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MAXIMAL AVERAGES ALONG CURVES OVER THE
p-ADIC NUMBERS

KErtH M. ROGERS

Let Qp denote the p-adic numbers. We consider curves in Q} defined by p-adic
polynomials of one p-adic variable. We show that maximal averages along these
curves are L(Q7) bounded, where 1 < ¢ < oo.

1. INTRODUCTION

Let P,,..., P, be p-adic polynomials of one p-adic variable and define the curve
v:Qp — Q3 by 7(t) = (Py(t), ..., Pa(t)). We shall consider the averages

[ fe-vw)a

r* ltI<pt
and the maximal average M., f(z) defined by
1
M, f(x) =sup — flz —~(2)) dt.
+f () el (z — ()
We shall prove the following p-adic version of a theorem due to Stein and Wainger
(4, 5].

THEOREM 1. Suppose that1 < g < oo, and that vy and M., are defined as above.
Then there is a constant Cy so that

”M'rf”Lq(Q;) < Cq “f“Lq(Q;) ’

for all f € LY(Qp).

The proof will mainly follow the Euclidean arguments. The difficulty lies in bounding
oscillatory integrals on the p-adics, which was recently partially solved in [2].

We shall ‘lift’ to a higher dimensional situation and prove a similar theorem where
the curve is defined by monomials. Then we ‘descend’ back to the original dimension and
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curve. This technique goes back to de Leeuw [1]. In order to do this we let R : Q) — QF
be a linear map so that

(1) R(t,£%,...,tN) = (Pi(t),... Pa(t)),
where N is the maximal degree of the polynomials. We shall initially con51der the curve
¥(t) = (t,t2,...,tV) and the maximal function
Msf(z) = sup — f(z - A(t)) dt.
kel |t|<p*

In Sections 2, 3 and 4 we shall introduce Fourier analysis on the p-adic numbers.
In sections 5 and 6 we shall prove a version of the Hardy-Littlewood maximal theorem
and obtain a Calderén-Zygmund type decomposition. In Sections 7 and 8 we shall prove
L*(QY) and LYQ)) bounds for My. Finally, in Sections 9 and 10, we shall finish
the proof of Theorem 1 and consider the differentiation of integrals along curves. The
constants C take different values throughout.

2. INTRODUCTION TO THE p-ADIC NUMBERS

For a more complete introduction to the p-adic numbers, see 3] or [8]. Here we shall
outline what we shall need.

Fix a prime number p. Any nonzero rational number z can be uniquely expressed
in the form p*m/n, where m and n have no common divisors and neither is divisible
by p. Define the p-adic norm on the rational numbers by |z| = p~* when z # 0, and
|0] = 0. We obtain the p-adic numbers by completing Q with respect to this norm. It is
not difficult to show that the norm satisfies

|lzyl = |z |yl
and the ultrametric inequality,

|z + y| < max{|z|, |y|}.

It follows from the ultrametric inequality, that every point within a ball can be
considered to be its centre. Similarly, it can be shown that two balls are either disjoint
or one is contained in the other.

A nonzero p-adic number z such that |z| = p~* may be written in the form

o0
z=3 o,
j=k

where 0 € z; < p— 1 and zx # 0. This will be called the standard p-adic expansion and
the arithmetic of these expansions is done formally, with carrying.
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As @Q, is a locally compact commutative group, there is a Haar measure, that neces-
sarily satisfies d(az) = |a| dz, where dz denotes an element of this measure. We normalise
so that {z € Q, : |z| < p"} has measure p".

We shall be concerned with n-dimensional vector spaces over Q,. To this end let Qp
be the n-dimensional vector space over Q,, and let | - | denote the standard norm on @}
defined by

Iz = fmax [z;].

It is easy to show that this is also an ultrametric. A Haar measure is given by
dz = dz, ...dz,, where dz; is the Haar measure on the jth copy of Q,.
Balls defined using an ultrametric have some interesting properties. As

{veQ:ly-zl<p}={yeQ:ly-z|<p '},

we see that they are both open and closed. Balls that contain the origin are subgroups.
Every point within a ball can be considered to be its centre. Also, two balls are either
disjoint or one is contained in the other.

We assume in general that all functions are complex-valued and Borel measurable.
We define the compactly supported, locally constant functions to be the compactly sup-
ported functions that are constant on the cosets of some ball, and denote the space of
these functions by S(Q5).

