
J. Austral. Math. Soc. Ser. B 34(1993), 377-391

FLOW INDUCED BY A LINE SINK IN A QUIESCENT FLUID
WITH SURFACE-TENSION EFFECTS
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Abstract

When a line sink is placed beneath the free surface of an otherwise quiescent fluid
of infinite depth, two different flow types are now known to be possible. One type
of flow involves the fluid being drawn down toward the sink, and in the other type,
a stagnation point forms at the surface immediately above the position of the sink.

This paper investigates the second of these two flow types, which involves a
free-surface stagnation point. The effects of surface tension are included, and
even when small, these are shown to have a very significant effect on the overall
solution behaviour. We demonstrate by direct numerical calculation that there are
regions of genuine non-uniqueness in the nonlinear solution, when the surface-
tension parameter does not vanish. In addition, an asymptotic solution valid for
small Froude number is derived.

1. Introduction

This paper is concerned with determining the steady flow produced by the
presence of an isolated line sink, located some distance H beneath the sur-
face of an otherwise stationary fluid. At first sight this problem seems su-
perficially simple, but recent investigations of this deceptive problem reveal
a surprising complexity in the solution structure, with many basic questions
remaining unanswered.

There are at least two major factors contributing to the unexpected diffi-
culty of this problem. One of these is the fact that, in an ideal fluid, only the
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square of the fluid velocity is involved in the formal statement of the problem,
so that the solutions are insensitive to the direction of flow along streamlines.
Consequently, there is no mechanism for distinguishing between a submerged
sink or a source, which introduces the possibility that the problem is in some
sense ill-posed. Support for this interpretation might be found from the fact
that two quite different types of flow are now known to be possible solutions
to the problem. In one of these flow types, the fluid is drawn down to form a
vertical cusp above the line singularity, which in this case might be thought of
as a line sink. In the other distinct flow type, the fluid gives the appearance of
having been pushed out from the line singularity, which consequently might
appear to be a source; the fluid surface directly above the singularity has been
pushed up to the maximum possible (stagnation) height, at which a surface
stagnation point is formed. This appealing interpretation, however, appears
to be an over-simplification, since some experiments reported by Imberger
[5] showed that a source was capable of producing both of the solution types
described above.

The other reason for the inherent difficulty of this problem is the fact
that it is highly nonlinear, by virtue both of the defining surface condition
(the Bernoulli equation) as well as the fact that the physical location of the
free-surface itself is unknown.

The first work on this problem was evidently that of Peregrine [8], who
investigated the steady flow produced by a submerged line source in a fluid
of infinite depth. He sought a solution using Taylor-series expansions in
powers of the square of a Froude number F based on the submergence
depth of the line singularity, and so obtained an approximate expression
for the surface shape, for the flow type in which a stagnation point appears
at the surface. Vanden-Broeck, Schwartz and Tuck [15] have re-examined
Peregrine's solution, however, and showed that series expansions in powers of
the Froude number are purely divergent. Consequently, Peregrine's solution
only retains significance as an asymptotic result. Recently, Hocking [3] and
King and Bloor [6] have found a closed-form solution at infinite Froude
number for the other type of solution, in which the surface is drawn down
into a cusp.

Tuck and Vanden-Broeck [11] used a spectral method in a conformally
mapped plane to seek solutions for a submerged line source or sink in a fluid
of infinite depth. This approach has subsequently proved very successful in a
variety of free-surface flow problems in which surface waves are absent, and
has been adopted for example by Hocking and Forbes [4] to compute flow due
to a line sink in fluid of infinite depth, and by Hocking [2], Vanden-Broeck
and Keller [14] and Mekias and Vanden-Broeck [7] to compute similar flows
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in finite-depth fluid. Tuck and Vanden-Broeck [11] found that they were,
in general, unable to compute a solution having a free-surface stagnation
point when the Froude number F was free to be specified; some solutions of
this type had been obtained for Froude number less than about 2, yet these
were ultimately spoiled by the presence of very short-wavelength disturbances
at the surface, and were not discussed in great detail by Tuck and Vanden-
Broeck. However, these authors showed that, by allowing the Froude number
to be an unknown to be determined as part of the solution, they could obtain
a solution of the other type, in which the fluid surface is drawn down toward
the sink in a vertical cusped structure. This other solution type occurred at
the unique Froude number F = 3.553.

