FOURIER-STIELTJES TRANSFORMS WHICH VANISH AT INFINITY OFF CERTAIN SETS

by LOUIS PIGNO

(Received 29 June, 1976)

0. Introduction. In this paper G is a nondiscrete compact abelian group with character group Γ and M(G) the usual convolution algebra of Borel measures on G. We designate the following subspaces of M(G) employing the customary notations: $M_a(G)$ those measures which are absolutely continuous with respect to Haar measure; $M_s(G)$ the space of measures concentrated on sets of Haar measure zero and $M_d(G)$ the discrete measures.

The Fourier-Stieltjes transform of the measure $\mu \in M(G)$ is defined by

$$\hat{\mu}(\gamma) = \int_G \gamma(-x) d\mu(x) \qquad (\gamma \in \Gamma).$$

The ideal of measures whose transforms vanish at infinity will be denoted by $M_0(G)$.

Let $L^{p}(G)$ $(1 \le p \le \infty)$ be the Lebesgue space of index p formed with respect to Haar measure on G and C(G) those $f \in L^{\infty}(G)$ which are continuous. For any subspace B(G) of M(G) and subset E of Γ put

$$B_E(G) = \{ \mu \in B(G) : \hat{\mu} = 0 \text{ off } E \}.$$

In section 1 we give several extensions of a classical theorem due to Rajchman [23] which we state for the circle group T as

THEOREM 1. Suppose $\mu \in M(\mathbf{T})$ and $\hat{\mu}(n) = o(1)$ for all n > 0 or all n < 0. Then $\mu \in M_0(\mathbf{T})$.

An analogue of Theorem 1 is valid for any compact abelian group with ordered dual in the sense of relating the behavior of a Fourier-Stieltjes transform at " $+\infty$ " with its behavior at " $-\infty$ ", see [4, p. 230] and especially the example.

A subset \mathfrak{R} of Γ will be called a *Rajchman set* if whenever $\mu \in M(G)$ and $\hat{\mu} \in C_0(\Gamma \setminus \mathfrak{R})$, then $\mu \in M_0(G)$. Here $C_0(\Gamma \setminus \mathfrak{R})$ means those complex-valued functions on Γ which vanish at infinity off \mathfrak{R} . In section 1 we prove the following two theorems which we now cite.

(i) The union of a Rajchman set and a Sidon set is a Rajchman set;

(ii) The union of a Rajchman set and any set \mathscr{C} satisfying $M_a(G)^{\wedge}|_{\mathscr{C}} \subset M_d(G)^{\wedge}|_{\mathscr{C}}$ is a Rajchman set.

Let E be a Rider set contained in \mathbb{Z}^+ , the positive part of Z. We also prove in section 1 that:

(iii) $\mathbb{Z}^- \cup E^n$ is a Rajchman set.

4

In section 2 we present some examples of Rajchman sets in Γ . The sum sets in example (III) are especially interesting from an arithmetic point of view. In section 3 we

Glasgow Math. J. 19 (1978) 49-56.

LOUIS PIGNO

exhibit a connection between Rajchman sets in the integer group \mathbb{Z} and idempotent measures on the circle. The result of this section provided the original motivation for our study of Rajchman sets.

1. Union problems for Rajchman sets. A subset **S** of Γ is said to be a *Sidon set* if whenever $f \in L^{\infty}_{\mathbf{S}}(G)$, then $\sum |\hat{f}(\alpha)| < \infty$. Our first result is:

THEOREM 2. The union of a Rajchman set and a Sidon set is a Rajchman set.

Proof. We adapt the proof of [5]. Let $\hat{\mu} \in C_0(\Gamma \setminus \mathfrak{R} \cup S)$, where \mathfrak{R} is Rajchman and **S** is Sidon. By a result of Drury, given a natural number *m* there is a measure $\nu_m \in M(G)$ such that

$$\hat{\nu}_m(\alpha) = 1 \qquad (\alpha \in \mathbf{S}), \tag{1}$$

$$|\hat{\nu}_m(\alpha)| < \frac{1}{m} \qquad (\alpha \notin \mathbf{S}).$$
 (2)

Since \Re is Rajchman it follows from (1) that the measure

$$\mu - \nu_m * \mu \in M_0(G). \tag{3}$$

On letting $m \to \infty$ in (3) we gather from (2) that $\hat{\mu} \in C_0(\Gamma \setminus S)$. Our result now follows from Theorem 2.20 of [16, p. 30].