3. FOURIER ANALYSIS ON THE p-ADIC NUMBERS

In order to do Fourier analysis we shall need an understanding of the characters of
Qp and Qj. Define x : @y — C by

-1 A
[T ™=/ when |z|>1
x(z) = §s=k
1 otherwise.
The additive characters of Q, are of the form x, : @, — C;
Xa(z) = x(az),
where a € Q,, and the additive characters of Q are of the form x, : Q3 — C;
Xa(z) = x(a - z),

where a € Q) and a -z = a 171 + ... + @nZn.
The following result can be shown using the fact that balls have multiple centres. A
proof can be found in [2] or [8].
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LEMMA 2. Suppose that a € Q and |a| > 1. Then

/ x(at) dt = 0.
jti<1

The following van der Corput lemma for p-adic polynomials was recently proven
in [2]. It will be key to the proof of Theorem 1.

LEMMA 3. Suppose that ai,...,an € Q,. Then

2p"
Al/n’

<

/ x{ait 4 -+ ant") dt
felt

where A = max |a;|.
1gjgn

The Fourier transform is defined by
7o) = /Qn sExE i = | RENEIE
for all f € L'(Q}), and
a6 = [ Xd@dut) = | x(-¢-2)duta)

for all finite Borel measures p. The Fourier transform maps functions in S(Q}) to func-

tions in S(Q}), and S(Q}p) is dense in L(Q}), where 1 < g < oo. Thus, S(Qp) will take

the role of the Schwartz function space. '
Convolution is defined as usual by

feo@) = /Q REROLE /Q I@ale =)y =g+ @)
and
pr f(z) = / f(@ - v) duy) = £ * u(z),
@

for all functions f, g, and finite Borel measures x for which the integral is defined. The
following results follows as usual from the definitions and Fubini’s theorem.

THEOREM 4. Suppose that f,g € Ll(Qg), and p is a finite Borel measure. Then
IIf = 9”1,1(@;;) < “f”Ll(Q;;) ”9”L1(Q;;) )

and
Il f = M“L!(Q;) < ||f||L1(Q;;) lellar s

where |||, is the total variation of .
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THEOREM 5. Suppose that f,g € L'(Q}) and p is a finite Borel measure. Then
f+v9="F4 andix J =Af.

Finally, we present p-adic versions of the Fourier inversion theorem and Plancherel’s
theorem. For proofs see [8].

THEOREM 6. Suppose that f € L'(Qp). Then for almost every z € Q3,

| T se

as k — oo.
THEOREM 7. Suppose that f € L'(Qp) N L*(Q}). Then Wfll2(gm) = ||ﬂ|L2(Q;).

As L'(Q3) N L*(Qy) is dense in L?(Q)) we can extend the definition of the Fourier
transform to the whole of L?(Q}), as usual.

4. BESSEL POTENTIALS ON THE p-ADIC NUMBERS
It will be convenient to define I',, by

1-— p—n—s
Ta(s) = T

H

where s is a nonzero complex number. We shall require a p-adic analogue of the Bessel
potential (1 + |zf2)*%. Note that

(1 +12P)" = (1 + 7)) = @2

where ”(l,z)“ is the (n + 1)-dimensional Euclidean norm of (1,z) € R™!. Now the
(n + 1)-dimensional p-adic norm of (1,z) € Q*! is max{1, |z|}, so, following Taibleson
(7, 8], we define the n-dimensional p-adic Bessel potential J° : Q3 — C by

(2) J*(z) = max{1,|z|}’,
where s € C. We also define K, : Q7 — C by

(Iz|™7* = p7™™7*)/Ta(s) when 2| <1

K,(z) =
0 otherwise,
when s # —n, and

(1-p™)log, (p/lz]) when |z]<1

K_p(z) =
" 0 otherwise.

It is easy to calculate that K, € L'(Q};) when Re(s) < 0. We shall require the following
results due to Taibleson {7, 8].
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PROPOSITION 8. Suppose that Re(s) <0, and J* and K, are defined as above.
Then J*(€) = K,(€).

LEMMA 9. Suppose that J° is defined as above and that Re(s) < 0. Then there
is a constant C, so that

”js(, + y) - js(')“LI(Q;) < CstI_Re(a)

for all y € Q5.

