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ABSTRACT

The objective of this paper is to provide an extension of well-known models of
tarification in automobile insurance. The analysis begins by introducing a
regression component in the Poisson model in order to use all available
information in the estimation of the distribution. In a second step, a random
variable is included in the regression component of the Poisson model and a
negative binomial model with a regression component is derived. We then
present our main contribution by proposing a bonus-malus system which
integrates a priori and a posteriori information on an individual basis. We show
how net premium tables can be derived from the model. Examples of tables are
presented.
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INTRODUCTION

The objective of this paper is to provide an extension of well known models of
tarification in automobile insurance. Two types of tarification are presented in
the literature:

1) a priori models that select tariff variables, determine tariff classes and
estimate premiums (see VAN EEGHEN et al. (1983) for a good survey of
these models);

2) a posteriori models or bonus-malus systems that adjust individual prem-
iums according to accident history of the insured (see FERREIRA (1974),
LEMAIRE (1985, 1988) and VAN EEGHEN et al. (1983) for detailed discus-
sions of these models).
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This study focuses on the selection of tariff variables using multivariate
regression models and on the construction of insurance tables that integrates a
priori and a posteriori information on an individual basis. Our contribution
differs from the recent articles in credibility theory where geometric weights
were introduced (NEUHAUS (1988), SUNDT (1987, 1988)). In particular,
SUNDT (1987) uses an additive regression model in a multiplicative tariff
whereas our nonlinear regression model reflects the multiplicative tariff struc-
ture.

The analysis begins by introducing a regression component in both the
Poisson and the negative binomial models in order to use all available
information in the estimation of accident distribution. We first show how the
univariate Poisson model can be extended in order to estimate different
individual risks (or expected number of accidents) as a function of a vector of
individual characteristics. At this stage of the analysis, there is no random
variable in the regression component of the model. As for the univariate
Poisson model, the randomness of the extended model comes from the
distribution of accidents.

In a second step, a random variable is introduced in the regression
component of the Poisson model and a negative binomial model with a
regression component is derived. We then present our main contribution by
proposing a bonus-malus system which integrates explicitly a priori and a
posteriori information on an individual basis. Net premium tables are derived
and examples of tables are presented. The parameters in the regression
component of both the Poisson and the negative binomial models were
estimated by the maximum likelihood method.

1. The Basic Model

l.a. Statistical Analysis

The Poisson distribution is often used for the description of random and
independent events such as automobile accidents. Indeed, under well known
assumptions, the distribution of the number of accidents during a given period
can be written as

(1) pr (Y, = y) =

where y is the realization of the random variable Yt for agent / in a given
period and I is the Poisson parameter which can be estimated by the maximum
likelihood method or the method of moments. Empirical analyses usually reject
the univariate Poisson model.

Implicitly, (1) assumes that all the agents have the same claim frequency. A
more general model allows parameter X to vary among individuals. If we
assume that this parameter is a random variable and follows a gamma
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distribution with parameters a and l/b (GREENWOOD and YULE (1920),
BICHSEL (1964), SEAL (1969)), the distribution of the number of accidents
during a given period becomes

(2) pT(Yi = y)
y\T(a)

which corresponds to a negative binomial distribution with E(Yt) = I and
X

Var(y,) = X 1 + , where X = ab.

Again, the parameters a and (l/b) can be estimated by the method of moments
or by the maximum likelihood method.

l.b. Optimal Bonus Mains Rule

An optimal bonus malus rule will give the best estimator of an individual's
expected number of accidents at time (t+l) given the available information
for the first / periods (Y*,...,Yf). Let us denote this estimator as

One can show that the value of the Bayes' estimator (i.e. a posteriori
mathematical expectation of X) of the true expected number of accidents for
individual / is given by

(3) Xtl+ \YJ ... YD = f Xf(X/Y) ... YD dl.
Jo

Applying the negative binomial distribution, the a posteriori distribution of X is
a gamma distribution with probability density function

(4) f(X/YJ...Yl) =
f(a+Yi)

where Y, = £ Y\.

Therefore, the Bayes' estimator of an individual's expected number of accidents
at time (/+1) is the mean of the a posteriori gamma distribution with
parameters (a+ F,) and ((ljb) + t):

(5) i / + 1 (y , ' , . . . , YD
(\/b) + a + tX

Actuarial net premium tables can then be calculated by using (5).
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2. The Generalized Model

Since past experience cannot, in a short length of time, generate all the
statistical information that permits fair insurance tarification, many insurers
use both a priori and a posteriori tarification systems. A priori classification is
based on significant variables that are easy to observe, namely, age, sex, type of
driver's license, place of residence, type of car, etc. A posteriori information is
then used to complete a priori classification. However, when both steps of the
analysis are not adequately integrated into a single model, inconsistencies may
be produced.

