy models, which are known to fit better, can be used here instead 
of the Count model (Jolicoeur et al. 1992; Simondon et al. 1992). The Jenss-Bayley model 
(unpublished observations) or an extended Count model (Jolicoeur ef al. 1992) provide a 
fit over childhood almost matching that of the JPPS model described below. 
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One slight disadvantage of the Shohoji-Sasaki model is that its value peaks at about age 
20, and then declines again. This is in contrast to the other childhood models, which tend 
to an asymptote representing adult height. 

The ICP model of Karlberg (1987) has three separate components representing infancy, 
childhood and puberty. The childhood component is linear in age, while the pubertal 
component is logistic. A weakness of the method is that each component of the model is 
fitted separately, whereas other models are fitted over the whole age range. However, there 
are strong similarities between the ICP model and the Shohoji-Sasaki model modified to 
use Jenss-Bayley during infancy. The latter model, with 7 parameters, is as follows: 

y = [l - f l t ) ] [ a + h t - e x p ( c + d t ) ] + f l t ) A + e r r o r ,  

whereflt) is the Gompertz function, similar to the logistic. Sinceflt) is very small for t < 
10 years, and exp(c+dt) is very small for t > 5 years, the equation can be rewritten as: 

y = a -exp(c+ dt )  + bt +j(f) [ A  - a-bt] + error, 

which is a combination of infancy, childhood and puberty components. Thus the ICP 
model can be fitted explicitly by viewing it as a combined Jenss-Bayley and Shohoji-Sasaki 
model. 

A completely new form of 7-parameter model was described by Jolicoeur el a/. (1988): 

+error 1 

where age t is measured from conception rather than birth. The JPPS model performs 
considerably better than the Preece--Baines, Shohoji-Sasaki and triple logistic models, but 
even so the authors have recently suggested ways of improving it (Jolicoeur et a/ .  1992). In 
contrast, Guo et a/. (1992) recommend the triple logistic model as an alternative to kernel 
regression, although they do  not consider the JPPS model. Figure 7 illustrates the fit of the 
JPPS model to the 37 tabulated values of the Tanner-Whitehouse longitudinal girls' height 
standard from 1 month to 17 years. The residual standard deviation is 0.6 cm. 

All the childhood models cope well with the adolescent growth spurt, but they are less 
good with the mid-growth spurt, a phenomenon seen in some children between infancy and 
puberty. The only models that allow for a convex velocity curve during this phase of growth 
are the triple logistic and the JPPS, but even they do not provide a particularly good fit. 

The conclusion is that the human height growth curve, to be modelled appropriately, 
would require at least 8 degrees of freedom. 

C E N T I L E  S P E C I F I C A T I O N  
Growth charts are like fishing nets. The centile curves are constrained by links in both 
horizontal and vertical directions, the former representing consistency with changing age, 
and the latter a well behaved distribution within age. The first of these constraints is 
explicit, in that the curves are smoothed across ages. The second constraint, that the 
frequency distribution of the measurement at each age should be consistent in some sense, 
and hence that the centile curves should be consistently spaced relative to their neighbours, 
is less generally accepted. Workers in the field of centile curve estimation are split on the 
issue - either the distribution at each age can be assumed to be of simple form and hence 
can be estimated, or else no distributional assumption at  all can be made. Cole & Green 
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Fig. 7. The 7-parameter JPPS model (Jolicoeur el al. 1988) fitted to the Tanner -Whitehouse girls’ tempo- 
conditional height median. There are 37 points, ranging in age from I month post term to 17 years, and 
the residual standard deviation is 0.6 cm. 

(1992) use the term ‘commonality’ to describe centile curves being linked in position to 
their neighbours. 

Normal distribution 
The simplest example of commonality arises when the centiles are normally distributed. 

This is the approach used for the majority of height standards. The advantage of the 
normal distribution is that it defines the centiles in terms of the mean and standard 
deviation (SD) of the distribution: 

measurement centile = mean + SD x Z 

where Z is the normal equivalent deviate (NED) for the required centile. Thus for the 90th 
centile the corresponding value for 2 is 1.282, so that the 90th centile is 1.282 times the 
standard deviation above the mean. In terms of centile construction, the major advantage 
of assuming a normal distribution is that the standard errors of the estimated centiles are 
greatly reduced, particularly in the tails of the distribution (Healy, 1974). 

To obtain smooth centile curves, the mean and SD of the distribution are calculated for 
narrow age-sex groups, adjusted for the grouping (Healy, 1962) and then smoothed 
(Tanner et al. 1966). Age-sex-specific values for the mean and SD are then substituted in 
equation (1 1) to obtain the required curves, which are themselves smooth by definition. 
Techniques for doing the smoothing are discussed above. 