5. THE HARDY—-LITTLEWOOD MAXIMAL THEOREM

We shall make use of non-isotropic dilations py : Q{," — Q,’,V defined by

pr(z) = (0F 21, 9%2s, ..., p"*zN),
and the norm d : Q) — R defined by

d(I) = ma.x{lz:\!, thll/Z’ RS |le1/N}:

in Sections 7 and 8. From now on balls will be defined using d, unless specified otherwise,
so that

B(z,p")z{y:d(z—y)gp"} = {y: ly; — z; < p’* for allj=1,...,N},

and |B(z, p*)| = pM*, where M = 1+ 2+ ...+ N = N(N + 1)/2. Balls denoted by B’
for some j € N, will also be defined using d, but will have no specified radius or position.
It is not difficult to show that d is an ultrametric. Thus, all points within a ball can be
considered to be its centre, and two balls are disjoint or one is contained in the other, as
before.

We begin with a covering lemma in the style of N. Wiener. We note that the
technicality is significantly reduced when dealing with ultrametrics.

LEMMA 10. Suppose that E C Q"," has finite Haar measure, and is covered by
balls defined with an ultrametric. Suppose that the balls have uniformly bounded mea-
sure. Then there exists a countable and disjoint subcover.

PROOF: We choose a refinement from the original cover. We start with a ball with
largest measure, and discard all the balls contained within it. Then we choose a ball
with largest measure from the remaining balls, and discard the balls which are contained
within it. We continue until all the balls have been chosen or discarded.

The refinement is disjoint as any two balls are disjoint or one is contained in the
other. It is countable as F is of finite measure, and each ball has positive measure.
Finally it is a cover, as we only discarded redundant elements of the original cover. 0
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We shall now define the Hardy-Littlewood maximal function M f for a function

f € LL(Q)). Define ®; by

1
% =[50, 7] LB

where 1 ¢y denotes the characteristic function of B(0,p*), and Mf by

1
M = — dy =sup® .
I = 30 (B, ST 1 = 52 2V

As all points within a ball can be considered to be its centre, this is the analogue of both
the centred and uncentred maximal function of the classical theory.

THEOREM 11. Suppose that Mf is defined as above. Then
1
3) |{z e @ : Mf(@) > a}| < < Iflluscopy

for all f € L'(QY), and for ¢ > 1,

q 1/q
=5) Wy

1Ml oy < 2(
for all f € LI(QY).

PROOF: Let F be any subset of {z € QY : Mf(zx) > a} with finite measure. For
each z € F there exists a ball B(z) so that

1 1
@] <5 [, 5@l < Sl

We can apply Lemma 10 to the cover { B(z)} to leave a countable, disjoint subcover

{BJ }jeN. Thus

z€F?

Fl< S |BY] < Z-/ 1£(2)] dz < -/ |7(2)] d.
jgo j=0 & B @ Joy
Now this is true for all subsets of {x € Q;,V :Mf(z) > a} with finite measure, so that
1
(4) (e Mi@ > a}| <2 [ If@)]dz,
as desired.

To prove the second part, we split f as f* + f,, where

f(z) when ,f(:z:)}>a/2

0 otherwise,

fiz) =
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and

otherwise.

fulz) = {g(z) when |f(z)| < /2

As {z € Q) : Mfs > a/2} = 0, we see that
{Mf>a} C{MSf*> a/2tu{Mf, > a2} = {Mf*> a/2},

where {Mf > o} denotes {z € QY : Mf(z) > a} as usual. By (4) we have

MfE> af2 *z)|dz = = dz,
I{ o/ }I / lf | ’ /!f|> /'z}| (a:)[ ?
so that

/ |Mf(z)|*dz = /wqaq‘l|{Mf > a}| da
QY 0

2q/ a?” 2/ dzda
|f|>0/2}

Thus, by changing the order of integration, we obtain

211
/ | Mf()| dz < / |f(1:)|/ o’ 2dad:z:—q— ’f z)|? dz,
P 0 -
as desired. 1
The bound in (3) is absolutely sharp, and this is easily observed by considering

f = 13(0,1)~
An important corollary of the Hardy-Littlewood maximal theorem is the following
differentiation theorem.

