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Piecewise Legendre spectral-collocation method for
Volterra integro-differential equations

Zhendong Gu and Yanping Chen

Abstract

Our main purpose in this paper is to propose the piecewise Legendre spectral-collocation method
to solve Volterra integro-differential equations. We provide convergence analysis to show that the
numerical errors in our method decay in hmN−m-version rate. These results are better than the
piecewise polynomial collocation method and the global Legendre spectral-collocation method.
The provided numerical examples confirm these theoretical results.

1. Introduction

The VIDEs (Volterra integro-differential equations) have many applications, such as the
modeling of heredity effects [26], modern theory of hysteresis [24], population dynamics [25],
financial mathematics [17], rheology and viscoelasticity [20], turbulent diffusion [32], wave-
power hydraulics [11], capillary theory [10] and medicine [9]. There are many existing
numerical methods for VIDEs, such as the finite element methods [20], Runge–Kutta
methods [32], finite difference methods [33] and Taylor series methods [12]. The monograph
by Brunner [4] contains a wealth of material on the theory and numerical methods for VIDEs,
with the focus being on the basic theory of Volterra equations and the piecewise polynomial
collocation methods and their convergence analysis.

Spectral methods receive considerable attention mainly due to their high accuracy. Tang
et al. [23] proposed a Legendre spectral-collocation method to solve VIEs (Volterra integral
equations) of the second kind whose kernels and solutions are sufficiently smooth. Chen and
Tang [6–8] proposed and analyzed a Jacobi spectral-collocation approximation for the linear
VIEs of the second kind with weakly singular kernels provided that the underlying solutions of
the VIEs are sufficiently smooth. In [16], the Jacobi spectral-collocation method is extended
to solve the VIEs with the Abel type kernels. The Legendre spectral Galerkin method is
investigated in [27, 31] for VIEs. The spectral-collocation methods also attract the interest of
those people who study the Volterra type integral and related functional differential equations
(see, for example, [1–3, 15, 22, 28–30]).

The VIDEs considered in this paper are as follows:

y′(t) = a(t)y(t) + g(t) +

∫ t
0

K(t, s)y(s) ds, t ∈ [0, T ],

y(0) = y0.

(1.1)

We assume that the functions describing the above equations all possess continuous derivatives
of at least order m > 1 on their respective domains, that is
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a(t), g(t) ∈ Cm([0, T ]), K(t, s) ∈ Cm(Ω), Ω := {(t, s) : 0 6 s 6 t 6 T}. (1.2)

Theorem 3.1.4 in [4] shows that y(t) lies in Cm+1([0, T ]).
In this paper, we propose a piecewise Legendre spectral-collocation method to solve VIDEs

(1.1). In our method, we change the definition domain [0, T ] to the standard interval [−1, 1],
divide the interval [−1, 1] into M+1 subintervals [ηµ, ηµ+1], µ = 0, 1, . . . ,M . In each subinterval
[ηµ, ηµ+1] we set the (N + 1)-point Legendre Gauss–Lobatto points xµi , i = 0, 1, . . . , N as the
collocation points, corresponding to the local Lagrange basis polynomial of degree N . Our
method is to find the approximation of the exact solution at the collocation points. The
convergence analysis we provide for our method shows that the numerical errors decay in the
rate hm−1/2N1/2−m and hmN−m in L∞ and L2 norms respectively, where h = max{hµ/2 :
hµ = ηµ+1 − ηµ, µ = 0, 1, . . . ,M}. Numerical examples are presented to confirm these
theoretical results. The convergence rate of the numerical errors in our method depends not
only on N but also on h and m. We give numerical examples to underline their roles one by one.

To compare our method to the piecewise polynomial collocation methods in [4], we briefly
introduce the later methods here.

In the piecewise polynomial collocation methods [4], the interval [0, T ] is divided into M +
1 subintervals [tn, tn+1], n = 0, 1, . . . ,M . In each subinterval [tn, tn+1], the number of the
collocation points is m. Eventually the corresponding local Lagrange basis polynomial is of
degree m. Theorem 3.2.3 in [4] shows that the numerical errors decay in the rate h′m, h′ =
max{tn+1 − tn : n = 0, 1, . . . ,M}.

Now we can compare our method to the piecewise polynomial collocation method. First, in
our method, the approximation solution in subinterval is polynomial of degree N , which can be
chosen as any sufficiently large positive integer. This is different from the one in the piecewise
polynomial collocation method where the approximate polynomial is of degree m. The higher
degree approximation solution in our method may possess better regularity for exact solutions.
Second, the errors in our method decay at the rate hm−1/2N1/2−m or hmN−m which is much
sharper than h′m in the piecewise polynomial collocation method. Example 2 with m = 3 in
this paper confirms this theoretical result. For the piecewise polynomial collocation method,
m is chosen as the number of the collocation parameters, while in our method we do not need
to consider what the exact value of m is.

In the globe Legendre spectral-collocation method [15], the interval [0, T ] is changed to the
standard interval [−1, 1]. The N + 1 collocation points (three types Legendre Gauss points)
are set into [−1, 1]. The globe basis functions are the polynomials of degree N in the interval
[−1, 1]. The convergence speed of the errors is N1/2−m in the norm L∞.

Comparing our method with the globe Legendre spectral-collocation method, we can know
that both methods have the same degree of the basis polynomial function. The highlight for
our method is that the errors decay faster than in the globe Legendre spectral-collocation
method. We provide examples to illustrate this theoretical result (see Example 2 with m = 3).

This paper is organized as follows. In § 2, we introduce the Legendre spectral-collocation
method for VIDEs. The existence of a solution to the discrete system is discussed in § 3.
Some useful lemmas for the convergence analysis will be provided in § 4, and the convergence
analysis, in both L∞ and L2, will be given in § 5. Numerical experiments are carried out in
§ 6. Finally, in § 7, we end with the conclusion and future work.

