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1. Introduction

As is well known, the linear Sturm-Liouville eigenvalue problem on a
bounded real interval [a, b~\ possesses a family of eigenfunctions which is a
complete orthonormal system for the real Hilbert space L2[a, b~\, i.e. there
exists a sequence of eigenfunctions {»„} such that (uh uj) = 5^ (Kronecker

00

delta) for /, j eN (the set of positive integers) and, if u e L2[a, Z>], u = £ CJUJ
j = i

where c} = (u, uj). Pimbley (4, p. 113), raises the question as to whether
similar completeness results hold for nonlinear problems. In this note we show
that certain nonlinear Sturm-Liouville eigenvalue problems possess eigen-
functions which form a basis for L2[a, b~\, i.e. there exists a sequence of eigen-
functions {vn} for the nonlinear problem such that every ueL2[a, b~] can be

CO

expressed in the form u = ]T CJVJ by means of a unique sequence {cn} of real
j = i

numbers.
Before stating our main result, we must first recall some properties of linear

Sturm-Liouville problems. If R denotes the set of real numbers, let/?: [a, b~\-+ R
be continuously differentiable with p(x)>0 for x e [a, 6] and let q: [a, b]-+R
be continuous. Consider the equations

(1)

O,b\ + bl^O. (2)

Let L: D{L)^L2{a, F\ be such that Lu = -(pu')'+qu where we D{L) if and
only if u satisfies (2), u is absolutely continuous on [a, b~\ and

-(pu')'+queL2[a, b~\.

Then L is a self-adjoint operator on L2\a, ti\. Since L is closed, D{L) is a
Banach space with respect to the norm ||| u ||| = II w II + II Lu \\ where || ||
denotes the norm in L2[a, 6].

With the above notation equations (1) and (2) may be expressed as

Lu = Xu (3)

We study nonlinear perturbations of equation (3). We shall prove the following:
E.M.S.—19/2—M
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Theorem 1. Let Nt: D(L)-+L2\a, b~\ be continuously Frechet differentiable
with N((0) = 0 and N|(0) = 0 for i = 1, 2. Then there exists a sequence of
eigenfunctions {vn} for the problem

Lu+N1u = X(u + N2u) (4)

such that {vn} is a basis for L2\a, b~\.

2. Proof of Theorem 1

Before proving Theorem 1 we state as propositions the two main facts on
which the proof depends.

Proposition 1. Let {un} be a complete orthonormal system for a Hilbert space H.
CO

If{vn} is a sequence of vectors in H such that £ || UJ — VJ | | 2 < 1 , then {vn} is a
j = i

basis for H.

Proof. See Kato (3), V 2.20 and the subsequent remarks.
Secondly we require a result from bifurcation theory due to Crandall and

Rabinowitz (1). Let A : D(A)-*L2[a, b~\ be a densely denned closed linear
operator on L2\a, b]. Then X = D(A) is a Banach space with respect to the
norm || u \\x = [| u || +1| Au ||. Proposition 2 is a special case of Theorem 2.4 in
(1).

Proposition 2. Let Nt: X^L2\a, b~\ be continuously differ entiable and
JV;(O) = 0 and N-(0) = 0for i = 1, 2. Regarding A-XoI as a map from X to
L2\a, b~\, suppose that N{A—X0I), the null space of A — X0I, is one dimensional
and R(A — A0I) has codimension one i.e. there exist u0 e X and y0 eL2[a, b]
such that N{A — X0I) = span{«0} andR(A — A0I) = {yeL2\a, b~\ : (y0, y) = 0}.
If (y0, u0) # 0, and Z is any complement of span {u0} in X, then there exists a
neighbourhood U of (l0, 0) in R x X, a real interval ( — a, a) and continuous
functions m: ( — a, a)->R and / : ( — a, a)->Z such that m(0) = Xo, 1(0) = 0 and
the set of all solutions of Au + NYu = X(u + N2u) contained in U is

{(m(s), SMO + S/(S))G RXX: \S |<a}u{(f, 0): (t, 0) e U}.