It has been known for over a century (Bowditch, 1891) that height is not normally 
distributed throughout childhood. There is a time during puberty when the distribution 
becomes skew to the right (Cole, 19896). To compensate for this in the Dutch national 
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height standard, Roede & Van Wieringen (1985) smoothed the mean and SD, and then 
adjusted the centiles during puberty to fit the empirical centiles more closely. 

More recent developments in this area have involved modelling the SD as it changes with 
age. Bland et al. (1990), deriving birth weight centiles for gestational age in very premature 
babies, observed that although the SD of birth weight increased sharply with gestation, the 
coefficient of variation (cv = sD/mean) was essentially constant. They proposed working 
with the natural logarithm of birth weight, as the SD of log(birth weight) is equal to the cv 
of birth weight. This provides an efficient estimate of the cv, based on the whole dataset. 

Another application of the same approach is described by Chinn (1992). At primary 
school age prior to puberty the SD of height is linearly related to the mean, so that data over 
a wide age range can be combined in the fitting process to give more precise estimates of 
the age specific means and SDS. 

Altman (1993) proposes an elegant solution to the general problem of modelling the SD 
as it changes with age, based on the idea of absolute residuals. He first models the mean 
of the distribution (Royston & Altman, 1994), and then subtracts the mean from each point 
to obtain the absolute residuals, ignoring the sign. The mean of the absolute residuals at 
any one age is proportional to the SD, so the residuals can be modelled as if they were the 
SD. This leads to two parsimonious functions, one defining the mean and the other the SD 
(Royston & Altman, 1994). 

Transformed normal distribution 
If the assumption of a normal distribution is invalid, the extreme centiles will be biased. 

However, the evidence for or against normality lies mainly in the tails of the distribution, 
and as Healy (1988) has pointed out, these are the parts of the distribution with the least 
data. In practice, if the form of the distribution is to be estimated from the data, there is 
only a limited amount of information available on which to base it. This suggests that a 
conservative approach, using some form of modification of the normal distribution, is a 
logical first step. It is also important that whatever distribution is used it must allow 
measurements to be converted into centiles and vice versa. 

The important distributional feature of anthropometry such as weight is its skewness - 
the right tail of the distribution is longer than the left. This means that centiles above the 
median on the chart are more widely spaced than those below the median (see Figs 1 and 
2). A common solution is to work with log(weight) (Berkey et al. 1983), relying on the twin 
assumptions that the degree of skewness is the same at all ages in both sexes and that a log 
transformation removes i t .  However, neither assumption is true. A more rational solution 
is to use a general transform, which allows the degree of skewness to vary with age and sex 
in the same way as the mean and the cv do. 

Assume that the relevant anthropometry measure, weight say, has a skew distribution, 
and that with a suitable power transformation (Box & Cox, 1964) the skewness can be 
removed. The Box -Cox family of transformations deals with a wide variety of skew 
distributions, and its degree of transformation is specified by the value of the power A. 
Certain values of A have familiar meanings; when A = 1, the transform has no effect - it 
leaves the measurement unchanged; the value h = 0 corresponds to the natural log 
transform log,(weight), and A = - 1 is the inverse or reciprocal transform l/weight. The 
effect of the latter two transforms is to give a new measure, transformed weight, which is 
less skew and hence nearer to a normal distribution than the original. 

In practice, the value of A required to remove the skewness is unlikely to be a whole 
number, and in addition it changes with age. This is the basis of Cole’s LMS method (Cole, 
1988; Cole & Green, 1992). The LMS method calculates values of A at different ages, and 
summarizes them with a smooth curve called the L curve (L for lambda). The M curve (the 
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median plotted against age; M for mu) and the S curve (the coefficient of variation by age; 
S for sigma) are derived simultaneously, and together they define centile curves for the 
growth chart. Each centile curve is defined as follows: 

(12) 
where L, M and S represent values read from the appropriate curves for the appropriate 
sex at a series of ages, and Z is the normal equivalent deviate corresponding to the centile. 
If the three curves are smooth, the centile curves will be as well. 

However, removing the skewness does not guarantee a normal distribution. The 
distribution will certainly be nearer to normal, with the mean and median closer together 
on the transformed scale than on the original scale, but there is no certainty that the higher 

measurement centile for age and sex = M(1+ LSZ)l'L, 

-2 ' " " " ' ' " ' ' 1  
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Fig. 9. A comparison of published centiles (solid lines) and LMS based centiles (dotted lines) for UK,  
US and Dutch national weight standards by sex (Tanner el al. 1966; Hamill et al. 1977; Roede & Van 
Wieringen, 1985). 
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moments of the distribution, notably the kurtosis, will also be normal. This is the key 
assumption of the LMS method, that once the skewness has been removed, what remains 
is acceptably close to a normal distribution. 

