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THE STONE-CECH COMPACTIFICATION OF Prim ,4

MAY NILSEN

For a C*-algebra A, we give simple proofs of the following: C&(Prim A) is isomor-
phic to the centre ZM(A) of the multiplier algebra, Cb (Prim .A) is isomorphic to
C(Prim M(A)) and Prim ZM(A) is the Stone-Cech compactification of Prim .A.

INTRODUCTION

THE DAUNS-HOFMANN THEOREM. [2, III Lemma8.15] Let A be a. C*-algebra
and let Prim .4 be the primitive ideal space of A with the hull-kernel topology. For
each o G A and / 6 Cf^Prim-A), there is a unique element f • a £ A such that

(1) /•a-/(?)oePforaU?ePrim4.

It is easy to see how the Dauns-Hofmann theorem gives an injection from C(,(Prim A)
into the centre ZM{A) of the multiplier algebra. It is not evident why this map should
be onto. Dixmier [3, Theorem 5(iii)] proved that it was, as did Pedersen [8, Corol-
lary 4.7]. But, we believe that the natural way to view the problem is the reverse
of that commonly thought. The easy part is getting the injection from ZM(A) into
C(,(Prini.4). Then the Dauns-Hofmann theorem is exactly what you need to show that
this map is onto (Theorem 1.2). The simplicity of our technique means our proof is
much more direct than those given before. An easy corollary of our technique provides
an isomorphism from C6(Prim.A) onto Cb(Prim M(A)) (Theorem 1.4).

Since Prim A is not necessarily Hausdorff, we carefully define the Stone-Cech com-
pactification and the complete regularisation of such spaces. In Section 2 we deduce
from Theorem 1.2 that Prim.ZM(.A) is the Stone-Cech compactification of PrimA,
specifying the formula for the canonical mapping (Theorem 2.2). This result is a gen-
eralisation of an assertion of Becker [1, p.269]. (We also discuss a problem in Becker's
proof.) /

The key idea in all our arguments is the continuity of the map Rest from ideals of
B to ideals of A, dual to a homomorphism i: A —» M(B). The map Rest, and the map
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Ext,, from ideals of A to ideals of B, were first introduced by Green [6, Proposition
9], and have been predominantly used in the study of crossed products and induced
representations [5, Section 2]. However, in this paper we have used these maps in the
trivial case; by letting t be the identity map, the elementary properties of Res and Ext
lead to short, elegant proofs.

In [7], we used Rest and Extt to help give a short self-contained proof of the
sectional representation theorem [7, Theorem 3.1]. This result says that a C*-algebra
can be represented as the section algebra of an upper semi-continuous C*-bundle over
the primitive ideal space of its centre. In [l], Becker asked for a simple necessary and
sufficient condition on a C*-algebra A, which ensures that the C*-bundle produced by
the sectional representation theorem will be continuous [1, p. 268]. This is answered
by [7, Theorem 3.1], which says that this happens only when Res;a is open. In Section
3 we show that our condition is equivalent to the condition Becker gave (Proposition
3.1).

1. DIXMIER'S THEOREM

Let A be a C*-algebra and let X(J4) denote the ideal space of A with the topol-
ogy which has as subbasic open sets Oj — {1:1 2 «0J w n e r e J is a closed ideal in
A. The relative topology on Prim (A) in 1(A) is the usual hull-kernel topology. All
representations will be non-degenerate, and the extension of a representation p of A to
the multiplier algebra M(A) will be denoted by p~.

DEFINITIONS: Let A and B be C*-algebras and i: A —> M{B) a homomorphism.
Define Res,,: X(B) —> X(A) by Rest (ker a) = ker [W o i), where a is a representation of
B. Define Extt: 1{A) -> I(B) by Extt(7) = BL{I)B [6, Proposition 9(i)].

In [7, Lemma 1.1] we showed that Rest (ker a) = {a £ A : i(a)B C kertr}. This
says that Res4 is well-defined, and that our definition is equivalent to [6, Proposition
9(i)]. It also implies that Rest preserves containment and arbitrary intersections. Using
this characterisation, we also showed that I C ReSi(if) -O- Extt(J) C K. It follows
easily from these facts that Rest is continuous [7, Lemma l.l(iii)], [6, Proposition 9(i)].