We remark that Theorem 2.20 of [16, p. 30] shows that the method of proof of [5] works for any compact abelian group to establish that the union of a small p set and a Sidon set is a small 2p set. For if Γ is not ordered or the positive cone is not Rajchman then the first part of the argument of [5] shows that $\hat{\mu} \in C_0(\Gamma \setminus S)$. An improvement of [5] due to the author and S. Saeki can be found in [22, p. 91]. The reader is also referred to example I of the present paper.

Next, let & satisfy

$$M_a(G)^{\wedge}|_{\mathscr{C}} \subset M_d(G)^{\wedge}|_{\mathscr{C}}.$$
(*)

The interpolation property (*) has been studied by many authors; the reader is referred to [2], [11], [14], and [21]. It is known that the set of prime powers and the sets $\{r^n + r^m : n, m \in \mathbb{Z}^+\}$ where $r \in \mathbb{Z}^+$ and $r \ge 2$ satisfy (*) for $\Gamma = \mathbb{Z}$; see [10].

THEOREM 3. The union of a Rajchman set \Re and any set $\mathscr E$ satisfying (*) is a Rajchman set.

Proof. Let $\mu \in M(G)$ and suppose

$$\hat{\mu} \in C_0(\Gamma \setminus \mathscr{E} \cup \mathfrak{R}). \tag{1}$$

Let $\alpha_0 \in \mathscr{C}$ and choose $\nu \in M_a(G)$ such that

$$\hat{\boldsymbol{\nu}}(\boldsymbol{\alpha}_0) = 1. \tag{2}$$

Since \mathscr{C} satisfies (*) we gather there is a measure $\mu_d \in M_d(G)$ such that

$$\hat{\mu}_d = \hat{\nu} \quad \text{on} \quad \mathscr{C}. \tag{3}$$

By (1)

$$(\boldsymbol{\mu}_d \ast \boldsymbol{\mu} - \boldsymbol{\nu} \ast \boldsymbol{\mu})^{\wedge} \in C_0(\Gamma \setminus \Re);$$

thus

$$\mu_d * \mu - \nu * \mu \in M_0(G). \tag{4}$$

In light of the Riemann-Lebesgue Lemma, (4) implies that

$$\mu_d * \mu \in M_0(G). \tag{5}$$

Put

$$M_0^{\perp}(G) = \{ \rho \in M(G) : \rho \text{ is singular with each } \tau \in M_0(G) \}$$

Then, as is well known, $M(G) = M_0(G) \oplus M_0^{\perp}(G)$. Since $M_0(G)$ is translation invariant and since $M_0^{\perp}(G)$ is translation invariant and closed, it follows that if $\rho_d \in M_d(G)$, then

$$\rho_d * M_0^{\perp}(G) \subset M_0^{\perp}(G). \tag{6}$$

Write $\mu = \mu_0 + \mu_\perp$ where $\mu_0 \in M_0(G)$ and $\mu_\perp \in M_0^{\perp}(G)$. We infer from (5) that $\mu_d * \mu_\perp \in M_0(G)$, so we obtain via (6) that

$$\boldsymbol{\mu}_d * \boldsymbol{\mu}_\perp = 0. \tag{7}$$

But (2) and (3) in combination with (7) yield $(\mu_{\perp})^{\wedge}(\alpha_0) = 0$. Thus

$$(\boldsymbol{\mu} \ast \boldsymbol{\mu}_{\perp})^{\wedge} \in C_0(\Gamma \setminus \mathfrak{R}) \tag{8}$$

and so $\mu * \mu_{\perp} \in M_0(G)$. It is now evident that $\mu_{\perp} * \mu_{\perp} \in M_0(G)$ and this is possible if and only if $\mu_{\perp} = 0$.

Theorem 3 implies the following result which we state without proof.

Every non-Sidon subset of a discrete abelian group contains a Rajchman set which is non-Sidon.

For the remainder of this section our notation will be for the most part that of [16]. In what follows Γ is ordered by the positive cone \mathcal{P} .