We can now give the

Proof of Theorem 1. By the linear Sturm-Liouville theory there exists an
increasing sequence of eigenvalues Xl <X2 <X3 <... and a corresponding sequence
of eigenfunctions uu u2, u3, ... for equation (3). Let keN. Then

N(L-XkI) = span{WJ, R(L-XkI) = {ueL2\a, b\. (uk, u) = 0}

and so we can apply Proposition 2 with Xo = Xk since (uk, uk) # 0. In the
notation of Proposition 2 but replacing /, m and || \\x by lk, mk and ||| ||| respec-
tively, there exists <5/t>0 such that ||| lk(s) | | |< l /2*+ 1 if | s \<8k. Choose and
fix <xk such that 0 < | ak \<Sk and let vk = uk + lk(ixk). Since
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I I K - M 2 = £ IM/«i)ll2^ I III f/«j) HI2 ^ £ i/2'+1<i,
; = l j = l j = l j = l

by Proposition 1, {«„} is a basis for L2[a, ft] and so {ccnvn} is also a basis for
Z,2[a, 6]. Since, by Proposition 2, afcufc is an eigenfunction for (4) corresponding
to the eigenvalue mk{xk), we have proved that L2[a, b] has a basis consisting of
eigenfunctions of (4).

3. Applications

(a) The hypothesis that N maps D(L) into L2[a, b] is more easily satisfied
than the hypothesis that N maps L2[a, b~\ into itself. For example, if Nx is a
polynomial in x the former hypothesis is satisfied but the latter is not. Hence,
if Cj: [a, b~\->R is continuous and ^ e N , kt>\ for / = 1, 2, ..., n, then
Theorem 1, with Nx = 0 and N2 = 0 respectively, shows that there exist bases
{vn} and {wn} for L2[a, ft] such that {vn} and {wn} consist of eigenfunctions of

-(p»')'(x) + q(x)u(x) = X (u(x) + £ C,(X)[M(X)]*') (5)

and
n

Z ci(x)["(x)]*' = ku{x) (6)
i

respectively, satisfying boundary condition (2).
(b) It is clear from the proof that Theorem 1 will hold for appropriate non-

linear perturbations of any unbounded self-adjoint operator I on a Hilbert
space H if L possesses a complete orthonormal system of eigenfunctions
corresponding to simple eigenvalues. In particular the theorem is applicable
in the case of perturbations of a linear Sturm-Liouville problem with discrete
spectrum on the interval [0, oo).

Consider the differential expression —u"+qu on [0, oo) where q: [0, oo)-»R
is continuous and lim q(x) = oo. Let L: D(L)-yL2[0, oo] be such that

Lu = —u"+qu where ueD(L) if and only if ueL2[0, oo], u' is absolutely
continuous on [0, T\ for all r > 0 , -u"+qu eL2[0, oo] and «(0) = 0. Then

(i) since q is bounded below, —u"+qu is limit point, i.e. L is selfadjoint
(Everitt (2));

(ii) since lim q(x) = oo, L has discrete spectrum (Titchmarsh (6));
x-»oo

(iii) if u e D(L), then u' e L2[0, oo]. (Everitt (2), Section 5.)
If u e D(L), then u' eZ,2[0, oo] and H(0) = 0 and so it can be shown that

(see, for example, Stuart (5), Proposition 2.3) ueLp [0, oo] for/>>2. Hence,
if ct: [0, oo)-»R is bounded, fc,e N and kt>l for i = 1, 2, ..., n,

JV:«-» £ c,ukt

i = 1
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satisfies the hypotheses of Theorem 1 and so there exists a basis for L2[0, oo]
consisting of eigenfunctions of

«(x) = k(u(x)+ _^ c,.(x)[M(x)]*'); U(0) = 0,

and a basis for L2[0, oo] consisting of eigenfunctions of

-u"(x) + q(x)u(x) + f C,(X)|>(X)]*' = AH(X); «(0) = 0.
i = 1
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