COROLLARY 12. Suppose that f € L'(QY). Then for almost every z € QY

1
lim ———— dy = .
k—-{moo |B(.’L‘ p )' Blzp*) f(y) Y f(ﬂ?)

Proor: It will suffice to show that |Es| = 0 for all § > 0, where

Es= {xe@ﬁ’:limsup f(y)dy—f(:c)| >5}.

1
k——o0 I |B(I,pk)| B(z,p*)
Let £ >0and g. € S(QN) such that ||f — gc||,: < &. Now when p* is sufficiently small,

I_B(zl—p")l e 9:(y) dy = g(x)
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for all z € Qf, so that

1 1
B )] oo fy)ay - f(z) = B B(z,p")(f(y) — 9:(¥)) dy + ge () — f ().

Thus, F5 C As U Bs, where

As = {x cQ: liffiplB(x—lm")T et (f(¥) — 9:(v)) d:u] > 5/2}

and
Bi={ze Q@ : o) - f(z)| > 5/2}.
Now by Theorem 11,

2
< 3 IIf ‘96”[,1 ’

1
N .1y YY)
{ze@p RSP B P et

and by Chebyshev’s inequality,

(@) - 9) | > 572

€@ o) ~ £@)| > 6/2}] < 217 - gl
)

so that

'

2 2 £
1Bsl < 5 1f = gells +511f = gella = 5

Finally we let £ tend to zero to see that |E;| = 0. 0

6. THE CALDERON-ZYGMUND DECOMPOSITION

The following proposition splits an integrable function into a large and a small
part. The small part will naturally be easy to bound, and the large part will have some
redeeming qualities.

PROPOSITION 13. Suppose that f € L'(Q)) and that & > 0. Then

oo

j=0

where g,b; € L'(QY) and each b; is supported in a ball B/, so that
(i) |g(z)| € a for almost every z,
(ii) ||bj”1,1(Q;,V) < 2a|B7,

(iii) /QN bj(z)dz =0,

P

M
) S Wy
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ProoF: Define E = {z € Q) : Mf(z) > a}, where Mf is the Hardy-Littlewood
maximal function, defined with our new balls and norm. For z € Q,’,V let 6(z) be the
minimal distance such that

B(z,6(z)) N E°# 0.

The set E is of finite measure, by Theorem 11, and as B(z,6(z)/p) C E we see

that the balls are of uniformly bounded measure. Thus we can apply Lemma 10 to

{B (z,é(z))} e to obtain a countable and disjoint subcover of E, which we denote
€

by {B’}.
Define g by
(z) when z ¢ E
9(z) = {|BJ| fgi fy)dy when z € Bj,
and b; by

b5@) = Lo @) (@) - o7 [ s,

so that f=g+3b;.
When z ¢ E, we see by Corollary 12 that g(z) < « for almost every z. When z € E,

o@) = g7 [ Fw)dy

as B N E°# B, so we have proven the first part. Similarly as B/ N E° # 0,

/ |bj(z)|dz<2/_|f(1:)|dz
QY Bi
] .
— 9| Bi|—— j
=2|B ||Bj| /lef(x)|dz < 2|B|a,

so the second part holds. The third part is clear by the definition of b;. Finally we
consider the balls B, where B(z,p*). = B(z,p*~!). It is clear that the B? are disjoint,
and that UBJ C E. Thus

- . M
S 1B =p 30 1B < pMIEl < E- | flle
J J
by Theorem 11, and we are done. 0

7. L? BOUNDEDNESS

It will be useful to consider M5 as a maximal convolution of measures. To this end
we let u be the measure defined by

/o,~ £(2) dy(z) = /I _fG) e

I\
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where F(t) = (t,t?,...,t"), and let y; be the measure defined by

/ f(x) dpx(z / f(z)du(px(z)) = p" o f(3()) dt.
Then M5f is defined by

MaF(®) =508 5 /(2T = S

The use of square functions will be key to the proof of the following proposition.
This idea was developed by Stein and Wainger [4, 5].

PROPOSITION 14. Suppose that My is defined as above. Then there is a con-
stant Cy so that

"M'yf”LZ(QN) CN “.f”L’(QN
for all f € S(QY).