A subset S of Γ is called asymmetric if $0 \notin S$ and $\alpha \in S$ imply $-\alpha \notin S$. For any subset E of Γ and integer $s \ge 0$, $R_s(E)$ denotes the number of asymmetric subsets S of $E \cup -E$ satisfying |S| = s and $\sum_{\alpha \in S} \alpha = 0$. The set E is called a *Rider set* if there is a constant B > 0 such that $R_s(E) \le B^s$ for all s. For $k \in \mathbb{Z}^+$ let E_k consist of all characters of the form $\sum_{\alpha \in S} \alpha$ where S is an asymmetric subset of $E \cup -E$ and |S| = k.

Before presenting our result we shall need the next two propositions, which we now state for the readers' convenience.

PROPOSITION 1. (Bonami [3]). Let E be a Rider set in Γ . Then E_k is a $\Lambda(q)$ set for all $1 \le q < \infty$ and all k > 0.

LOUIS PIGNO

Recall that a set A is called a $\Lambda(q)$ set if there exists a p < q and a constant K_p such that

$$\|t\|_q < K_p \|t\|_p$$

for all trigonometric polynomials t on G with t=0 off A.

PROPOSITION 2. (Rudin [24]). Let $\mu \in M(\mathbb{T})$ and A a set of type $\Lambda(1)$. If supp $\hat{\mu} \subset \mathbb{Z}^- \cup A$, then $\mu \in M_a(\mathbb{T})$.

For a generalization of Proposition 2 see [18]. In this connection we point out that for the corollary of [18, p. 369] to be valid we must replace the word infinity by " $-\infty$ " in both the statement of the corollary and its proof. We shall call a subset R of Γ a weak Rajchman set if whenever supp $\hat{\mu} \subset R$ then $\mu \in M_0(G)$. The set of Proposition 2 is a weak Rajchman set which is (to the author's knowledge) not known to be Rajchman. The method of Theorem 2 shows that the union of a weak Rajchman set and a Sidon set is a weak Rajchman set.

We shall be interested in showing that for certain $\Lambda(1)$ sets A (which are not Sidon) $\mathbb{Z}^- \cup A$ is a Rajchman set. For any subset E of Γ and natural number $n \ge 2$ put

$$E^{n} = \{n_{j_{1}} + n_{j_{2}} + \ldots + n_{j_{n}} : n_{j_{i}} \neq n_{j_{k}}, n_{j_{i}} \in E\}$$

and $E^1 = E$. We now present this extension of Rajchman's Theorem:

THEOREM 4. Let E be a Rider set in \mathbb{Z} such that $E \subset \mathbb{Z}^+$. Then $\mathbb{Z}^- \cup E^n$ is a Rajchman set.

Proof. Let $\mu \in M(\mathbb{T})$ and $\hat{\mu} \in C_0(\mathbb{Z} \setminus \mathbb{Z}^- \cup E^n)$. We shall suppose $\hat{\mu} \notin C_0(\mathbb{Z})$ and force a contradiction.

If $\hat{\mu} \notin C_0(\mathbb{Z})$ then there exists by Theorem 1 a $\delta > 0$ such that the set

$$\mathcal{G} = \{ \alpha \in E^n : |\hat{\mu}(\alpha)| \ge \delta \}$$

is infinite. Choose a sequence $\langle \alpha_i \rangle_1^{\infty}$ with the α 's distinct and in \mathcal{S} .

Let ν be any weak-star cluster point of $\{-\alpha_{j}\mu\}$. Since the α 's are distinct it follows from the Helson Translation Lemma that

$$\nu \in M_{\rm s}({\bf T}). \tag{1}$$

Observe that

$$\hat{\nu}(0) \neq 0 \tag{2}$$

since the α 's belong to \mathcal{G} .

We shall fix $\alpha \in \mathbb{Z}^+$ and calculate $\hat{\nu}(\alpha)$. If $\alpha + \alpha_i$ meets E^n only finitely many times then, since $\hat{\mu} \in C_0(\mathbb{Z} \setminus \mathbb{Z}^- \cup E^n)$, it follows that $\hat{\nu}(\alpha) = 0$. Thus if $\alpha \in \mathbb{Z}^+$, then $\hat{\nu}(\alpha) \neq 0$ implies that

$$\alpha \in \overline{\lim_{j}}(E^{n}-\alpha_{j}) = \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} (E^{n}-\alpha_{k}).$$