The method of Tuck and Vanden-Broeck [11] has recently been applied
by Hocking and Forbes [4] to the problem of computing the solution type in
which a stagnation point is present at the surface of an infinite fluid. They
essentially recovered the solutions of Tuck and Vanden-Broeck, but showed
that this type of solution is confined to the region F < 1.42. The short-
wavelength disturbances reported by Tuck and Vanden-Broeck were shown to
be numerical in origin, and heralded the imminent breakdown of the numeri-
cal procedure, apparently corresponding to the actual failure of the nonlinear
solution branch itself beyond F = 1.42. There is no obvious physical reason
for the failure of this stagnation-point type of solution beyond F — 1.42,
and the attempted explanation of this behaviour has constituted a partial
motivation for undertaking the present study. (In the corresponding three di-
mensional problem, however, in which a point source is present beneath the
surface, Forbes and Hocking [1] found that a similar failure of the branch of
solutions possessing a surface stagnation point did in fact have a physical in-
terpretation, and was associated with the formation of a secondary stagnation
point on the surface.)

In the present paper, we use a modified form of the method of Tuck and
Vanden-Broeck [11] to investigate the flow produced by a line sink in infinite-
depth fluid, when the effects of surface tension are taken into account. The
problem is stated mathematically in Section 2 of the paper, and the spectral
solution technique is outlined. A low-Froude-number asymptotic solution
is derived in Section 3. In Section 4, the results of the numerical solution
to the fully nonlinear problem are presented and discussed; the inclusion of
even a small amount of surface tension has a very significant effect on the
solution profiles obtained, which is possibly of some significance for model
experimental studies of this type of flow. Additionally, these results suggest
a partial explanation of the failure of the solution branch with zero surface
tension at the approximate Froude number F = 1.4. A discussion concludes
the paper in Section 5.

https://doi.org/10.1017/S0334270000008961 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008961


380 L. K. Forbes and G. C. Hocking [4]

2. Problem statement and spectral solution technique

Consider a quiescent fluid of infinite depth, having density p and subject
to the downward acceleration g of gravity. The fluid occupies the lower half
plane and its surface is a horizontal line. Let us place a Cartesian coordinate
system in the fluid, having its x-axis along the undisturbed fluid surface
(orthogonal to the direction in which gravity acts), and its y-axis pointing
vertically (in the opposite direction to the gravitational force). The effects
of surface tension will be included in the problem, and the surface tension
coefficient is denoted by the symbol T.

A line sink of strength m per unit width is now introduced into the fluid,
at a distance H below the undisturbed fluid surface level; the sink is thus
located at the Cartesian point (0, -H). We assume that some steady flow
pattern is established, and the shape of the fluid surface alters accordingly.
The purpose of this paper is to determine this new surface shape.

Dimensionless variables are now defined, using the sink submergence depth
H as the length scale and m/H as the reference speed. The problem then
possesses solutions characterised by the two dimensionless parameters

F2 = - ^ r and 0 =
gH3 pgH2'

The first of these constants is the square of the Froude number based on the
submergence depth of the line sink beneath the undisturbed surface level, and
the second is a dimensionless measure of the importance of surface-tension
effects.

We assume that the fluid is ideal, in the sense that it is both incompress-
ible and inviscid. It then follows that the flow occurs without rotation, and
the fluid velocity vector with horizontal and vertical components u and v ,
respectively, may be written in terms of a velocity potential <f> and stream
function y/, by means of the relations

dx dy' dy dx' (ZA)

Equations (2.1) reveal that the complex potential / = <f>+ iy is an analytic
function of the position z = x + iy everywhere in the fluid, except at the
line sink where it is singular according to the relation

/ -» - ( l /2s ) ln (z + i) a s z - » - i , (2.2)

since in these dimensionless coordinates, the sink is located at the point
z = -i.

Suppose that the unknown position of the free surface is denoted as y(x)
in the complex z-plane. The two conditions to be satisfied at this surface are
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the kinematic constraint
v = uy, (2.3)

which indicates that the surface is a streamline in steady flow, and the
Bernoulli equation

(2.4)

where primes denote differentiation with respect to x .
We now follow Tuck and Vanden-Broeck [11] by introducing two confor-

mal transformations to the problem. The first of these is an inversion, in the
sense that the complex position z = x + iy is regarded as being dependent
upon the potential / = <j) + iif/ .This technique was first introduced by Stokes
[10], and it has the advantage that the free-surface location is now known in
the /-plane. In fact, the right half of the flow (which is symmetric about the
y-axis) maps onto the strip 0 < y/ < 1/2 in the /-plane, with the right half
of the free surface occupying the line <j> < 0, y/ = 0 . The line sink maps
away to <f> —* oo, which follows from (2.2), and the fluid infinitely far from
the sink in the physical z-plane is mapped to <f> —* -oo in the /-plane strip.
A further mapping of the /-plane into a ^-plane is also performed, according
to the conformal relation

l ) 2 . (2.5)