Fig. 3 shows the effect of skewness on the centiles of an otherwise normal distribution, 
as the value of h varies. The centiles are expressed as percentages of the median, which 
makes the median constant at 100%. It can be seen that values of h in the range from -1 
to + 2  cover a wide spectrum of distributional shapes. 

A benefit of the LMS method is that existing growth standards can be closely 
approximated by LMS curves fitted to the published centiles (Cole, 1989~) .  Fig. 8 shows 
calculated L, M and S curves for the Dutch weight standard by sex (Roede & Van 
Wieringen, 1985). They were originally published by Cole (1989a), but have been 
recalculated (Davies et af. 1993). They show that the cv of weight rises steadily until 
puberty and then falls again (S curves); that the power transform required to remove the 
skewness is, for much of childhood, more extreme than logarithmic (i.e. the L curves are 
less than zero); and that the skewness alters transiently during the pubertal growth spurt. 

Fig. 9 shows the level of agreement between the published and LMS derived centiles, for 
three national weight standards (Tanner et al. 1966; Hamill et al. 1977; Roede & Van 
Wieringen, 1985). The discrepancies are generally small, with a standard deviation on the 
SD score scale of less than 0.03 units. As centile curves are typically spaced about 0.6 units 
apart, this level of discrepancy is in practical terms trivially small. 

There have been other proposals to transform anthropometry to a known distributional 
form. Healy (1992) compared the performance of the shifted lognormal transformation y 
= log(x + c) with the Box--Cox power transformation y = x' for summarizing published 
centiles. The advantages of the lognormal are that, like the Box-Cox, it includes the normal 
and the lognormal as special cases, while unlike the Box-Cox it can cope with negative 
values of x, which can arise with velocity measurements. It would be straightforward to 
develop a system analogous to the LMS method based on the lognormal, where the three 
age-specific curves would correspond to the mean and SD of the distribution, along with the 
value of the offset c. This would probably perform as well as the LMS method, although 
the interpretation of the three curves might be less obvious. 

A more complex alternative is to use four parameters to summarize the distribution at 
each age. During the development of the American NCHS standard (Hamill ef af. 1977), 
efforts were made to fit the distribution of weight at each age to a four-parameter Pearson 
distribution. In practice this did not work well, and the authors ultimately settled for a 
different form of analysis (see later). More recently Thompson & Theron (1990) used the 
family of 4-parameter Johnson curves to fit centiles to the distribution of birth weight by 
gestational age. 

One reason why the NCHS initiative failed may have been that there was insufficient 
information in the sample adequately to specify a 4-parameter distribution at each age. The 
sampling error of h in the LMS method is substantial (Cole, 1990), and this is only the third 
parameter (after the mean and CV). It implies that a fourth parameter, to be sufficiently 
specified, would require considerably larger sample sizes than are currently available. 

Modelling skewness is an obvious next step after modelling the mean and variance. The 
weight distribution is widely recognized as being non-normal, so some form of extra 
flexibility has to be built into the distribution. Whether the flexibility is provided by 
Box-Cox, by Pearson or by Johnson is of less importance than the principle of fitting a 
family of distributions. 
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Constrained non-parametric 
If explicit distributional assumptions are felt to be unacceptable, what other possibilities 

are there? The centile curves have to be estimated and smoothed independently of their 
neighbours. 

There is in practice a compromise, where information about neighbouring centiles is 
brought into the estimation procedure, but without making distributional assumptions. 
Healy et al. (1988a) have described an ingenious two-stage method, where the rough centile 
curves are first obtained by a modification of the scatterplot smoothing technique of 
Cleveland (1979). The smoothing stage then exploits the fishing net quality of centile charts 
by smoothing the centiles in two directions, both across ages and within age across centiles. 
This is achieved by a constrained set of polynomial equations in age, where the coefficients 
are themselves polynomial equations in 2, the normal equivalent deviate for each centile. 

In principle this method ought to be more flexible than the 3- or 4-parameter distribution 
families discussed in the previous section. The degree of the equation in 2 corresponds to 
the shape of the distribution, so that a linear equation fits a normal distribution, a quadratic 
is approximately equivalent to a skew-normal distribution, and a cubic adjusts for kurtosis 
as well as skewness. However, Healy (1992) has shown that, in practice, a quadratic in Z 
does not adjust for skewness as effectively as a power or a log transformation. 
Furthermore, as discussed above, there is usually insufficient information in the sample to 
fit a fourth parameter to the distribution. 

Another potential weakness of the method is the use of polynomials for smoothing: over 
wide age ranges they can fit poorly. However, this has been addressed by extending the 
method to use grafted polynomials (Pan et al. 1990). 