LEMMA 1 . 1 . Let A be a. C*-algebra and id: ZM(A) -> ZM(A) the identity
map. Then Resja: Primal —> PrimZM(A) is a continuous map with dense range, and
Resid (kerp) = ker (p\ZM(A)) •

PROOF: An irreducible representation p of A extends to an irreducible represen-
tation p of M(A). Also p~(ZM(A)) is in the centre of Imp, which is contained in
the commutant C l . Thus P~\ZM(A) determines a complex homomorphism, which must
be non-zero because 1 G ZM(A). So kerp|^M(Aj is primitive and Res maps primi-

tive ideals to primitive ideals. The range is dense because Res (Prim A) = {Q : Q D
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DRes(P)} = {Q : Q D Res ( f l ^ ) } = PrimZM(A). D
p \p J

THEOREM 1.2 DlXMIER. Let 4 be a C*-algebra. Then there is an isomor-
phism i/}-.ZM(A) —> Cj,(Prim.A) sucA fiat V(«)(kerp) = ?(ker (p\zM(A))) > where A is
tie Gelfand transform.

PROOF: Define Res;d:C(PrimZM(4)) -+ Ci,(Prim4) by Resid (g) = g o Resid,
where Res;d is as in Lemma 1. We show that Res*d o

A is the required isomorphism
•0 • Since Resid has dense range, Res;*d is an injection. The Gelfand transform is an
isomorphism from ZM(A) onto C'(PrimZM{A)), so it is enough to show that Res;*d

is onto. Define Lf. A —» A by Lf(a) — f • a, and Rf. A —> A by Rf(a) = f • a, where
/ • a is the unique element given by the Dauns-Hofmann theorem. One can check that
(Lf,Rf) is a multiplier Zf of A. Equation (1) implies that z/ a — az/ for all a G A,
so zf G ZM(A). Also from (1) we have (zf - f(P))a = fa-f(P)a e P for all a e A.
Since Resid (P) = {z e ZM(A) :zAcP}, zf - f(P)l £ Resid (P) for aU P 6 Prim 4 .
Equivalent!^ i>(Resid (P)) = f(P), for all P. Thus Resid (z)){P) = z>(Resid (P)) =
f(P), and Res;*d is an isomorphism. U

REMARK. The following lemma is more than we need for Theorem 1.4, but it says that
PrimAf(^4) is a compactification of Prim A, in the sense of [10, p.l].

LEMMA 1 .3 . Let A be a C*-algebra, and i:M(A) -> M(A) the identity map.
TAen Res,-: Prim A —» PrimM(A) is a continuous injection with dense range satisfying
Res; (kerp) = kerp, which is a homeomorphism onto its range.

PROOF: If p is irreducible the extension p is also irreducible, so Res,- maps between
primitive ideal spaces. Suppose kerp = ker<f. Then kerpcu = kertfot, where i is the
natural embedding of A into M(A). But pot = p, and similarly for a, so kerp = kertr
and Res,- is one-to-one. A calculation similar to that in Lemma 1.1 shows that Res< has
dense range. It remains to check that Res,- is open onto its range. In [7, Lemma l.l(iv)],
we showed that Resi is open onto its image if and only if Ext< |im(Res) is continuous. So
it suffices to show that Extj:I(M(j4)) —»I{A) is continuous. We have the embedding
i, so define Rest:Z(M(j4)) —* 1(A) as usual. To show Extj is continuous we shall show
that Exti = Rest, that is AK A = {a: i(a)M(A) C K}. Suppose i,(a)m G K for all
m G M(A). Then t(o) G K because 1 G M(A). So a G AK A since a ~ fi\i(a)ii\,
where fi\ is an approximate identity in A. Conversely, suppose o, b G A and k G K.
Then t(a)fci(6)m G K for all m G M(A). Thus AK A C Rest(K), and since Res, (A")
is closed, AK A is in there too. U

THEOREM 1.4. Let A be a C*-algebra.. Then there is an isomorphism

i>:C(PrimM(A)) -» Ci(PrimA)

https://doi.org/10.1017/S0004972700014878 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014878


380 M. Nilsen [4]

satisfying ij>(g)(keTp) = g(kei~p).

PROOF: Lemma 1.3 gives us a continuous map Res^PrimA —» PrimM(A), so
define Res,*: C(PrimM(A)) -> Cb(PrimA), by Res* (g) = g o Resi, which is injective
because Res< has dense range. Let M: ZM(A) —» ZM(A) be the identity map, and
define ResM^ PrimM(j4) —> Prim ZM(A) as usual. From Lemma 1.1 we have the map
Res;<i: Prim A —> Prim ZM( A). From the definitions, Resjd = ResM°Res;, so that
Res;*d = Res? oRes*^. By the proof of Theorem 1.2, Res;*d is onto, so Res* must be
onto. Choose tji — Res? . D

2. S T O N E - C E C H COMPACTIFICATION AND COMPLETE REGULARISATION

DEFINITION: The Stone-Cech compactification of a topological space X is a com-
pact Hausdorff space (3X together with a continuous map /3: X —» 0X such that, for
every compact Hausdorff space Y and every continuous map k: X —> Y, there is a
unique continuous map k':(3X —* Y with k = k' o fl [9, 14.1.1].