The strip 0 < if/ < 1/2 in the /-plane is mapped onto the lower-half of a
unit circle in the f-plane as a result of (2.5), and the line sink is now located
at the origin. The point at infinity in the z-plane corresponds to t = — 1 ,
and the stagnation point which occurs at z = 0 in the physical plane is
mapped to t = 1. These transformations are similar to those used by Tuck
and Vanden-Broeck [11] (apart from a change of sign), and diagrams of the
z-f- and r-planes are given in their paper, and also appear in Hocking and
Forbes [4].

The governing equations are written in the new f-plane defined by the
mapping (2.5). The conditions (2.1) are equivalent to the statement that z(t)
is to be analytic, and the kinematic condition (2.3) is satisfied identically. The
sink condition (2.2) becomes simply

z = -i atf = O, (2.6)

and the asymptotic form for the outflow of fluid at infinity is

z^-f£n as*-»-l. (2-7)
It is convenient to express the independent variable / in polar form / — re10 ,
and then the right half of the free surface of the fluid corresponds to the line
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r=l,0>6>—n. After some algebra, the final form of the Bernoulli
equation (2.4) is found to be

Zn2(l+cosd)2(x2
g+y2

g)
 y (x2

g+y2
g

= 0 o n r = l . (2.8)

We seek a solution to the governing system (2.6)-(2.8) using the spec-
tral representation of Tuck and Vanden-Broeck [11]. The solution z(t) is
expressed in the form

y=o

with real coefficients 6. which are to be determined. This representation
(2.9) satisfies condition (2.7), and the sink condition (2.6) at once yields

^o= 1/2-

Tuck and Vanden-Broeck [11] sought a numerical solution to this problem,
with P = 0 , using a collocation method. If the series (2.9) is approximated
with a polynomial in powers of the variable t, to order N, then there are N
coefficients bx, ... ,bN to be found. Tuck and Vanden-Broeck achieved this
by forcing the free-surface condition (2.8) to be satisfied at exactly N points,
using Newton's method to accomplish the numerical task. We have likewise
tried a collocation approach for the solution of the problem with /? = 0, but
concerned by the presence of the small free-surface waves that the numerical
method may produce, we have also investigated weighted-residual methods
as an alternative to collocation. (Tuck has also considered this option, and
experimented with least-squares type methods3.) It turns out that none of
these methods seems to give much improvement over the coefficients b,,
j = 1, . . . , N, obtained by collocation, but possibly the most successful
approach we have adopted is a straightforward Galerkin technique, which
we now describe.

We express the solution (2.9) in the approximate form

N

z(t) = x(t) + iy{t) = £ bjZj(t), (2.10a)
y=o

with complex basis functions

Zj(t) = Xj(t) - iYj(t) = -2itj/(t + 1). (2.10b)

3 Private Communication.
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On the free surface, r = 1, the functions Xj and Y. may be expressed as

(2.11)1+COS0
COSJd +COS(j - 1)0

>V ' 1+COS0
The Bernoulli equation (2.8) may now be regarded as a relation of the form

R(d;bl,...,bN) = O, (2.12)

where the residual function R is the entire left-hand side of (2.8). The
functions x{6), y(6) and their derivatives appearing in this equation are
obtained directly from (2.10a). In the Galerkin approach, the coefficients
b{, ... , bN are determined (again using Newton's method) so as to satisfy
the relations

Gk{bx ,...,bN)= f R(d; bx, ... , bN)Yk{eie) dd

= 0 , k=l,...,N.

The integrals in (2.13) have been evaluated using 256-point Gaussian quadra-
ture, with weights and abscissae taken from the book by Stroud and Secrest
[9].

It is desirable to have some measure of the extent of deformation of the
free surface. To this end, we introduce the quantity

Fffl- dx, (2.14)

which gives the total deflection of the free surface from the horizontal. In
the £-plane, where the free surface is represented parametrically in terms of
the angle 8 on the circumference of the unit circle in the lower-half plane,
the expression (2.14) becomes

dd. (2.15)

This integral is evaluated easily using Gaussian quadrature, since the numer-
ical grid points in the interval -n < 6 < 0 have already been chosen as the
appropriate Gaussian abscissae, for the solution of the problem by Galerkin's
method.