Well, it is easy to see that

$$\bigcup_{j=1}^{\infty} (E^n - \alpha_j) \subset A, \tag{3}$$

53

where

 $A = \{0\} \cup E_2 \cup E_4 \dots \cup E_{2n} \qquad (n \ge 1).$

By Proposition 1 and [23, p. 217] this set A is a $\Lambda(q)$ set for all finite q. Inasmuch as ν is singular and supp $\hat{\nu} \subset \mathbb{Z}^- \cup A$ we obtain via Proposition 2:

$$\hat{\boldsymbol{\nu}}(0) = 0. \tag{4}$$

Since (4) contradicts (2) we conclude that $\hat{\mu} \in C_0(\mathbb{Z})$; i.e. $\mu \in M_0(\mathbf{T})$ and this finishes our proof.

COROLLARY. If E and F are disjoint with $E \cup F$ dissociate and $E \cup F \subset \mathbb{Z}^+$, then $\mathbb{Z}^- \cup (E+F)$ is a Rajchman set.

For some interesting properties of E+F where E and F are disjoint with dissociate union see [1].

2. Examples of Rajchman Sets. In this section we present some examples of Rajchman sets in Γ . Most of the examples appear in the literature implicitly.

EXAMPLES (I) A subset \mathscr{C} of \mathbb{Z}^+ is said to satisfy the *lacunary condition* (\mathscr{P}) if for every increasing sequence $n_1, n_2, \ldots, \in E, \mathbb{Z}^+ \cap \underline{\lim} (\mathscr{C} - n_i)$ is a finite set.

Then if \mathscr{C} satisfies (\mathscr{P}) , $\mathbb{Z}^- \cup \mathscr{C}$ is a Rajchman set. To confirm this assertion it suffices to repeat the proof of Theorem 3 of [8]. A proof for arbitrary discrete Γ that a Sidon set is a Rajchman set can be based on Theorem 1.4 of [16, p. 8] and the method of proof of the present example.

(II) A subset \mathscr{F} of \mathbb{Z} is said to be a set of uniform convergence or UC-set if every $f \in C_{\mathscr{F}}(\mathbf{T})$ has uniformly convergent Fourier series. Non-Sidon UC-sets were first exhibited by Figà-Talamanca; see [16, pp. 82-86]. Careful scrutiny of the proof of Theorem 5 of [7] shows that $\mathbb{Z}^- \cup \mathscr{F}$ is a Rajchman set.

(III) A subset \mathfrak{E} of \mathbb{Z} is defined to be a strong Rajchman set if \mathfrak{E} is a Rajchman set. Here \mathfrak{E} is a closure of \mathfrak{E} in \mathbb{Z} , where \mathbb{Z} has the relative topology of its Bohr compactification, \mathbb{Z} . A subset \mathfrak{R} of \mathbb{Z} is said to be a *Riesz set* if $M_{\mathfrak{R}}(\mathbf{T}) = L^{1}_{\mathfrak{R}}(\mathbf{T})$. A subset \mathfrak{E} of \mathbb{Z} is called a strong *Riesz set* if \mathfrak{E} is a Riesz set.

Replacing the decomposition $M(\mathbf{T}) = M_a(\mathbf{T}) \oplus M_s(\mathbf{T})$ by $M_0(\mathbf{T}) \oplus M_0^{\perp}(\mathbf{T})$ in [17] and adapting the methods of Meyer we can easily prove: If \Re is a Rajchman set and \mathfrak{E} is a strong Rajchman set then $\Re \cup \mathfrak{E}$ is a Rajchman set. In particular we have that the union of a Rajchman set and a strong Riesz set is a Rajchman set. The following examples of strong Riesz sets can be found in [6] and [17] respectively:

(i) The set of integers expressible as the sum of two perfect squares is a strong Riesz set;

(ii) Let n_k be a sequence of positive integers such that n_{k+1}/n_k is an integer >2 for all k.

Then the set of all finite sums of the form

$$\sum_{k\geq 0} t_k n_k \quad \text{with} \quad t_k \in \{0, 1\}, \qquad n_i \neq n_j$$

is a strong Riesz set.