2. Piecewise Legendre spectral-collocation method

For ease of analysis we change the interval [0, T ] to the standard interval [−1, 1]. Precisely, we
use the variable transformation

t(x) =
T

2
(x+ 1), s(z) =

T

2
(z + 1). (2.1)
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Then (1.1) can be written as

u′(x) = A(x)u(x) + f(x) +

∫x
−1
R(x, z)u(z) dz, x ∈ [−1, 1],

u(−1) = y0,

(2.2)

where

u(x) := y(t(x)), A(x) :=
T

2
a(t(x))

f(x) :=
T

2
g(t(x)), R(x, z) :=

(
T

2

)2

K(t(x), s(z)).

(2.3)

Divide the definition domain [−1, 1] into M+1 subintervals δµ := [ηµ, ηµ+1] ⊂ [−1, 1], where
η0 = −1, ηM+1 = 1, hµ := ηµ+1 − ηµ, µ = 0, 1, . . . ,M. Set the collocation points as

XN :=

M⋃
µ=0

Xµ, Xµ := {xµi : ηµ = xµ0 < xµ1 < . . . < xµN = ηµ+1},

where

xµi :=
hµ
2
xi +

ηµ+1 + ηµ
2

; (2.4)

here xi, i = 0, 1, . . . , N are the (N + 1)-point Legendre Gauss–Lobatto points in the standard
interval [−1, 1]. Then (2.2) holds at xµi , i = 0, 1, . . . , N, µ = 0, 1, . . . ,M ,

u′(xµi ) = A(xµi )u(xµi ) + f(xµi ) +

∫xµi
−1
R(xµi , z)u(z) dz. (2.5)

We use uµi to approximate u(xµi ), ρµi to approximate u′(xµi ). Then we can use

uµ(x) :=

N∑
j=0

uµj F
µ
j (x), x ∈ [ηµ, ηµ+1]

to approximate u|δµ(x), that is the restriction of u(x) to the interval [ηµ, ηµ+1]. We denote
by Fµj (x), x ∈ [ηµ, ηµ+1], the jth Lagrange interpolation basic function associated with the
collocation points xµ0 , x

µ
1 , . . . , x

µ
N in the interval [ηµ, ηµ+1]. Similarly, we use

ρµ(x) :=

N∑
j=0

ρµj F
µ
j (x), x ∈ [ηµ, ηµ+1]

to approximate u′|δµ(x), that is the restriction of u′(x) to the subinterval [ηµ, ηµ+1]. Eventually
u(x) can be approximated by

uN (x) := uµ(x) if x ∈ [ηµ, ηµ+1], µ = 0, 1, . . . ,M,

and u′(x) can be approximated by

ρN (x) := ρµ(x) if x ∈ [ηµ, ηµ+1], µ = 0, 1, . . . ,M.

Then (2.5) can be approximated by

ρµi ≈ A(xµi )uµi + f(xµi ) +

∫xµi
−1
R(xµi , z)u

N (z) dz, (2.6)
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which can be written as

ρµi ≈ A(xµi )uµi + f(xµi ) +

µ−1∑
r=0

∫ηr+1

ηr

R(xµi , z)ur(z) dz +

∫xµi
ηµ

R(xµi , z)uµ(z) dz. (2.7)

In order to compute the integral term by the Gauss quadrature rule, we change the
integration interval to the standard interval [−1, 1]. Note that the variable transformation

z(a, b, v) :=
b− a

2
v +

b+ a

2
, v ∈ [−1, 1] (2.8)

can change the interval [a, b] to [−1, 1]. For simplicity, we denote

zr(v) := z(ηr, ηr+1, v), v ∈ [−1, 1], r > 0. (2.9)

Using the Gauss quadrature formula to approximate the integration term in (2.7) we obtain
that

ρµi = A(xµi )uµi +

µ−1∑
r=0

hr
2

N∑
k=0

R(xµi , zr(vk))ur(zr(vk))ωk

+
hµ
2

xi + 1

2

N∑
k=0

R(xµi , zµ(z(−1, xi, vk)))uµ(zµ(z(−1, xi, vk)))ωk, (2.10)

where vk, k = 0, 1, . . . , N are the (N + 1)-point Legendre Gauss–Lobatto points in the
standard interval [−1, 1], corresponding to the weights ωk, k = 0, 1, . . . , N . Note that for
j, k = 0, 1, . . . , N, r = 0, 1, . . . ,M,

F rj (zr(vk)) = Fj(vk) =

{
1, k = j,

0, k 6= j,

F rj (zr(z(−1, x, v))) = Fj(z(−1, x, v)), (2.11)

where Fj(v) is the jth Lagrange interpolation basic function associated with the (N +1)-point
Legendre Gauss–Lobatto points in the standard interval [−1, 1]. Then (2.10) can be simplified
as

ρµi = A(xµi )uµi + f(xµi ) + β(xµi ), µ = 0, 1, . . . ,M ; i = 0, 1, . . . , N, (2.12)

where

β(xµi ) :=

µ−1∑
r=0

hr
2
βr1(xµi ) +

hµ
2

xi + 1

2
β2(xµi ),

βr1(xµi ) :=

N∑
k=0

R(xµi , zr(vk))urkωk, r = 0, 1, . . . , µ− 1,

β2(xµi ) :=

N∑
j=0

uµj

N∑
k=0

R(xµi , zµ(z(−1, xi, vk)))Fj(z(−1, xi, vk))ωk.