REMARK. It is well known that PrimC(,(.X") is the Stone-Cech compactification of X
in the case where X is Hausdorff. The point of the next lemma, is that this is so even
when X is not Hausdorff. Although this proof is similar the standard existence proof
[9, 14.1.2], this shows how our techniques give a neat exposition.

LEMMA 2 . 1 . Let X be a topological space and define e:X^ PrimCft(X) by

e(x) = k e r e z , where ex is evaluation at x. Then (PrimC(,(X),e) is the Stone-Cech

compactification of X.

PROOF: Let k:X —* Y be a continuous map, with Y compact Hausdorff. Define
k*:C(Y) - • Cb{X) such that k*{f) = / o k, and define Resf c . : I(C6(*)) -» Z{C(Y))

as usual. Lemma 1.1 tells us that it restricts to a map between primitive ideal spaces,
so we have Rest,*: PrimCb{X) —> Prim(7(Y). Since Y is compact Hausdorff, there
exists a homeomorphism h:~PrimC(Y) -» Y. Define k':PrimCb(X) -> Y by k' =
h o Resfc» . We need to show that k(x) = k'{e{x)) for all x £ X. Well, k'(e{x)) =

ZioResjfc* (kerej;) = h{kei£x ok*), so it suffices to see that kerej.(j;) — ker(ei; ok*). But
exok*(f) =ex(fok) = fok{x) = /(*(*)), so f ekei{exok*) means f(k{x)) = 0,
which is equivalent to / £ ker (e/t(j!)) • The map k' is unique, because the range of e is
dense in PrimCj,(X). U

THEOREM 2 . 2 . Let A be a C*-algebra. Then (PrimZM(A),Resi d) is the

Stone-Cech compactification of Pr imA, where Res;d: Prim.4. —» PrimZM(A) satisfies

Resid (kerp) = ker (J>\ZM(A)) > f°r aU keip € Prim A.

PROOF: Theorem 1.2 gives an isomorphism ij>: ZM(A) —> C6(PrimA), so one can

show that Res^,: Prim(C&(Prim A)) —* Trim ZM{A) is a homeomorphism. Lemma 1.2
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says that for every continuous map k:PiimA —» Y (Y compact HausdorfF), there
is a unique continuous map fc":Prim(C(Prim.4)) —> Y with k = k" o e. So define
k'\ P r imZM(4) -> Y by k' = k" o (Res^,)"1. It remains to show that k = k' o Resid ,
and for this it is enough to verify Res^ oe = Res;a:

Res^ oe(kerp) = {z 6 ZM(A) : i>(z)f e e(kei p) for all / £ C^Primyl)}

= {z : ij>(z)f(keTp) = 0 for all / }

= {z : J(Res;d (ker/j)) = 0} = Res;a (kerp).

Thus (PrimZAf(^4),Res;d) is the Stone-Cech compactification. D

DEFINITIONS: A topological space X is completely regular if singleton sets are
closed and, given a closed set C and a point x £ C, there exists an / S Cb(X) such
that f(x) = 0 and f(C) = {1} [10, p.4].

The complete regularisation of a topological space X is a completely regular space
pX together with a continuous surjection p: X —» pX such that, for every completely
regular space Y and every continuous surjection k: X —> Y, there is a unique continuous
surjection k': pX —> Y with k = k' o p.

LEMMA 2 . 3 . Let X be a topological space. There is an equiva/ence relation

on X defined by Xi ~ X2 <=• f{xi) — f{x2) for all f £ Cb(X), and (X/~,q) is the

complete regularisation of X, where q: X —> X / ~ is the quotient map.

PROOF: Suppose k:X —> Y is a continuous surjection into a completely regular
space. We claim that the map fc':X/~—• Y satisfying k'(q(x)) = A;(z) is well defined.
Suppose q(xi) — 9(^2)) that is, / ( x i ) = f(z2) for all / £ Ct,(X). Since gok £ Cb(X)

for all g € C&(K), <7(fc(:ci)) = g(k(x2)) for all ^. But Y is completely regular, so k{x\)

must equal ^(12), and k' is well-defined. The map k' is continuous by the definition
of the quotient topology. U

REMARKS. 1. When A is unital, PrimA is compact, so the Stone-Cech compactifi-
cation of Prim A is the complete regularisation by definition. Thus, Theorem 2.2 says
that (PrimZ^4,Res;d) is the complete regularisation of Prim .4. Since the complete
regularisation map is a surjection, when A is unital Resjd maps onto P r imZA.