Here is another example due to the author and S. Saeki:

Fix any two sequences $\langle p_n \rangle_1^{\infty}$ and $\langle q_n \rangle_1^{\infty}$ of natural numbers ≥ 2 . Let

$$\mathscr{C}_n = \{p_1 p_2 \dots p_n k : k = 0, \pm 1, \dots, \pm q_n\}$$

and put $\mathscr{C} = \bigcup_{n=1}^{\infty} \mathscr{C}_n$. Then $\mathscr{C} + \ldots + \mathscr{C}$ (any finite number of summands) is a strong Riesz set.

To see this let

$$\mathbf{D} = \{ e^{2\pi i m/p_1 \dots p_n} : m \in \mathbb{Z} \text{ and } n \in \mathbb{Z}^+ \}.$$

Consider **D** with the discrete topology and $\hat{\mathbf{D}}$ the compact dual of **D**. It is easy to prove that the only accumulation point of \mathscr{C}^+ in $\hat{\mathbf{D}}$ is 0; see [13, p. 107] and [13, p. 403]. Since $\hat{\mathbf{D}}$ is a factor group of \mathbb{Z} and **D** is dense in **T** we gather that the set of accumulation points of \mathscr{C}^+ in \mathbb{Z} (with the relative Bohr topology) is a subset of {0}. Thus \mathscr{C}^+ is strong Riesz and moreover since \mathscr{C} is symmetric we have that \mathscr{C}^- is strong Riesz. Thus $\mathscr{C} = \mathscr{C}^+ \cup \mathscr{C}^-$ is strong Riesz.

Now the set of accumulation points for $(\mathscr{C}+\mathscr{C})^+$ in $\hat{\mathbf{D}}$ is a subset of $\{0\} \cup \mathscr{C}$. So since \mathscr{C} is strong Riesz it follows from [17, p. 90] that $(\mathscr{C}+\mathscr{C})^+$ is strong Riesz. Thus $\mathscr{C}+\mathscr{C} = (\mathscr{C}+\mathscr{C})^+ \cup (\mathscr{C}+\mathscr{C})^-$ is strong Riesz and the proof for any finite number of summands follows inductively.

(IV) Let \Re be a Rajchman set in Γ . Suppose $\mathfrak{A} \subset \Gamma$ has the property that

$$\{(\mathfrak{A} - \alpha) \cap \mathfrak{A}\}$$
 is a Rajchman set

for all $\alpha \notin \Re$. Then \mathfrak{A} is a Rajchman set.

The proof of the above statement is similar to the proof of Theorem 2 of [19, p. 77] and we omit the details.

3. Weak Rajchman sets and idempotent measures. Using a remarkable result of K. de Leeuw and Y. Katznelson, we establish a connection between idempotent measures and Rajchman sets.

THEOREM 5. Suppose R is a weak Rajchman set in \mathbb{Z} and $\mu \in M(\mathbf{T})$ such that $\hat{\mu} = \hat{\mu}^2$ off R. Then there is an idempotent measure $\nu \in M(\mathbf{T})$ such that $\hat{\mu} = \hat{\nu}$ off R.

Proof. Let $\mu \in M(\mathbf{T})$ with

$$\hat{\mu} = \hat{\mu}^2 \quad \text{off} \quad R. \tag{1}$$

Via (1)

$$\limsup_{n\notin R} |\hat{\mu}(n) - \hat{\mu}^2(n)| = 0$$

54

FOURIER-STIELTJES TRANSFORMS

and since R is weak Rajchman, we gather that

$$\limsup_{n \in \mathbb{Z}} |\hat{\mu}(n) - \hat{\mu}^2(n)| = 0.$$
 (2)

As a consequence of Theorem 2 of [4, pp. 220–221] (2) gives:

$$\mu = \mu_1 + \mu_2, \qquad \hat{\mu}_1 \text{ periodic with } \mu_1 \text{ idempotent}$$
(3)

and

$$\limsup_{n \in \mathbb{Z}} |\hat{\mu}_2(n)| = 0.$$
(4)

As a consequence of (1), (3), and (4), we deduce that $\hat{\mu} = \hat{\mu}_1$ off $R \setminus F$ where F is some finite set. Thus, since $\hat{\mu}_1$ is periodic, we are done.

Theorem 5 is an extension of a theorem of H. Helson [12]; see also [15] and [20]. We conclude our paper with some open questions.

(i) If \mathcal{R} is a Riesz set must \mathcal{R} be a Rajchman set?