However, the linear system (2.12) alone is not enough to find out the unknown elements.
We need another one linear system associated with uµi , ρ

µ
i , i = 0, 1, . . . , N, µ = 0, 1, . . . ,M .
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Note that

u(xµi ) = u(−1) +

∫xµi
−1
u′(z) dz

= y0 +

µ−1∑
r=0

hr
2

∫1
−1
u′(zr(v)) dv +

hµ
2

xi + 1

2

∫1
−1
u′(zµ(z(−1, xi, v))) dv. (2.13)

Then we can approximate the above equation by

uµi = y0 + α(xµi ), µ = 0, 1, . . . ,M ; i = 0, 1, . . . , N, (2.14)

where

α(xµi ) =

µ−1∑
r=0

hr
2

N∑
k=0

ρrkωk +
hµ
2

xi + 1

2

N∑
j=0

ρµj

N∑
k=0

Fj(z(−1, xi, vk))ωk; (2.15)

(2.14) is another linear system we want to find.
The piecewise Legendre spectral-collocation method is to find ρµi , u

µ
i , i = 0, 1, . . . , N ,

µ = 0, 1, 2, . . . ,M which satisfy (2.12) and (2.14). The approximation to y(t) is uN ((2/T )t−1),
the approximation to y′(t) is (2/T )ρN ((2/T )t − 1). An efficient computation of Fj(s) can be
found in [5] or [23].

3. The existence of the solution to the discrete system

In this section, we will discuss the existence of the solution to the discrete system (2.12) and
(2.14) which is written in matrix form as

U ′(µ) = Φ
(µ)
1 +A(µ)U (µ) +R

(µ)
1 U (µ),

U (µ) = Φ
(µ)
2 +

hµ
2
R

(µ)
2 U ′µ,

µ = 0, 1, . . . ,M,

(3.1)

where

U ′(µ) := [ρµ0 , ρ
µ
1 , . . . , ρ

µ
N ]′,

U (µ) := [uµ0 , u
µ
1 , . . . , u

µ
N ]′,

Φ
(µ)
1 := F (µ) +

µ−1∑
r=0

R
(r)
1 U (r), µ > 1,

Φ
(µ)
2 := y0[1, 1, . . . , 1]′ +

µ−1∑
r=0

R
(r)
2 U (r), µ > 1,

F (µ) := [f(xµ0 ), f(xµ1 ), . . . , f(xµN )]′,

A(µ) := diag[A(xµ0 ), A(xµ1 ), . . . , A(xµN )],

R
(r)
1 (i, k) :=

hr
2
R(xµi , zr(vk))ωk, r = 0, 1, . . . , µ− 1,

R
(µ)
1 (i, j) :=

hµ
2

xi + 1

2

N∑
k=0

R(xµi , zµ(z(−1, xi, vk)))Fj(z(−1, xi, vk))ωk,
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R
(r)
2 (i, k) :=

hr
2
ωk, r = 0, 1, . . . , µ− 1,

R
(µ)
2 (i, j) :=

hµ
2

xi + 1

2

N∑
k=0

Fj(z(−1, xi, vk))ωk.

Plugging the second equation in (3.1) into the first one we obtain
U ′(µ) = Φ

(µ)
1 +

hµ
2

(A(µ) +R
(µ)
1 )R

(µ)
2 U ′µ + (A(µ) +R

(µ)
1 )Φ

(µ)
2 ,

U (µ) = Φ
(µ)
2 +

hµ
2
R

(µ)
2 U ′µ,

µ = 0, 1, . . . ,M.

(3.2)

This discrete system is based on the interval [ηµ, ηµ+1]. The existence of the solution to
(3.2) depends on the existence of a solution to the first matrix equation of (3.2). Since
A(t), R(x, z), Fj(z) are continuous on their definition domain, the elements of matrix A(µ),

R
(µ)
1 and R

(µ)
2 , µ = 0, 1, . . . ,M , are all bounded. The Neumann lemma (see [19, p. 26], or

[4, p. 87]) then shows that the inverse of the matrix

B(µ) := I − hµ
2

(A(µ) +R
(µ)
1 )R

(µ)
2

exists whenever
hµ
2
‖(A(µ) +R

(µ)
1 )R

(µ)
2 ‖ < 1

for some matrix norm. This clearly holds whenever hµ is sufficiently small.

4. Some useful lemmas

In this section, we will provide some elementary lemmas, which are important for the derivation
of error estimate in § 5. In order to give the subsequent lemmas conveniently, we first introduce
some spaces. For simplicity, we denote by ∂kxu(x) the kth derivative of u, that is ∂kxu(x) :=
(dku/dxk)(x).

Let (a, b) be a bounded interval of the real line. We denote by L2(a, b) the space of the

measurable functions u : (a, b)→ R such that
∫b
a
|u(x)|2 dx < +∞. It is a Hilbert space for the

inner product

(u, v) :=

∫ b
a

u(x)v(x) dx,

which induces the norm

‖v‖L2(a,b) :=

(∫ b
a

|v(x)|2 dx
)1/2

.

Let m > 1 be an integer. We define Hm(a, b) to be the vector space of the functions v ∈
L2(a, b) such that all the distributions of v of order up to m can be represented by functions
in L2(a, b). In short,

Hm(a, b) := {v ∈ L2(a, b) : for 0 6 k 6 m, ∂kxv(x) ∈ L2(a, b)}.

The space Hm(a, b) is endowed with the inner product

(u, v)m =

m∑
k=0

∫ b
a

∂kxu(x)∂kxv(x) dx
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for which Hm(a, b) is a Hilbert space. The associated norm is

‖v‖Hm(a,b) := ((v, v)m)1/2.