PROOF: Define the square function G f by

1/2
Gf(z) = (Zluk*f <1>k*f|) ,

keZ
where
Qk(é) IB(O Pk)l lB(O,p"))
as before, so that

Gf(z) = (Z

kez

flz =3 t))ldt—% |f(z - s5)|ds

B(z,p*)

1 / 2) 1/2
P {ti<p* ’

where M = N(N +1)/2. We note that z and s are vector-valued, and ¢ is scalar-valued.
Now

Mz f(z) < Gf(z) + Mf(z),

and M is bounded by Theorem 11. Thus, it remains to show that G is bounded. If we
assume for the moment that Gf € L?(QY'), then

WGAN3e = 3 Mk £ = B * £},

keZ

so that by Plancherel’s theorem,

IG£12 = / TP S Ime)] de

kel

https://doi.org/10.1017/50004972700034602 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700034602

368 K.M. Rogers [12]

where m(€) = x(€) — Bk (€). Thus

m:c(€)=/lt|<1 (%t+§2_ + - t”)dt Ilj/m ( )dt,-.

When [€;|p’* < 1 for all j, we have

/qu(%t-f-p& +p§—NtN) dt =1,

as x is trivial on {z € Q, : |z| < 1}. Similarly

N

I:I/Itjlq (Ii]k ) @ =1

j=1
so that m(€) = 0. When |£;|p’* > 1 for some j, we have

N
£
11:[1/|t,-|<1 (W]k )dt =0,

by Lemma 2, so that

& én N pN
mi(€)] = / St ot dt{g ,
| k l lti1 (pk p ) maxj{lgjlpjk}l/N
by Lemma 3. Thus
N 2
lmi(€)|” < P < Cw
kEG; kEZZ (maxj{lfjlp"‘}lm)

max; { 1¢;1p7* }>1

for some constant Cp. Thus

IG |12 = / 7S ma(e)[? de < Cull IRz = Cw [1£1,

keZ

by Plancherel’s theorem, and we are done. 0

In order to take advantage of the ‘slack’ in the above argument we introduce the
measures v° defined by
v3(z) = fi(z) max{1, |z|}",
and v defined by

(5) G(x) = 7 (p-x(2)) = Blp-r(z) max{1,|p+(2)|} ,
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where s € C. By a change of variables,
~ o . s
vi(z) = k(z) maX{l, Ip-k(z‘)l} ,
so by the proof of Proposition 14, we see that A/, defined by

N,f =supyi * f

k€Z

is also L2(Q}') bounded when Re(s) < 1/N. We state this formally for future reference.

PROPOSITION 15. Suppose N, is defined as above. Then for each s € C such
that Re(s) < 1/N, there is a constant C so that

“Mf“m(qg) <G “f“LZ(Q;}')

for all f € §(Q)').

8. L7 BOUNDEDNESS

We aim to bound N, when Re(s) < 0. This will enable us to use complex interpo-
lation to obtain a bound for M.
From (5) we can calculate, using Theorem 5, that

vi(z) = ,,—}m ¢ P (o)),

where J* is the Bessel potential defined as in (2). Thus »{ is an L'(Q}') function Y\vhen
Re(s) < 0, by Proposition 8 and Theorem 4, and by a change in variables ||v§|| ., < ||J°]| 1
for all k € Z.

One of the reasons we have been considering the norm d is so that we can obtain
the following version of Hérmander’s condition. When d(z) > d(y), we have

d(ﬂk(l')) > d(Pk(y))

for all k € Z. It is easy to see that |z| > d(z) when d(z) > 1. We also note that as d is
an ultrametric, d(z + y) = d(z) when d(z) > d(y).

PROPOSITION 16. Suppose that vi is defined as above, and that Re(s) < 0.
Then there is a constant C,; so that

/ sup|vi(z —y) — vi(z)|dz < C,
d(z)>d(y) k

for all y € QY.
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PRrROOF: First we note that

I=/ sup|uk(:z—y)—uk )ldz
d(z)>d(y) k

< vi(zr —y) — vi(z)|d
%}Lﬂww|a y) - vi(z)| dz

1
B zk: /d(z)>d(y) pMFk

When |pk(y)| = 1, we have d(p(y)) > 1, so that

|ox(z — v)| = d(pe(z - v)) > d(px(y)) > 1,
as d(z — y) = d(z) > d(y). Hence, as J? is supported in the unit ball,
7 (pulz — ) — 7(t)) =0
for all || < 1. Similarly when |pi(y)| > 1,

lox(2)| 2 d(ox(z)) > d(pr(y)) > 1,

so that -
I (pr(z) - 7(8)) =
for all |¢| € 1. Thus, by Fubini’s theorem,

/|t|<1 pMk /

so by the change of variables 2z = px(z) — (%),

1< 2 Dy

k:pr(y)l<1

k:lpe(y)I<1

T (z - pelw)) - J’(z)‘ dzdt.