In practice, often linear regression models by applying a standard method
out of a statistical package are used for the a priori classification of risks.
These standard models often assume a normal distribution. But any model
based on a continuous distribution is not a natural approach for count data
characterized by many "zero accident" observations and by the absence of
negative observations. Moreover, the resulting estimators obtained from these
standard models often allow for negative predicted numbers of accidents.
Regression results from count data models are more appropriate for a priori
classification of risks.

A second criticism is linked to the fact that univariate (without regression
component) statistical models are used in the Bayesian determination of the
individual insurance premiums. Consequently, insurance premiums are func-
tion merely of time and of the past number of accidents. The premiums do not
vary simultaneously with other variables that affect accident distribution. The
most interesting example is the age variable. Let us suppose, for a moment,
that age has a significant negative effect on the expected number of accidents.
This implies that insurance premiums should decrease with age. Premium
tables derived from univariate models do not allow for a variation of age, even
if they are a function of time. However, a general model with a regression
component would be able to determine the specific effect of age when the
variable is statistically significant.

Finally, the third criticism concerns the coherency of the two-stage procedure
using different models in order to estimate the same distribution of accidents.

In the following section we will introduce a methodology which responds
adequately to the three criticisms. First, count data models will be proposed to
estimate the individual's accident distribution. The main advantage of the
count data models over the standard linear regression models lies in the fact
that the dependent variable is a count variable restricted to non-negative
values. Both the Poisson and the negative binomial models with a regression
component will be discussed. Although the univariate Poisson model is usually
rejected in empirical studies, it is still a good candidate when a regression
component is introduced. Indeed, because the regression component contains
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many individual variables, the estimation of the individual expected number of
accidents by the Poisson regression model can be statistically acceptable since it
allows for heterogeneity among individuals. However, when the available
information is not sufficient, using a Poisson model introduces an error of
specification and a more general model should be considered. Second, we will
generalize the optimal bonus-malus system by introducing all information from
the regression into the calculation of premium tables. These tables will take
account of time, accident record and the individual characteristics.

2.a. Statistical Analysis

Let us begin with the Poisson model. As in the preceding section, the random
variables Yt are independent. In the extended model, however, A may vary
between individuals. Let us denote by A,- the expected number of accidents
corresponding to individuals of type /. This expected number is determined by
k exogenous variables or characteristics x, = (xn, xa, ..., xik) which represent
different a priori classification variables. We can write

(6) A—exp^y?)

where ft is a vector of coefficients (k x 1). (6) implies the non-negativity of
A,-.

The probability specification becomes

e - « p <*,/

(7) Pr (Yt = y) =
y\

It is important to note that A, is not a random variable. The model assumes
implicitly that the k exogenous variables provide enough information to obtain
the appropriate values of the individual's probabilities. The yS parameters can
be estimated by the maximum likelihood method (see HAUSMAN, HALL and
GRILICHES (1984) for an application to the patents — R & D relationship).
Since the model is assumed to contain all the necessary information required to
estimate the values of the A,-, there is no room for a posteriori tarification in the
extended Poisson model. Finally, it is easy to verify that (1) is a particular case
of (7).

However, when the vector of explanatory variables does not contain all the
significant information, a random variable has to be introduced into the
regression component. Following GOURIEROUX MONFORT and TROGNON

(1984), we can write

(8) A,• = exp (*,•£ +e,-)

yielding a random A,. Equivalently, (8) can be rewritten as

https://doi.org/10.2143/AST.19.2.2014909 Published online by Cambridge University Press

https://doi.org/10.2143/AST.19.2.2014909


204

(9)
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A,- = exp (x,/?) Ui

where w, = exp (e,).
As for the univariate negative binomial model presented above, if we assume

that M, follows a gamma distribution with E(ut) = 1 and Var(w,) = I/a, the
probability specification becomes

(10)
y\r(a)

exp
1

exp -(y + a)

which is also a negative binomial distribution with parameters a and exp (x,/?).
We will show later that the above parameterization does not affect the results if
there is a constant term in the regression component.

Then E(Y,) = exp (x,/?) and Var (F,) = exp (x,/?) 1 + •—P——
[ a

We observe that Var (T,) is a nonlinear increasing function of E(Yj). When the
regression component is a constant c, E(Yt) = exp (c) = I and

Var (7,) = I 1 +

which correspond, respectively, to the mean and variance of the univariate
negative binomial distribution.