In bounding from the above approximation error, only some of the L2-norms appearing on
the right-hand side of the above norm enter into play. Thus, for a nonnegative integer N , it is
convenient to introduce the semi-norm

|v|Hm;N (a,b) :=

( m∑
k=min(m,N+1)

‖∂kxv(x)‖2L2(a,b)

)1/2

,

which implies that if N > m− 1 then |v|Hm;N (a,b) = ‖∂mx v‖L2(a,b).
The space L∞(a, b) is the Banach space of the measurable functions u that are bounded

outside a set of measure zero, equipped with the norm

‖u‖L∞(a,b) := ess sup
x∈(a,b)

|u(x)|.

We denote by C([a, b]) the space of continuous functions on the interval [a, b].
We define an interpolation operator IN associated with the collocation points XN as follows:

for any continuous functions v ∈ C([−1, 1]),

INv(x) := IµN (v|δµ)(x) if x ∈ δµ := (ηµ, ηµ+1], 0 6 µ 6M, (4.1)

where v|δµ(x) is the restriction of v(x) to the subinterval [ηµ, ηµ+1], and IµN is the interpolation
operator associated with the collocation points Xµ in the subinterval [ηµ, ηµ+1], that is

IµN (v|δµ)(x) :=

N∑
j=0

v|δµ(xµj )Fµj (x), x ∈ [ηµ, ηµ+1].

Hereafter, C denotes a generic positive constant that is independent of N .
From [5, 13, 14, 18, 23] we have the following lemma.

Lemma 4.1. Assume that u ∈ Hm(−1, 1),m > 1, v(x) is a bounded function. Then there
exists a constant C independent of u and v such that for N > m− 1,

‖u− JNu‖L2(−1,1) 6 CN−m‖∂mx u‖L2(−1,1), (4.2)

‖u− JNu‖L∞(−1,1) 6 CN (1/2)−m‖∂mx u‖L2(−1,1), (4.3)

sup
N
‖JNv‖L2(−1,1) 6 C‖v‖L∞(−1,1), (4.4)

‖JN‖L∞(−1,1) 6
2

π
log(N + 1) + 0.685, (4.5)

where JN is the interpolation operator associated with the (N + 1)-point Legendre Gauss–
Lobatto points in the interval [−1, 1].

The above lemma will help us to deduce the following lemma.

Lemma 4.2. Assume that u ∈ Hm(−1, 1). Let INu be the interpolation function defined in
(4.1) where N +1 means the number of collocation points in the intervals δµ := [ηµ, ηµ+1], µ =
0, 1, . . . ,M . Denote h := max{(hµ/2) : µ = 0, 1, . . . ,M}. Then the following estimates hold
for N > m− 1,

‖u− INu‖L2(−1,1) 6 ChmN−m‖∂mz u‖L2(−1,1), (4.6)
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‖u− INu‖L∞(−1,1) 6 Chm−1/2N (1/2)−m‖∂mz u‖L2(−1,1), (4.7)

‖IN‖L∞(−1,1) 6 C log(N + 1), (4.8)

sup
N
‖INu‖L2(−1,1) 6 C‖u‖L∞(−1,1). (4.9)

Proof. By the definition of IµN we know that (IµN (u|δµ))(z) is a function defined on the
subinterval [ηµ, ηµ+1]. The variable transformation z = zµ(v) changes it to be a function
valued on the standard interval [−1, 1], that is

(IµN (u|δµ))(zµ(v)) =

N∑
j=0

u|δµ(xµj )Fµj (zµ(v)) =

N∑
j=0

u|δµ(xµj )Fj(v), v ∈ [−1, 1]. (4.10)

The result (2.11) is used in the derivation of the second equality above. Moreover, we note that
u|δµ(zµ(v)) is a function defined on the interval [−1, 1]. Its interpolation polynomial associated
with the Legendre Gauss–Lobatto points vj , j = 0, 1, . . . , N in the interval [−1, 1] is

JN (u|δµ(zµ(v))) =

N∑
j=0

u|δµ(zµ(vj))Fj(v), v ∈ [−1, 1]. (4.11)

Note that vj = xj , then
zµ(vj) = xµj , j = 0, 1, . . . , N.

Plugging this into the right-hand side of (4.11) yields

JN (u|δµ(zµ(v))) =

N∑
j=0

u|δµ(xµj )Fj(v), v ∈ [−1, 1]. (4.12)

Combining (4.10) with (4.12) yields

(IµN (u|δµ))(zµ(v)) = JN (u|δµ(zµ(v))), v ∈ [−1, 1]. (4.13)

By (4.2), we have ∫ηµ+1

ηµ

(u|δµ(z)− IµN (u|δµ)(z))2 dz

=
hµ
2

∫1
−1

(u|δµ(zµ(v))− JN (u|δµ(zµ(v))))2 dv

6 CN−2m
hµ
2
‖∂mv (u|δµ(zµ(·)))‖2L2(−1,1)

6 CN−2m
(
hµ
2

)2m

‖∂mz (u|δµ(·))‖2L2(δµ)
. (4.14)

This helps us to deduce that

‖u− INu‖2L2(−1,1) =

M∑
µ=0

∫ηµ+1

ηµ

(u|δµ(z)− IµN (u|δµ)(z))2 dz

6 Ch2mN−2m
M∑
µ=0

‖∂mz (u|δµ(·))‖2L2(δµ)

= Ch2mN−2m‖∂mz u‖2L2(−1,1), (4.15)

which leads to (4.6).
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Using (4.3), we have

‖u− INu‖L∞(−1,1) = max
06µ6M

{‖u|δµ(zµ(·))− JN (u|δµ(zµ(·)))‖L∞(−1,1)}

6 CN1/2−m max
06µ6M

{‖∂mv (u|δµ(zµ(·)))‖L2(−1,1)}

= CN1/2−m max
06µ6M

{(
hµ
2

)m
‖∂mv (u|δµ(zµ(·)))‖L2(−1,1)