(ii) Is the union of a Rajchman set and a UC-set a Rajchman set? In this connection see example (II) of section 2.

A subset $\mathbf{A} \subset \Gamma$ is called a *Rosenthal set* if $L^{\infty}_{\mathbf{A}}(G) = C_{\mathbf{A}}(G)$. It is known that the sum sets $\mathscr{C} + \ldots + \mathscr{C}$ in example (III) of section 2 are Rosenthal sets. The following question suggests itself:

(iii) Is the union of a Rajchman set and a Rosenthal set a Rajchman set? An analogous result can be found in [9].

After our manuscript had been accepted for publication the author generalized Theorem 5 to compact abelian groups.

Note added in proof. The author has recently learned of the work of Keiji Izuchi, Sidon sets and small M_0 -sets, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 12 (1974), 146-148. Izuchi proves Theorem 2 of the present paper using the method of [5]. Theorem 2 was also known to the author in 1974.

REFERENCES

1. R. C. Blei, A tensor approach to interpolation phenomena in discrete abelian groups, Proc. Amer. Math. Soc. 49 (1975), 175-177.

2. R. C. Blei, On Fourier-Stieltjes transforms of discrete measures, Math. Scand. 35 (1974), 211-214.

3. A. Bonami, Etude des coefficients de Fourier des fonctions de $L^{p}(G)$, Ann. Inst. Fourier (Grenoble) **20** (1970), 335-402.

4. K. de Leeuw and Y. Katznelson, The two sides of a Fourier-Stieltjes transform and almost idempotent measures, *Israel J. Math.* 8 (1970), 213-229.

5. R. E. Dressler, W. Parker and L. Pigno, Sidon sets and small p sets, Quart, J. Math. Oxford Ser. 2, 24 (1973), 79-80.

6. R. E. Dressler and L. Pigno, On strong Riesz sets, Colloq. Math. 29 (1974), 157-158.

7. R. E. Dressler and L. Pigno, Sets of uniform convergence and strong Riesz sets, Math. Ann. 211 (1974), 227-231.

LOUIS PIGNO

8. R. E. Dressler and L. Pigno, Some lacunary conditions for Fourier-Stieltjes transforms, Ark. Mat. 13 (1975), 73-77.

9. R. E. Dressler and L. Pigno, Une remarque sur les ensembles de Rosenthal et Riesz, C.R. Acad. Sci. Paris, 280 (1975), 280-281.

10. R. E. Dressler and L. Pigno, Modification sets and transforms of discrete measures, Acta. Sci. Math. (Szeged) 38 (1976), 13-16.

11. S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, II, Colloq. Math. 15 (1966), 79-86.

12. H. Helson, On a theorem of Szegö, Proc. Amer. Math. Soc. 6 (1955), 235-242.

13. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1 (Springer Verlag, 1963).

14. J.-P. Kahane, Ensembles de Ryll-Nardjewski et ensembles de Helson, Colloq. Math. 15 (1966), 87-92.

15. I. Kessler, Semi-idempotent measures on abelian groups, Bull. Amer. Math. Soc. 73 (1967), 258-260.

16. J. M. López and K. A. Ross, Sidon Sets (Marcel Dekker, Inc., New York, 1975).

17. Y. Meyer, Spectres des mesures et mesures absolument continues, Studia Math. 30 (1968), 87-99.

18. L. Pigno, A variant of the F. and M. Riesz theorem, J. London Math. Soc. (2), 9 (1974), 368-370.

19. L. Pigno, Convolution products with small Fourier-Stieltjes transforms, *Illinois J. Math.* 19 (1975), 77-78.

20. L. Pigno, Integer-valued Fourier-Stieltjes transforms, Technical Report No. 53 Kansas State University (1976).

21. L. Pigno and S. Saeki, Interpolation by transforms of discrete measures, Proc. Amer. Math. Soc. 52 (1975), 156-158.

22. L. Pigno and S. Saeki, Fourier-Stieltjes Transform which vanish at infinity, Math. Z. 141 (1975), 83-91.

23. A. Rajchman, Une classe de series trigonometriques ... Math. Ann. 101 (1929), 686-700.

24. W. Rudin, Trigonometric series with gaps, J. Math. and Mech. 9 (1970), 203-228.

Kansas State University Manhattan

KANSAS 66506, U.S.A.