ABSTRACT KERNELS AND COHOMOLOGY

S. ŚWIERCZKOWSKI 1

(Received 21 August 1967)

Let G, N be groups, let A(N) be the automorphism group of N and let I(N) be the subgroup of inner automorphisms. A homomorphism

$$\theta: G \to A(N)/I(N)$$

will be denoted by (G, N, θ) and called an *abstract kernel*. (G, N, θ) induces in an obvious manner a structure of a (left) *G*-module on the centre *C* of *N*. A well known construction of Eilenberg and MacLane $[1, \S 7-9]$ assigns to (G, N, θ) its obstruction Obs $(G, N, \theta) \in H^3(G, C)$. This assignment is such that if *C* is an arbitrary *G*-module then every element of $H^3(G, C)$ is of the form Obs (G, N, θ) for a suitable abstract kernel (G, N, θ) .

We have discussed in [4, § 7, p. 302] abstract kernels

$$\theta: V \to A(N)/I(N)$$

where V is a local group. Generalizing the construction for groups, we have assigned to each (V, N, θ) its obstruction Obs $(V, N, \theta) \in H^3(V, C)$. (The V-module structure of C is induced by (V, N, θ) and the cohomology of V is the one defined in [4, § 4, p. 298] or, if V is contained in a group, the one defined in [2, § 5, p. 396]).

The purpose of this note is to show that the analogy with the group case does not go further, i.e. we shall prove the

THEOREM. There exists a local group V and a V-module C such that a certain element of $H^{3}(V, C)$ is not of the form Obs (V, N, θ) for any abstract kernel (V, N, θ) .

Say that the local group V is *embedded* in a group G if V is a subset of G and the multiplication in V is taken from G (whenever performable in V). Say that this G is V-monodrome if V generates G and every morphism $V \rightarrow H$, where H is a group, can be extended to a morphism $G \rightarrow H$ [4, § 2, p. 294]. In this case there is a natural identification of G-modules and V-modules [5, § 2.3], so that $H^n(V, C)$ and $H^n(G, C)$ may be considered with the same C. Further, the inclusion $V \subset G$ induces the restriction

 $^{^1}$ Research supported by NSF Grant 11-5221 from the University of Washington and by a travel grant from the Australian National University.

morphism $H^n(G, C) \to H^n(V, C)$ (by restriction of cochains). The proof of our theorem follows from the two lemmas below.

LEMMA 1. If V is embedded in a V-monodrome group G and C is a Gmodule such that every element of $H^3(V, C)$ is the obstruction for some abstract kernel, then the restriction morphism $H^3(G, C) \rightarrow H^3(V, C)$ is onto.

PROOF. To obtain the obstruction of an abstract kernel (V, N, θ)

(i) select a map (not necessarily morphism) $\alpha : V \to A(N)$ such that θ is the composite of α and the quotient morphism $A(N) \to A(N)/I(N)$,

(ii) to every $v_1v_2 \in V$ with v_1v_2 defined assign an $h(v_1, v_2) \in N$ such that $\alpha(v_1)\alpha(v_2)(\alpha(v_1v_2))^{-1}$ is the inner automorphism of N by $h(v_1, v_2)$,

(iii) for every $v_1, v_2, v_3 \in V$ with $v_1v_2, v_2v_3, v_1v_2v_3$ defined, denote

$$f_{\alpha,h}(v_1, v_2, v_3) = {}^{\alpha(v_1)}h(v_2, v_3)h(v_1, v_2v_3)h^{-1}(v_1v_2, v_3)h^{-1}(v_1, v_2).$$

Then $f_{\alpha,h}$ is a *C*-valued cocycle where C = centre N is a *V*-module via (V, N, θ) . The cohomology class $\{f_{\alpha,h}\} \in H^3(V, C)$ is, by definition [4, § 7, p. 303], the required Obs (V, N, θ) .