Finally, by Lemma 9,

I < Z /|t|<lc’lpk(y)|-Re(s)dt=cs E |pk(y)|—Re(.q)<

k:loe(y)l<1 k:lpr(y)l<1

as desired.

/Itl<1 j’(/’k(l' -y) - 7(t)) - j’(pk(:c) - 7(t)) dt| dz.

T (pr(z - ) = 3(8) = T (pu(2) - (1)) | dwatt,

[14)

D

We use this and our Calderén—Zygmund decomposition to prove the following propo-

sition.

PROPOSITION 17. Suppose thatl < q < oo and that N is defined as above.

Then for each s € C such that Re(s) < 0, there is a constant Cg, so that

”A/sf“[,q(Q#') < Cq,s ”f”Lq(Q{,V)
for all f € S(QY).
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ProoF: When Re(s) < 0, we have

Slg;ll/i « f(@)] <1l 1f o < UMz £l o
z€Q; ’

for all k € Z. Hence there is a constant A, = ||.7’ llLs so that

(6) sup |V, f(z)] < AslIfll e »
IGQ{,V

for all f € S(Q)). We shall show that N, is weak type (1,1) and then interpolate using
(6) to obtain the result.
We split f into two parts g and b = zj b; as in Proposition 13, so that

{z € Q) : Mog(z) > A,a} =0.

As
{z: Nyf(z) > 24,0} C {z: Nyg(z) > Asa} U {z : N;b(z) > A,al,

it remains to bound ‘{a: € QY : Nob(z) > Asa}l. Let b; be supported on B/ = B(z;,§;),
say, then

I=/ |Nob(z)| dz < / sup|vj * b(z)| dz
(UBJ)e (UBJ): k
sup / bi(y)vi(z — y) dy|d
= [0, 2P, [, 0
By (iii) in Proposition 13, we have [,; b;j(y)vi(z — z;)dy = 0, so that
Is/ su /b‘ vilz —y) — vilz — z;)) dy|dx
. > @) (vile —v) - v i) dy
< Z / sup|1/,c z —y) — vi(z — z;) |dx/‘|bj(y)|dy.
]

Bi)y k

Now if we make the change of variables z = £ — z;, then we see that

I< ZJ/ sup‘uk 2+ —yY) — u,ﬂ(z)]dz/Bij(y)ldy.
7

B(0g;)e k

Now d(z) > §;, as = € B(z;,6;)%, and d(y — z;) < 0j, as y € B(z;, ;). Thus

/B sup|vi(z — (y — z5)) — u;(z)l dz< C

(01‘5]' )c k

by Proposition 16, so that

1<y C /lebj(y)ldy'
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By (ii) and (iv) of Proposition 16,
I =/ IN.b(z)| dz < G, Z2a|BJ| 2™ £l »
(UBs)

so that
2C,p

{z € @Y : Nib(z) > 4,0} < £l + U B

Thus by (iv) in Proposition 16 again, we see that

Il -

Finally, as {z € QY : N, f(z) > 24,a} C {z € Q) : M;b(z) > A,a},

M
(= € Q' : Nibla) > Asa)| < ZELA T LPT

2(2C, + A,)pM
[

{z €@ : Mf(z) > a}| < 1l

We interpolate between this bound and the bound in (6) using the argument in the
proof of Theorem 11, and we are done. 0

Finally we require the following complex interpolation theorem due to Stein [6]. We
reformulate it in the generality that we require. Let

D ={z € C:a<Re(z) <b},

and call a family of operators {7.},cc admissible if, for f,ge S (Q{,V ), the mapping
2o [ (TH@)sla)do
L

is analytic in the interior of D, continuous on D, and uniformly bounded on D.