}
= CN1/2−m max

06µ6M

{(
hµ
2

)m−1/2
‖∂mv (u|δµ(·))‖L2(δµ)

}
6 Chm−1/2N1/2−m‖∂mz u‖L2(−1,1). (4.16)

This is (4.7).
Now we begin to prove (4.8). The following derivation is clear,

‖INu‖L∞(−1,1) = max
06µ6M

‖IµN (u|δµ)‖L∞(σµ). (4.17)

We use (4.5) to estimate ‖IµN (u|δµ)‖L∞(δµ) as follows,

‖IµN (u|δµ)‖L∞(δµ) = ‖(IµN (u|δµ))(zµ(·))‖L∞(−1,1) = ‖JN (u|δµ(zµ(·)))‖L∞(−1,1)

6 C log(N + 1)‖u|δµ(zµ(·))‖L∞(−1,1) = C log(N + 1)‖u|δµ‖L∞(δµ)

6 C log(N + 1)‖u‖L∞(−1,1), (4.18)

which together with (4.17) gives that

‖INu‖L∞(−1,1) 6 C log(N + 1)‖u‖L∞(−1,1).

This leads to the desired result (4.8).
Now we begin to prove (4.9). The result (4.4) is useful in the following derivation,

‖INu‖2L2(−1,1) =

M∑
µ=0

‖IµN (u|δµ)‖2L2(δµ)
=

M∑
µ=0

hµ
2
‖(IµN (u|δµ))(zµ(·))‖2L2(−1,1)

=

M∑
µ=0

hµ
2
‖JN (u|δµ(zµ(·)))‖2L2(−1,1)

6 C

M∑
µ=0

hµ
2
‖u|δµ(zµ(·))‖2L∞(−1,1) 6 C

M∑
µ=0

hµ
2
‖u‖2L∞(−1,1)

6 C‖u‖2L∞(−1,1), (4.19)

which leads to the desired result (4.9). Now we have completed the whole proof for this
lemma.

Lemma 4.3 [5, 21]. Assume that u ∈ Hm(−1, 1) for some m > 1 and ϕ ∈ PN , which
denotes the space of all polynomials of degree not exceeding N . Then there exists a constant
C independent of N > m− 1 such that∣∣∣∣∫1

−1
u(x)ϕ(x) dx−

N∑
j=0

u(xj)ϕ(xj)ωj

∣∣∣∣ 6 CN−m‖∂mx u‖L2(−1,1)‖ϕ‖L2(−1,1),

where the xj are the (N + 1)-point Legendre Gauss–Lobatto points, corresponding weight ωj ,
j = 0, 1, . . . , N .
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Lemma 4.4 [23]. Suppose 0 6M < +∞. If a nonnegative integrable function e(x) satisfies

e(x) 6 v(x) +M

∫x
−1
e(z) dz,

where v(x) is also a nonnegative integrable function, then

‖e(x)‖Lp(−1,1) 6 C‖v(x)‖Lp(−1,1), p = 2,+∞.

5. Convergence analysis

This section is devoted to providing a convergence analysis for the numerical scheme. The goal
is to show that the rate of convergence is exponential, that is the spectral accuracy can be
obtained for the proposed approximations. Firstly, we will carry out convergence analysis in
L∞(−1, 1) space.

Theorem 5.1. Let u(x) be the exact solution to (2.2), uN (x) be the approximate solution,
and ρN (x) be the approximate derivative obtained by using the spectral-collocation schemes
(2.12) and (2.14). Then for N > m− 1 sufficiently large,

‖ei(x)‖L∞(−1,1) 6 Chm−1/2N1/2−m(R̃‖u‖L∞(−1,1) + (1 + R̃)‖∂m+1
x u‖L2(−1,1)), i = 0, 1,

(5.1)
where

e0(x) := u(x)− uN (x), x ∈ [−1, 1],

e1(x) := u′(x)− ρN (x), x ∈ [−1, 1],

R̃ := max
x∈[−1,1]

‖∂mz (R(x, ·))‖L2(−1,x).

From (5.1) we can see that the convergence rate of the numerical errors decays at the rate
hm−1/2N1/2−m which depends not only on N but also on m. This implies that if the data
functions have better regularity, that is m is larger, the errors decay faster. If we employ more
collocation points, that is N is larger, we can obtain higher accuracy. If we divide the interval
[−1, 1] into more small subintervals, that is h is smaller, the errors decay faster. It is worth
mentioning that N , h and m are independent of each other. In theory, (5.1) shows that errors
decay to zero for sufficiently large N or 1/h, while in fact, the numerical errors will stabilize
at some level near the machine precision. This result is confirmed by Figure 1 of Example 1.

Proof. Note that in each subinterval (ηµ, ηµ+1], µ = 0, 1, . . . ,M , ρN (s) is polynomial of
degree not exceeding N in each subinterval [ηµ, ηµ+1], 0, 1, . . . ,M . Then

α(xµi ) =

∫xµi
−1
ρN (z) dz, (5.2)

which allows us to deduce that

u(xµi )− uµi =

∫xµi
−1
e1(z) dz. (5.3)

Subtracting (2.12) from (2.5) yields

u′(xµi )− ρµi = A(xµi )

∫xµi
−1
e1(z) dz +

∫xµi
−1
R(xµi , z)e0(z) dz + E1(xµi ), (5.4)
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where

E1(x) :=

∫x
−1
R(x, z)uN (z) dz − β(x), x ∈ [−1, 1].