DIONNE and VANASSE (1988) estimated the parameters of both the Poisson
and negative binomial distributions with a regression component. A priori
information was measured by variables such as age, sex, number of years with
a driver's license, place of residence, driving restrictions, class of driver's license
and number of days the driver's license was valid. The Poisson distribution
with a regression component was rejected and the negative binomial distribu-
tion with a regression component yielded better results than the univariate
negative binomial distribution (see Section 3 for more details).

An extension of the Bayesian analysis was then undertaken in order to
integrate a priori and a posteriori tarifications on an individual basis.

2.b. A Generalization of the Optimal Bonus Malus Rule

Consider again an insured driver i with an experience over / periods; let Y{
represent the number of accidents in period j and x{, the vector of the k
characteristics observed at period j , that is x\ = (x'n ,..., x{k). Let us further
suppose that the true expected number of accidents of individual / at period j ,
kJi(Ui,xj), is a function of both individual characteristics xj and a random
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variable «,-. The insurer needs to calculate the best estimator of the true
expected number of accidents at period t+l. Let I / + 1 ( 7 / , . . . , Yj;
x- , ...,x'i + x) designate this estimator which is a function of past experience
over the / periods and of known characteristics over the t+l periods.

If we assume that the w, are independent and identically distributed over time
and that the insurer minimizes a quadratic loss function, one can show that the
optimal estimator is equal to:

Y'-

(11) " J o
Applying the negative binomial distribution to the model, the Bayes' optimal
estimator of the true expected number of accidents for individual i is:

where # = exp (xjfiu^Wu,, X, = £ M an<i ?,- =

When t = 0, X) = X) =exp (x- ft) which implies that only a priori tarifica-
tion is used in th first period. Moreover, when the regression component is
limited to a constant c, one obtains:

(1.3) i ; + 1 ( r \ 7 / ) X r a+Y'
a + tX

which is (5). This result is not affected by the parametrization of the gamma
distribution.

It is important to emphasize here some characteristics of the model. In (13)
only individual past accidents (F,1, . . . , Y/) are taken into account in order to
calculate the individual expected numbers of accidents over time. All the other
parameters are population parameters. In (12), individual past accidents and
characteristics are used simultaneously in the calculation of individual expected
numbers of accidents over time. As we will show in the next section, premium
tables that take into account the variations of both individual characteristics
and accidents can now be obtained.

Two criteria define an optimal bonus-malus system which has to be fair for
the policyholders and be financially balanced for the insurer. It is clear that the
estimator proposed in (12) is fair since it allows the estimation of the individual
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risk as a function of both his characteristics and past experience. From the fact,
that E(E(A/B)) = E(A), it follows that the extended model is financially
balanced:

E{X\+l(Y},...,Y't; x},...,x!+l)) = X'l
+l s ince E(u,) = 1 .

3. Examples of Premium Tables

As mentioned above, Dionne and Vanasse (1988) estimated the parameters of
the Poisson regression model (/? vector) and of the negative binomial regression
model (/? vector and the dispersion parameter a) by the maximum likelihood
method. They used a sample of 19 013 individuals from the province of
Quebec. Many a priori variables were found significant. For example, the age
and sex interaction variables were significant as well as classes of driver's
licences for bus, truck, and taxi drivers. Even if the Poisson model gave similar
results to those of the negative binomial model, it was shown (standard
likelihood ratio test) that there was a gain in efficiency by using a model
allowing for overdispersion of the data (where the variance is greater than the
mean): the estimate of the dispersion parameter of the negative binomial
regression a was statistically significant (asymptotic ?-ratio of 3.91). The usual
/2 test generated a similar conclusion. The latter results are summarized in
Table 1:

TABLE 1

ESTIMATES OF POISSON AND NEGATIVE BINOMIAL
DISTRIBUTIONS WITH A REGRESSION COMPONENT

Individual _, , , Predicted numbers of individuals
, „ Observed numbers . , „„- ,„„-,number of . . ,. . , , for 1982-1983. . . . - of individuals

accidents in
a given period during 1982-1983 Poisson* Negative binomial «

0 17,784 17,747.81 17,786.39
1 1,139 1,201.59 1,131.05
2 79 60.56 86.21
3 9 2.88 8.18
4 2 .15 .98
5 + 0 0 0

19,013 x2 = 29.91 x2 = 1028
y ? , , = 5.99 / I , , = 3.84

Log Log
Likelihood = -4,661.57 Likelihood = -4,648.58

The estimated ji parameters are published in DIONNE-VANASSE (1988) and are available upon
request, a = 1.47 in the negative binomial model.
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The univariate models were also estimated for the purpose of comparison.
Table 2 presents the results. The estimated parameters of the univariate
negative binomial model are a = .696080 and (ifb) = 9.93580 yielding
X = .0701. One observes that a = 1.47 in the multivariate model is larger than
a = .6961 in the univariate model. This result indicates that part of the
variance is explained by the a priori variables in the multivariate model.