Now suppose that V, C and G satisfy the assumptions of the lemma. Let $\gamma \in H^3(V, C)$ be arbitrary. Then $\gamma = \text{Obs}(V, N, \theta)$ for some abstract kernel. But as G is V-monodrome, (V, N, θ) can be uniquely extended to an abstract kernel $(G, N, \overline{\theta})$, i.e. with $\overline{\theta}|V = \theta$. Let $\overline{\alpha} : G \to A(N)$, $\overline{h} : G \times G \to N$ satisfy the conditions obtained from (i), (ii) above by replacing V by G. Then $f_{\overline{\alpha},\overline{h}}$ (defined by analogy with (iii)) is a cocycle in the class $\overline{\gamma} = \text{Obs}(G, N, \overline{\theta}) \in H^3(G, C)$. Now it is obvious that if we define α to be the restriction of $\overline{\alpha}$ to V and $h(v_1, v_2) = \overline{h}(v_1, v_2)$ whenever $v_1, v_2, v_1v_2 \in V$, then $f_{\alpha,h}$ is the restriction of $f_{\overline{\alpha},\overline{h}}$ and

$$\{f_{\alpha,h}\} = \text{Obs}(V, N, \theta) = \gamma.$$

Thus γ is the image of $\overline{\gamma}$ under $H^3(G, \mathbb{C}) \to H^3(V, \mathbb{C})$.

LEMMA 2. There exists a local group V, embedded in a V-monodrome group G, and a G-module C such that $H^3(G, C) = 0$ and $H^3(V, C) \neq 0$.

PROOF. Let V be a local group embedded in a group G. Denote by Γ_G^V the simplicial scheme [3, p. 37] the set of whose vertices is G and such that $\{g_0, \dots, g_n\} \subset G$ is a simplex iff $g_i^{-1}g_j \in V$ for all i, j. Let $H^n(\Gamma_G^V)$ be its cohomology with integral coefficients.

Define the (coinduced) G-module C to be $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}G,\mathbb{Z})$ where $\mathbb{Z}G$ is the group ring and the action of $g \in G$ on $f: \mathbb{Z}G \to \mathbb{Z}$ is given by (gf)(x) = f(xg). Clearly $H^3(G, C) = 0$. On the other hand, we have by [5, § 2.4, Thm 1] that

$$H^{3}(V, C) = H^{3}(\Gamma_{G}^{V}).$$

[3]

To complete the proof, we have to find an example where $H^3(\Gamma_G^V) \neq 0$ and G is V-monodrome.

Let G be the group of unit length quaternions. Then G is topologically a 3-sphere whence its singular cohomology $H^3_{top}(G)$ (integral coefficients) is Z. Denote by \mathscr{V} the family of symmetric neighbourhoods of the identity in G. Then the set $\{H^3(\Gamma^{\mathbb{F}}_G)| \mathbb{V} \in \mathscr{V}\}$, together with the restriction morphisms

$$H^{\mathbf{3}}(\Gamma_{G}^{V}) \to H^{\mathbf{3}}(\Gamma_{G}^{V}) \text{ for } \vec{V} \subset V,$$

forms a directed system. Since G is a connected Lie group, we have from a theorem of van Est $[2, \S 11.1, p. 410]$ that

$$\lim_{\to} H^3(\Gamma_G^V) = H^3_{top}(G) = Z.$$

Thus $H^3(\Gamma_G^V) \neq 0$ provided V is sufficiently small. If, moreover, V is connected, then G will be V-monodrome by the simple connectedness of G [4, § 11, p. 000]. This completes the proof.

References

- [1] S. Eilenberg and S. MacLane, 'Cohomology theory in abstract groups II', Ann. of Math. 48 (1947), 326-341.
- [2] W. T. van Est, 'Local and global groups', Indag. Math. 24 (1962), 391-425.
- [3] R. Godement, Topologie algèbrique et théorie des faisceaux (Actual. scient. et industr. 1252, Hermann Paris 1964).
- [4] S. Świerczkowski, 'Cohomology of local group extensions', Trans. Amer. Math. Soc. (1967).
- [5] S. Świerczkowski, 'Partial modules and local groups', Trans. Amer. Math. Soc. (to appear).

The University of Sussex Brighton England

 $\mathbf{546}$