Multiplying both sides of (5.3) by Fµi (x) and summing from i = 0 to N we obtain that

N∑
i=0

u′(xµi )Fµi (x)−
N∑
i=0

ρµi F
µ
i (x)

=

N∑
i=0

(
A(xµi )

∫xµi
−1
e1(z) dz

)
Fµi (x) +

N∑
i=0

(∫xµi
−1
R(xµi , z)e0(z) dz

)
Fµi (x)

+

N∑
i=0

E1(xµi )Fµi (x), x ∈ [ηµ, ηµ+1]. (5.5)

By the definition of IN and ρN (x), we have for x ∈ [−1, 1]

INu
′(x)− ρN (x) = IN

(
A(x)

∫x
−1
e1(z) dz

)
+ IN

(∫x
−1
R(x, z)e0(z) dz

)
+ INE1(x) (5.6)

which leads to

e1(x) = INE1(x) +

4∑
j=2

Ej(x) +A(x)

∫x
−1
e1(z) dz +

∫x
−1
R(x, z)e0(z) dz, (5.7)

where

E2(x) := (I − IN )u′(x),

E3(x) := (IN − I)

∫x
−1
R(x, z)e0(z) dz,

E4(x) := (IN − I)

(
A(x)

∫x
−1
e1(z) dz

)
.

(5.8)

Applying the Dirichlet formula to the last term in the right-hand side of (5.7) yields∫x
−1
R(x, z)e0(z) dz =

∫x
−1

[∫x
s

R(x, z) dz

]
e1(s) ds, (5.9)

which helps to deduce that there exist constants C > 0 such that∣∣∣∣A(x)

∫x
−1
e1(z) dz +

∫x
−1
R(x, z)e0(z) dz

∣∣∣∣ 6 C

∫x
−1
e1(z) dz. (5.10)

Then by Lemma 4.4, e1(x) in (5.7) can be estimated as

‖e1(x)‖L∞(−1,1) 6 C

(
‖INE1(x)‖L∞(−1,1) +

4∑
j=2

‖Ej(x)‖L∞(−1,1)

)
. (5.11)

We estimate each term of the right-hand side of the above inequality one by one.
First we estimate ‖INE1(x)‖L∞(−1,1). Inequality (4.8) gives that

‖INE1(x)‖L∞(−1,1) 6 C log(N + 1)‖E1(x)‖L∞(−1,1). (5.12)
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We estimate ‖E1(x)‖L∞(−1,1). Note that E1(x) can be written as

E1(x) =

µ−1∑
r=0

(∫ηr+1

ηr

R(x, z)ur(z) dz −
hr
2
βr1(x)

)
+

∫x
ηµ

R(x, z)uµ(z) dz − hµ
2

x+ 1

2
β2(x), x ∈ δµ, µ > 0. (5.13)

For x ∈ δµ, ∣∣∣∣∫ηr+1

ηr

R(x, z)ur(z) dz −
hr
2
βr1(x)

∣∣∣∣
6 CN−m

hr
2
‖∂mv (R(x, zr(x, ·)))‖L2(−1,1)‖ur(zr(·))‖L2(−1,1)

6 CN−m
(
hr
2

)m+1/2

‖∂mz (R(x, z))|z=zr(·)‖L2(−1,1)‖ur‖L2(δr)

6 CN−m
(
hr
2

)m
‖∂mz (R(x, ·))‖L2(δr)‖ur‖L2(δr)

6 CN−mhm‖∂mz (R(x, ·))‖L2(δr)‖ur‖L2(δr). (5.14)

Similarly,∣∣∣∣∫x
ηµ

R(x, z)uµ(z) dz − hµ
2

ϑµ(x) + 1

2
β2(x)

∣∣∣∣ 6 CN−mhm‖∂mz (R(x, ·))‖L2(ηµ,x)‖uµ‖L2(δµ), (5.15)

where

ϑµ(x) :=
2

hµ
x− ηµ+1 + ηµ

hµ
, x ∈ [ηµ, ηµ+1].

By the Cauchy inequality, which states that

µ∑
r=0

arbr 6

( µ∑
r=0

a2r

)1/2( µ∑
r=0

b2r

)1/2

,

in which we let

ar = ‖∂mz (R(x, ·))‖L2(δr), br = ‖ur‖L2(δr), r = 0, 1, . . . , µ− 1,

aµ = ‖∂mz (R(x, ·))‖L2(ηµ,x), bµ = ‖uµ‖L2(δµ),

we have for x ∈ δµ

|E1(x)| 6 CN−mhm‖∂mz (R(x, ·))‖L2(−1,x)‖uN‖L2(−1,1)

6 CN−mhmR̃(‖e0‖L∞(−1,1) + ‖u‖L∞(−1,1)). (5.16)

Therefore, combining (5.16) with (5.12) gives

‖INE1(x)‖L∞(−1,1) 6 CN−mhm log(N + 1)R̃(‖e0‖L∞(−1,1) + ‖u‖L∞(−1,1)). (5.17)
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Now we begin to estimate ‖Ej(x)‖L∞(−1,1), j = 2, 3, 4. Applying (4.7) to u′(x), we have

‖E2(x)‖L∞(−1,1) 6 Chm−1/2N (1/2)−m‖∂m+1
x u‖L2(−1,1). (5.18)

Now we begin to estimate ‖E3(x)‖L∞(−1,1). For simplicity of notation, we set

b(x) :=

∫x
−1
R(x, z)e0(z) dz.