t. Becker proves that Res;d is the complete regularisation for unital A [1, p.268].
But he seems to assert that if P\, P2 G Prim A can be separated by open neighbourhoods
in Prim A, then there exists / g Cj,(Prim,4) such that / ( P i ) = 0 and f(P2) = 1. We
show that this can fail in general by providing an example of a C*-a!gebra A, with Pi
and Pi in Prim A which can be separated, but there exists P3 which can't be separated
from either Pi or P 2 . Thus a function in C&(Prim./l) must agree at Pi and P 3 , and
at P2 and P3 , and hence agrees at Pi and P2. This example is due to Dana Williams.
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Let

A = {feC([O,l),M2®M2):f(l)=(a
Q P)®(Q " ) . for some a,/3,7 £C}.

Let pi and p2 be the projections id © 0 and 0©id respectively. Then for each i £ [0,1),
let TT*(/) = Pif(t). We also have representations denned by ~^x{f) = a, Ty(/) = /?

and irz{f) = 7, where / ( I ) = ( „ I ® I I. These are all the irreducible

representations. Note that as t —» 1, TT\ converges to both irx and ny, while ir\ con-
verges to both ny and 7rz. It follows that neither TTX and 7r9 , nor TTV and irz , can
be separated by disjoint open sets. Since A is a Type I C*-algebra, neither k e r ^
and kerTTj,, nor ker7rs and ker7rz, can be separated by disjoint open sets. Now let
7i = {/ e A : p2f{t) = 0 for all t £ [0,1]}, and similarly for I2. Then O/. =
{Q 6 Prim A : Q ^ / ; } , for i = 1,2, are disjoint open sets with ker7rz € O/j and
ker7r2 S O/j. Thus ker7rx and ker7rz can be separated.

3. BECKER ON SECTIONAL REPRESENTATION

Becker asks for a simple condition on A which ensures that the the C*-bundle
produced by the sectional representation theorem is continuous. From [7, Theorem 3.1]
we know that this happens only when Res;d: Prim A —» Prim ZM(A) is open. We shall
now show that our condition is equivalent to the condition Becker gives [1, p.268].

PROPOSITION 3 . 1 . Let A be a C*-algebra and id: ZM(A) -> ZM(A) be the

identity map. The map Resia: Prim A —» Prim ZM(A) is open, it and only if

: a £ Extid (J)} => a € Extid (J),

where a £ A and I £ Prim ZM(A).

PROOF: Suppose Resid is open and / 2 f]{J : a £ Ext(J)}. Dixmier says
{P £ Prim A : a $ P} is open in Prim A [4, 3.1.2]. Since Res is open,
{Res(P) : a g P} is open in Prim. ZM(A). We claim that this open set is equal
to {J : a $ Ext(J)}. Suppose J is in the first set. That is, there exists a P such that
J = Res (P) and a £ P. This is the same as P D Ext (J) and a $ P, and this implies
a ^ Ext ( J ) . Conversely, suppose J is in the second set. That means o 0 Ext (J) . So,
there must exist at least one primitive ideal P 3 Ext(J) such that a $ P, because
every ideal is the intersection of all primitive ideals containing it. But P D Ext (J) is
equivalent to Res(P) = J (since J is maximal), so J is in the first set. Thus we have
that {J: a £ Ext (J)} is closed. Since / D |"|{J : a £ Extid (J)} , / is in the closure of
the set, so / is actually an element of it, which means that a £ Ext (/).
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Conversely, suppose / D f]{J G PrimZM(A) : a G Exti d (J)} => o G E x t i d ( / ) .

We begin by proving Ix —» I in Im(Resid) implies Ext ( J ) I> f\Ext(I\). Suppose
x

Ix -> / and a G Ext (7A) for all A. Then h £ {J : a G E x t ( J ) } for all A, so
7 D p / j D f){J : a G Ext ( J ) } . By the assumption then, a G Ext (/) and Ext (/) D

D E x t ( J A ) .
x

To show Rest is open, its enough to show that CompRes(Ojc) is closed. Suppose

Ix -> / in Im(Res) and Ix G CompRes(Ojf) for all A. That means Ext (Ix) G

Comp(Oif) for all A (since / £ Res (OK-) <* E x t ( J ) G OK [7, Equation 2]). That is,

Ext (Ix) 2 K for all A, so f]Ext(Ix) D K, and then we have Ext(7) D A". Hence
x

I G CompRes (OK) aQd CompRes(0/c) is closed. D
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