Using the estimated parameters of the univariate negative binomial distribution
presented above, table 3 was formed by applying (14) where $ 100 is the first
period premium (t = 0):

(14) i+ ( r / , . . . , = IOO
tl)

In Table 3, we observe that only two variables may change the level of
insurance premiums, i.e. time and the number of accumulated accidents. For
example, an insured who had three accidents in the first period will pay a
premium of $ 462.43 in the next period, but if he had no accidents, he would
have paid only $ 90.86.

From (14) it is clear that no additional information can be obtained in order
to differentiate an individual's risk. However, from (12), a more general pricing
formula can be derived:

(15)

TABLE 2

ESTIMATES OF UNIVARIATE POISSON AND NEGATIVE BINOMIAL DISTRIBUTIONS

Individual
number of

accidents in
a given period

Observed numbers
of individuals

during 1982-1983

Predicted numbers of individuals
for 1982-1983

Poisson
(exp c = 0.0701)

Negative binomial
(a = 0.6960; 1/6= 9.9359)

0
1
2
3
4
5 +

17,784
1,139

79
9
2
0

19,013

17,726.60
1,241.86

43.50
1.02
0.02
0

X2 = 133.06
*2,95 = 5.99

17,785.28
1,132.05

88.79
7.21

.61
0

X2 = 2.21
X\,K = 3.84

Log
Likelihood = -4950.28

Log
Likelihood = -4916.78
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TABLE 3

UNIVARIATE NEGATIVE BINOMIAL MODEL

a = .696080 X = .0701

Y, 1

100.00
90.86
83.24
76.81
71.30
66.52
62.35
58.67
55.40
52.47

221.38
202.83
187.15
173.72
162.09
151.92
142.95
134.98
127.85

t

y

351.91
322.42
297.50
276.15
257.66
241.49
227.23
214.56
203.23

exp (x{ B),

462.43
442.01
407.84
378.58
353.23
331.06
311.52
294.15
278.61

612.96
561.60
518.19
481.00
448.80
420.63
395.80
373.73
353.99

where A;+1=exp (x/+l/?), i,E

and M is such that

= $ 100

when the total number of insureds is /.
This general pricing formula is function of time, the number of accumulated

accidents and the individual's significant characteristics in the regression
component. In consequence, tables can now be constructed more generally by
using (15). First, it is easy to verify that each agent does not start with a
premium of $ 100. In Table 4, for example, a young driver begins with

TABLE 4

NEGATIVE BINOMIAL MODEL WITH A REGRESSION COMPONENT

Male, 18 years old in period 0, region 9, class 42

Y, 0 1

280.89
247.67
217.46
197.00
180.06
165.81
153.64
79.85
76.92
74.20

416.47
365.66
331.26
302.78
278.81
258.36
134.28
129.35
124.76

585.27
513.86
465.53
425.50
391.82
363.07
188.70
181.77
175.33

754.07
662.07
599.79
548.23
504.82
467.79
243.12
234.19
225.90

922.87
810.27
734.06
670.95
617.83
572.50
297.55
286.62
276.46
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S 280.89. Second, since the age variable is negatively significant in the estimated
model, two factors, rather than one, have a negative effect on the individual's
premiums (i.e. time and age). In Table 4, the premium is largely reduced when
the driver reaches period seven at 25 years old (a very significant result in the
empirical model).

For the purpose of comparison, Table 4 was normalized such that the agent
starts with a premium of $ 100. The results are presented in table 5a. The effect
of using a regression component is directly observed. Again the difference
between the corresponding premiums in Table 3 and Table 5a come from two