Applying (4.7) with m = 1 to b(x) yields

‖(IN − I)b(x)‖L∞(−1,1) 6 Ch1/2N−1/2‖∂1xb‖L2(−1,1). (5.19)

Note that

|∂1xb(x)| =
∣∣∣∣R(x, x)e0(x) +

∫x
−1

∂R

∂x
(x, z)e0(z) dz

∣∣∣∣
6 ‖e0‖L∞(−1,1)

∣∣∣∣(R(x, x) +

∫x
−1

∂R

∂x
(x, z) dz

)∣∣∣∣
6 C‖e0‖L∞(−1,1), (5.20)

which together with (5.19) yields

‖E3(x)‖L∞(−1,1) = ‖(IN − I)b(x)‖L∞(−1,1) 6 Ch1/2N−1/2‖e0‖L∞(−1,1). (5.21)

Similarly
‖E4(x)‖L∞(−1,1) 6 Ch1/2N−1/2‖e1‖L∞(−1,1). (5.22)

Combining (5.11) with (5.17), (5.18), (5.21) and (5.22) yields that

‖e1(x)‖L∞(−1,1) 6 CN1/2−mhm−1/2(R̃‖u‖L∞(−1,1) + ‖∂m+1
x u‖L2(−1,1))

+Ch1/2N−1/2(1 + R̃)‖e0‖L∞(−1,1). (5.23)

Now we need another relation between ‖e1(x)‖L∞(−1,1) and ‖e0‖L∞(−1,1). Multiplying both
sides of (5.3) by Fµi (x) and summing from i = 0 to N for µ = 0, 1, . . . ,M , we obtain that

e0(x) = E0(x) + (IN − I)

(∫x
−1
e1(s) ds

)
+

∫x
−1
e1(s) ds, (5.24)

where
E0(x) := (I − IN )u(x).

Then by Lemma 4.4

‖e0‖L∞(−1,1) 6 C

(
‖E0(x)‖L∞(−1,1) +

∥∥∥∥(IN − I)

(∫x
−1
e1(s) ds

)∥∥∥∥
L∞(−1,1)

+ ‖e1‖L∞(−1,1)

)
.

Using (4.7) with E0(x), and applying (4.7) with m = 1 to the middle term of the right-hand
side of above inequality, we have

‖e0‖L∞(−1,1) 6 Chm+1/2N−m−1/2‖∂m+1
x u‖L2(−1,1) + C‖e1‖L∞(−1,1). (5.25)

Plugging the above result into the last term of (5.23) yields the desired estimate (5.1) for e1,
which in turn substituted into the last term of (5.25) yields the estimate (5.1) for e0.
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Next, we will give the error estimate in L2(−1, 1) space.

Theorem 5.2. Let u(x) be the exact solution to (2.2). Let uN (x) be the approximate
solution, and ρN (x) be the approximate derivative obtained by using the spectral-collocation
schemes (2.12) and (2.14). Then, for N > m− 1 sufficiently large,

‖ei‖L2(−1,1) 6 ChmN−mR̃(R̃+ 1)(‖u‖L∞(−1,1) + ‖∂m+1
x u‖L2(−1,1)), i = 0, 1. (5.26)

Proof. By Lemma 4.4, it follows from (5.7) and (5.10) that

‖e1(x)‖L2(−1,1) 6 C

(
‖INE1(x)‖L2(−1,1) +

4∑
j=2

‖Ej(x)‖L2(−1,1)

)
. (5.27)

We estimate each term of the right of the above inequality one by one. Applying (4.9) to E1(x)
yields

‖INE1(x)‖L2(−1,1) 6 C‖E1(x)‖L∞(−1,1). (5.28)

Recalling the result (5.16) and using the result of Theorem 5.1, we obtain that

‖INE1(x)‖L2(−1,1) 6 ChmN−mR̃(‖e0‖L∞(−1,1) + ‖u‖L∞(−1,1))

6 ChmN−mR̃(R̃+ 1)(‖u‖L∞(−1,1) + ‖∂m+1
x u‖L2(−1,1)). (5.29)

Applying (4.6) to u′(x), we have

‖E2(x)‖L2(−1,1) 6 ChmN−m‖∂m+1
x u‖L2(−1,1). (5.30)

The same analysis from (5.19)–(5.21), using (4.6) in Lemma 4.2 with m = 1 for b(x), yields

‖E3‖L2(−1,1) = ‖(I − IN )b(x)‖L2(−1,1) 6 ChN−1‖e0‖L∞(−1,1). (5.31)

Using the estimate for e0 in Theorem 5.1 makes the above inequality become

‖E3‖L2(−1,1) 6 Chm+1/2N−m−1/2(R̃‖u‖∞ + ‖∂m+1
x u‖L2(−1,1)). (5.32)

Similarly

‖E4‖L2(−1,1) 6 Chm+1/2N−m−1/2(R̃‖u‖∞ + ‖∂m+1
x u‖L2(−1,1)). (5.33)

Combining (5.27) with (5.29), (5.30), (5.32) and (5.33) we obtain the estimate (5.26) for e1.
Now we begin to estimate ‖e0‖L2(−1,1). Applying Lemma 4.4 with p = 2 to (5.24) yields

‖e0‖L2(−1,1) 6 C

(
‖E0(x)‖L2(−1,1) +

∥∥∥∥(IN − I)

∫x
−1
e1(s) ds

∥∥∥∥
L2(−1,1)

+ ‖e1‖L2(−1,1)

)
.

Applying (4.6) to E0(x), and applying (4.6) with m = 1 to the middle term of the right-hand
side of the above inequality, we have

‖e0‖L2(−1,1) 6 Chm+1N−m−1‖∂m+1
x u‖L2(−1,1) + C‖e1‖L2(−1,1), (5.34)

which leads to the estimate (5.26) for e0 by plugging the result (5.26) for e1 into the last term
of (5.34).
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Figure 1. Example 1: (a) The errors u− uN versus N in L∞ norm for h = 1/10 and h = 1/100.
(b) The errors u′ − ρN versus N in L∞ norm for h = 1/10 and h = 1/100.

6. Numerical examples

In this section, we give three numerical examples. Example 1 is to show that the errors decay
at an exponential rate and the spectral accuracy is obtained. Example 2 is to underline the
role of m. Using the same example with m = 3, we compare our method with the piecewise
polynomial collocation method and globe Legendre spectral-collocation method. All of these
examples confirm our theoretical results.