Unconstrained non-parametric 
The most extreme policy for fitting centiles is that information about neighbouring 

centiles should be excluded from the estimation procedure, so that the positioning of 
centiles is unconstrained. 

Rossiter (1991) has proposed a variant on the idea of fitting a distribution at each age, 
but unlike those of previous sections, her method involves estimating a bivariate 
distribution by kernel methods, so that its shape can be quite general. Her kidney lengths 
example is unusual in that birth weight rather than age is the covariate. 

The technique used by Hamill et al. (1977) to fit centiles to the American NCHS standard 
was simpler than Healy’s method. The empirical centiles in each age group were smoothed 
across ages using a cubic regression spline, and each centile curve was estimated 
independently of its neighbours. As the sample sizes were not very large, this led to 
inconsistent centile spacings (Fig. 9). 

A more sophisticated version of this approach was suggested by Jones (Jones, 1988; 
Jones & Hall, 1990). Non-parametric regression is used to estimate the centiles, and the 
degree of kernel smoothing applied to each centile curve is the same, which should make 
them moderately similar in shape. But again there is nothing in principle to stop adjacent 
centile curves touching or crossing. 

A problem with non-parametrically estimated centile curves is the absence of a simple 
rule relating the centile values at any particular age with the corresponding Z values. Thus 
individual child measurements cannot easily be converted into SD scores. The NCHS 
recognized this (Hamill et al. 1977), and approximated the centiles by assuming them to be 
normally distributed, but with different standard deviations above and below the median. 
This demonstrates that centile curves, to be useful, need to have a distributional form 
forced on them at some stage in the estimation process. 
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Measurement error 
The issue of measurement error is of considerable importance when constructing growth 

standards. It was shown above that velocity standards are more sensitive to this than 
distance standards, but the problem is quite general. If standards are used in a situation 
where the measurement error is appreciably larger or smaller than for the reference sample, 
misclassification will occur. This is the justification for measuring height velocity over a 
fixed period of a year. 

It has recently become a particular problem with velocity standards during infancy, 
where the data are smoothed with a suitable growth curve, and the centiles constructed 
from the fitted curves (Roche et al. 1989). This process eliminates both measurement error 
and short term variation from the data, and the net effect is that the estimated centiles are 
too close together and growth deviations are exaggerated (Piwoz et af. 1992). It is possible 
to compensate for this by expanding the centiles relative to the median, using the multiplier 
v’[l+ ( c / ( T ) ~  where E is the measurement error and (T is the population standard deviation. 
The appendix of Piwoz et al. (1992) gives details. 

CONCLUSIONS 

USE O F  S T A N D A R D S  
Centile charts will no doubt continue to be valuable graphic aids for the monitoring of child 
growth. Marginal distance standards are the most widely used form, where their simplicity 
is attractive. However, with recent advances in statistics and computing, more complex 
conditional standards are likely .to become available, exploiting the use of SD scores. The 
ultimate aim must be an expert system for the evaluation of growth, which could be used 
for example to screen the large quantities of longitudinal preschool anthropometry now 
available in regional health authority computers throughout the western world. This would 
also have a spin-off in the developing world, where the potential benefits should be even 
greater. 

C O N S T R U C T I O N  O F  S T A N D A R D S  
There have been several recent advances in the construction of centile standards from 
reference data. To be of practical value, centiles need to be connected explicitly to the 
underlying Z value, which requires a distributional form for the centiles. The two 
approaches satisfying this requirement which have received the greatest attention are those 
of Healy (Healy et ul. 1 9 8 8 ~ ;  Pan et al. 1990, 1992) and Cole (Cole, 1988; Cole & Green, 
1992). Healy’s method has been widely used for preschool data, helped by the availability 
of suitable software. It is also parsimonious in the way it  defines the centile curves, 
requiring just the polynomial coefficients. However, it is restricted by its reliance on 
polynomials, so that more complex curve shapes, covering all of childhood for example, are 
fitted less well. 

Cole’s LMS method is the opposite: its use of cubic splines allows complex growth curves 
to be modelled, but they cannot be expressed in closed form. Also the program required to 
fit the cubic splines is not generally available, although a simpler method has been described 
(Cole, 1990). Both methods allow centiles to be converted into SD scores and vice versa, but 
the LMS method is simpler in this respect. 

Two recent papers are likely to be particularly useful for fitting centiles to normally 
distributed data (Altman, 1993; Royston & Altman, 1994). Taken together they provide a 
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very flexible way of modelling the mean and standard deviation of the distribution as it 
changes with age, using only multiple regression analysis. 

I thank Professor Michael Healy for his valuable comments on a previous draft of the 
paper. 
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