TABLE 5a

TABLE 4 DIVIDED BY 2.8089

Y, 1

100.00
88.17
77.42
70.13
64.10
59.03
54.70
28.43
27.38
26.42

148.27
130.18
117.93
107.79
99.26
91.98
47.81
46.05
44.42

208.36
182.94
165.73
151.48
139.49
129.26
67.18
64.71
62.42

268.46
235.70
213.53
195.18
179.72
166.54
86.55
83.37
80.42

328.55
288.46
261.33
238.87
219.95
203.82
105.93
102.04
98.42

TABLE 5b

COMPARISON OF BASE PREMIUM AND BONUS-MALUS FACTOR COMPONENTS

(

0
1
2
3
4
5
6
7
8
9

Base
Premium

Y,

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

Univariate Model

Bonus Malus
Factoi

0

1.0000
0.9086
0.8324
0.7681
0.7130
0.6652
0.6235
0.5867
0.5540
0.5247

r

1

2.2138
2.0283
1.8715
1.7372
1.6209
1.5192
1.4295
1.3498
1.2785

Individual of Table 4

Base
Premium *

280.89
280.89
280.89
280.89
280.89
280.89
280.89
154.67
154.67
154.67

Bonus Malus
Factor

0

1.0000
0.8817
0.7742
0.7013
0.6410
0.5903
0.5470
0.5163
0.4973
0.4797

1

1.4827
1.3018
1.1793
1.0779
0.9926
0.9198
0.8682
0.8363
0.8066

To be compared with Table 5a, this column should be divided by 2.8089.
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sources: the individual in Table 5a has particular a priori characteristics while
all individuals are implicitly assumed identical in Table 3 and age is significant
when the individual reaches period seven (25 years old). Finally, the above
comparison shows that the Bonus-Malus factor is now a function of the
individual's characteristics as suggested by (12). Table 5b separates the
corresponding base premium and Bonus-Malus factor components of the total
premiums in the first two columns of Table 3 and Table 4.

Moreover, when the insured modifies significant variables, new tables may
be formed. In Table 4 the driver was in region # 9 (a risky region in Quebec)
and had a standard driving license.

TABLE 6

NEGATIVE BINOMIAL MODEL WITH A REGRESSION COMPONENT

SAME INDIVUDUAL AS IN TABLE 4, MOVED TO MONTREAL IN PERIOD 4

0 1

280.89
247.67
217.46
197.00
119.65
113.18
107.38
56.98
55.47
54.04

416.47
365.66
331.26
201.19
190.32
180.56
95.81
93.28
90.87

585.27
513.86
465.53
282.73
267.45
253.74
134.65
131.08
127.70

754.07
662.07
599.79
364.28
344.59
326.92
173.48
168.89
164.53

922.87
810.27
734.06
445.82
421.73
400.11
212.32
206.69
201.36

TABLE 7

NEGATIVE BINOMIAL MODEL WITH A REGRESSION COMPONENT

SAME INVIDUAL AS IN TABLE 4, MOVED TO MONTREAL IN PERIOD 4,

CHANGED FOR CLASS 31 (TAXI) IN PERIOD 5

Y, 0 1 3

280.89
247.67
217.46
197.00
119.65
291.65
256.00
127.26
119.97
113.47

416.47
365.66
331.26
201.19
490.42
430.48
213.99
201.73
190.80

585.27
513.86
465.53
282.73
689.19
604.95
300.72
283.49
268.13

754.07
662.07
599.79
364.28
887.96
779.42
387.45
365.25
345.47

922.87
810.27
734.06
445.82
1086.73
953.90
474.18
447.02
422.80
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Now if the individual moves from region # 9 to a less risky region
(Montreal, for example) in period 4, the premiums then change (see
Table 6).

Having two accidents, he now pays $ 282.73 in period 4 instead of $ 425.50.
Finally, if the driver decides to become a Montreal taxi driver in period 5, the
following results can be seen in Table 7.

Again, having two accidents, he now pays $689.19 in period 5 instead of
$ 267.45.

CONCLUDING REMARKS

In this paper, we have proposed an extension of well-known models of
tarification in automobile insurance. We have shown how a bonus-malus
system, based only on a posteriori information, can be modified in order to
take into account simultaneously a priori and a posteriori information on an
individual basis. Consequently, we have integrated two well-known systems of
tarification into a unified model and reduced some problems of consistencies.
We have limited our analysis to the optimality of the model.

One line of research is the integration of accident severity into the general
model even if the statistical results may be difficult to use for tarification
(particularly in a fault system). Recent contributions have analyzed different
types of distribution functions to be applied to the severity of losses (LEMAIRE
(1985) for automobile accidents, CUMMINS et al. (1988) for fire losses, and
HOGG and KLUGMAN (1984) for many other applications). Others have
estimated the parameters of the total loss amount distribution (see SUNDT
(1987) for example) or have included individuals' past experience in the
regression component (see BOYER and DIONNE (1986) for example). However,
to our knowledge, no study has ever considered the possibility of introducing
the individual's characteristics and actions in a model that isolates the
relationship between the occurence and the severity of accidents on an
individual basis.
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