THEOREM 18. Suppose that {T;}.cc is an admissible family of operators satis-
fying
Taisllzeeioy < Malllzsucap)

and
”Tb+:y”qu(QN) M, ”f”L"b(QN)

for all f € S(Q,’,V) where 1 < qq,qy < 00 and M,, M, are constants. Then
|I7Zb-—a)0+a“ng(Q,l’V) N M;_aM: ”f”an(Qg)

for all f € S(Q)), where 1/gp = (1—-0)/q.+0/gpand 0 < 6 < 1.
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We ‘linearise’ A, in order to apply this theorem. Let z —» k(z) be an arbitrary
integer-valued function on Q). With it we define the admissible family of operators U,

by Us f(z) = vig) * f(z). As
L(of(:z:) = Vl(c](:l:) * f(l‘) = Hi(z) * f(ZE),

we let b = 1/2N and take @ and a so that (1/2N — a)§ + a = 0. It is not hard to show
that 8 and a can be chosen so that gg can take all the values in the range 1 < ¢g < 0.
Hence we can interpolate between the bounds in Proposition 17 and Proposition 15 so
that

oS ey < CallFllapy

for all f € S(QY). Now as z + k(z) is arbitrary, and
Nof(z) = sup vi * f(z) = M5f(z),

we obtain the following proposition.

THEOREM 19. Suppose that 1 < ¢ < oo and that My is defined as above. Then
there is a constant C, so that

||M§f”u(0g) <G ”f“Lq(Q;,V)

for all f € S(QY).

9. THE METHOD OF DESCENT

We shall now return to our original curve and dimension. This technique has its
origins in a paper of de Leeuw [1].

THEOREM 20. Suppose that 1 < g < co and that M, is defined as above. Then
there is a constant Cg so that

M0l ey < Co ey
for all f € S(Q}).
PROOF: Let K be a positive integer, and define MX by

K — _1_ _ d
M7 f(z) Sup ¥ |t|<p"f(x ~(t)) dt,

where k takes integer values, and M% by

Kf(z) = sup — —5(t) d
M5 f(z) = sup % |¢|<pkf(z 7(2)) dt.
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Recall that R: Q) — Q7 is a linear map so that
Rt .. tN) = (PA(t),...,P.(t)),

d
an 1

MEf(z) = sup < flz — R(7(2)) dt.

i<k P* Jiggpr
Let T, f(z) = f(z + R(y)), so that

1
@ IS Sy = g [ ITME g
where B,(0) = {y € QY : |[y| < p } At this point K is fixed, so we may choose r so that

r> NK. Ify € B,(0) and |¢| < p¥, then |y — (2) | < p". Hence, when y € B,(0),

T,MEf(z) = su
Y 7f( ) |Ic|<l;(Plc it|<p*

=swp = [ f(s+RE- (1) )L (v - 7)) dt,

kg K p* ltl<p*

f(:c +R(y — 7(15))) dt

where 1, denotes the characteristic function of
B.(0)={yeQ): |y <p}

Thus,
(8) TMEf(@) = sup = [ Fu(y - 5() dt = MEF(y),

i<k P* Jigpr

where F;(z) = f(z + R(2)) 1,(2).
We have

© [ MERGF <oy [ R,
B(0) Qv
by Theorem 19, and by Fubini’s theorem,

Fo(y)|" dydz = p™" || f1|%010m) -
JR0] bap)

Hence we can integrate (9) to obtain
(10) Lo, o MR drde <5705 Uy
Now we combine (7), (8) and (10) so that

“'MKf”Lq(Qn) A5 pN,Cq ”f”%q(@;) = 03 ”f”‘l’ﬂ(Q;;) )

and let K tend to infinity to obtain the result.
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10. CONCLUSION

As the space of compactly supported, locally constant functions S(Qp) is dense in
L9(Qp), when 1 < g < oo, it is clear that Theorem 1 can be obtained from Theorem 20
by a simple limiting argument. We note the following corollary, which is a version of the
fundamental theorem of calculus along p-adic curves. The proof is the same as that for
Corollary 12.

COROLLARY 21. Suppose that f € LY(Q}), where 1 < ¢ < co. Suppose that
is defined as above, with v{0) = 0. Then for almost every z € Qz,

1
lim — flz —~(t)) dt = f(z).
k=0 PF Jyygpr ( ®) )
It is an open question, in both the Euclidean and p-adic cases, as to whether there
is a weak type (1,1) version of Theorem 1. Similarly, it is not known whether there is an
L! version of Corollary 21.
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