Example 1. Consider (2.2) with

A(x) = sinx, f(x) = ex(1− sinx− (e2x − e−2)/2), R(x, z) = ex+z. (6.1)

The corresponding exact solution is u(x) = ex, x ∈ [−1, 1].

Figure 1 plots the errors for 2 6 N 6 12 in L∞ norm with h = 1/10 and 1/100. The
corresponding errors versus several values of N are displayed in Table 1. As expected the errors
decay exponentially, which confirms our theoretical predictions. Figure 2 plots the errors with
N = 5 to underline the role of h. The corresponding errors versus 1/h are displayed in Table 2.

Though in theory the errors in Figure 1 should decay to zero for sufficiently large N , in
reality they stabilize at the level 10−14 after N > 8 because they reach the machine precision.

Table 1. Example 1: The errors versus N in L∞ norm for h = 1/10 and h = 1/100.

N 2 4 6 8 10 12

‖e0‖L∞ with h = 1/10 1.63e−04 1.93e−08 1.136e−12 8.88e−15 1.20e−14 6.22e−15
‖e0‖L∞ with h = 1/100 1.73e−07 2.17e−13 7.55e−15 9.77e−15 1.20e−14 7.11e−15
‖e1‖L∞ with h = 1/10 1.71e−04 2.07e−08 1.18e−12 9.33e−15 3.15e−14 7.99e−15
‖e1‖L∞ with h = 1/100 1.74e−07 2.28e−13 2.00e−14 1.91e−14 2.71e−14 1.02e−14

Table 2. Example 1: The errors with N = 5 versus 1/h in L∞ norm.

1/h 2 12 22 32 42 52

‖e0‖L∞ 1.69e−06 5.53e−11 1.51e−12 1.60e−13 3.02e−14 8.88e−15
‖e1‖L∞ 2.01e−06 5.61e−11 1.52e−12 1.60e−13 3.06e−14 1.15e−14
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Figure 2. Example 1: (a) The errors u− uN with N = 5 versus 1/h in L∞ norm. (b) The errors
u′ − ρN with N = 5 versus 1/h in L∞ norm.
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Figure 3. Example 2: (a) The errors u− uN with h = 1/100 versus N in L∞ norm for m = 2, 3.
(b) The errors u′ − ρN with h = 1/100 versus N in L∞ norm for m = 2, 3.

Example 2. Consider (1.1) with

a(t) = tm+1/2, K(t, s) = tm+1/2 + sm+1/2,

g(t) = (m+ 1/2)tm−1/2 − t2m+1 − t2m+2

(
2

2m+ 3
+

1

2m+ 2

)
.

The corresponding exact solution is

y(t) = tm+1/2, t ∈ [0, 2].

It is worth noting that the solution y(t) possesses the continuous mth derivative while its
(m + 1)th derivative is singular at the point t = 0. Figure 3 plots the errors for 2 6 N 6 12
in L∞ norm. The corresponding errors versus several values of N are displayed in Table 3.

Table 3. Example 2: The errors with h = 1/100 versus N in L∞ norms.

N 2 4 6 8 10 12

‖e0‖L∞ for m = 2 4.89e−05 1.80e−06 2.67e−07 6.82e−08 2.34e−08 9.74e−09
‖e0‖L∞ for m = 3 6.82e−06 3.21e−08 2.08e−09 3.00e−10 6.55e−11 1.94e−11
‖e1‖L∞ for m = 2 3.59e−04 1.70e−05 5.36e−06 2.35e−06 1.23e−06 7.15e−07
‖e1‖L∞ for m = 3 8.96e−05 4.22e−07 2.74e−08 3.95e−09 9.59e−10 3.77e−10
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Figure 4. Example 2 with m = 3: The errors versus computation time cost (seconds) in L∞ norm
for methods 1–3.

From Figure 3 we can see that if m is bigger, the errors decay faster. This coincides with our
theoretical results.

In order to compare our method (method 1) with the globe Legendre spectral-collocation
method (method 2) and piecewise polynomial collocation method (method 3), we fix m = 3 in
Example 2 and compute the errors by methods 1, 2 and 3 respectively. The errors versus the
computation time cost for these three method are plotted in Figure 4 and displayed in Table 4.
From Figure 4 we can see that using the same computation time cost our method (method 1)
can obtain much higher accuracy than other two methods.

Table 4. Example 2 with m = 3: The errors u− uN versus computation time cost (seconds) in L∞

norm for methods 1–3.

Time cost for method 1 3.90 6.69 10.57 16.01 23.51 33.89
L∞-error for method 1 2.35e−07 3.21e−08 7.10e−09 2.08e−09 7.37e−10 3.00e−10

Time cost for method 2 0.02 0.28 1.94 7.69 22.20 35.01
L∞-error for method 2 5.47e−02 1.68e−03 4.28e−05 4.26e−06 7.55e−07 3.65e−07

Time cost for method 3 0.19 1.67 5.92 12.99 23.21 36.20
L∞-error for method 3 1.08e−01 1.97e−02 1.79e−03 4.16e−04 1.46e−04 6.51e−05

7. Conclusion and future work

We propose the piecewise Legendre spectral-collocation method to solve the VIDEs, and
provide convergence analysis for the proposed method. Numerical examples are provided
to confirm the theoretical results that the numerical errors decay exponentially. We provide
numerical examples to show that our method performs better than the globe Legendre spectral-
collocation method and piecewise polynomial collocation method. Our method has a better
convergence rate and the approximation solution can be polynomial of any high degree.

Our future work will focus on the piecewise spectral method for the Volterra functional
integral and differential integral equations with delay and the system of Volterra integral
equations.
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