3. Asymptotic solution for small Froude number

In this section, we outline briefly an approximate solution to the problem,
valid at low Froude numbers. We recall, however, that the work of Vanden-
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Broeck, Schwartz and Tuck [15] showed that such expansions in powers of
the Froude number are divergent; this is presumably the case here also, in
spite of the presence of surface-tension effects. Our solution therefore can
only be expected to retain significance as an asymptotic approximation.

We express the complex potential / = <f> + iy/ and the surface elevation
y(x) in terms of the expansions

and seek to determine the functions fo(z) and Yx(x) by substitution of
expressions (3.1) into (2.1)-(2.4).

The zeroth-order complex potential f0 — <j>0 + iy/0 again satisfies the
Cauchy-Riemann equations (2.1) and the sink condition (2.2), but to this
order of approximation, the kinematic condition (2.3) becomes simply

The method of images at once gives the solution for fo(z) in the form

/o(z) = " i [ l n ( z + I - ) + l n ( z " / ) ] - (3-2)
The expansions (3.1) and the solution (3.2) are substituted finally into the

Bernoulli equation (2.4), and after some algebra, the function 7, (x) is found
to satisfy the relation

Equation (3.3) is a straightforward second-order differential equation, and
can be solved using variation of parameters. After some calculation, the
solution may eventually be expressed in the form

Yl(x) = -
1 i:

(3.4)
We have evaluated these integrals numerically using 68-th order Gauss-
Laguerre quadrature, with coefficients again taken from the book by Stroud
and Secrest [9]. It is easy to verify that the solution (3.4) is symmetric about
the y-axis, and that its slope is zero at x = 0, but notice now that the stag-
nation point (at x = 0) does not occur at the stagnation height y = 0 but
at some lower surface elevation.
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When surface tension is absent, P = 0, the surface elevation can be ob-
tained as the limit of (3.4). Combining the result with (3.1) then yields

F2x2

' 2 K V + 1)2

In this simple case, the deflection can be worked out in closed form from the
definition (2.14). We obtain

2iC h {x'+iy

which can be evaluated using the calculus of residues to yield the simple
result

F 4

D = . + O(F6).
256n3

We have not obtained a closed form result for this quantity when P / 0,
however.

4. Presentation of results

We begin this section by investigating the dependence of the nonlinear
solutions upon the surface-tension parameter /?. Some results of this type
are shown in Figure 1, in which the deflection D, computed from (2.15), is

5E-4

D

3E-4

1 E-4 -

FIGURE 1. The dependence of surface deflection D upon the surface-tension parameter fi ,
at Froude number F = 1.3 .
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-0.025 •—

FIGURE 2. Three free-surface profiles obtained at Froude number F = 1.3 , at values of the
surface-tension parameter P = 0 ( - ) , fi = 0.06( ) , and P = 2 ( - • ) .
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FIGURE 3. The dependence of surface deflection D upon the Froude number F , at the
three different values of the surface-tension parameter fi = 0 , /? = 0.02 and /? = 0.04 . This
figure summarises the results of over 100 separate converged solutions. Notice that the scale on
the ordinate is logarithmic.
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displayed as a function of /?, for a Froude number F = 1.3 . Recall that,
with zero surface tension, the maximum possible Froude number at which
these stagnation-point type solutions exist has been computed by Hocking and
Forbes [4] to be about F — 1.4, and so the solution in Figure 1 with /? = 0
is reasonably close to this maximum. As the surface tension is increased,
the deflection D diminishes at first rapidly, and the surface must therefore
deviate less from the undisturbed level y = 0.

This is confirmed in Figure 2, where three different surface profiles are
shown for F — 1.3. The solid line is the zero surface tension result of
Hocking and Forbes [4] (/? — 0), the dashed line corresponds to fi = 0.06
and the broken line represents the surface shape for /? = 2. The maximum
deviation of the surface below the horizontal (which occurs at about x — 1)
is diminished as /? is increased, although the stagnation point at x = 0
continues to move away from the origin.

The major results of this paper are those given in Figure 3. Here, the
dependence of the deflection D upon the Froude number F is shown for
three different values of the surface-tension parameter /?. The solid line
represents the results obtained for /? = 0; as observed by Hocking and Forbes
[4], it terminates at about F = 1.4 for a reason which is not well understood.
The dashed line corresponds to results obtained with 0 — 0.02 and the
broken line is the deflection curve for 0 = 0.04.

In the absence of surface tension (/? = 0), the deflection increases with
increasing Froude number, reaching a maximum at about F — 1.4. Beyond
this value, the numerical method ultimately fails to yield a solution, in the
sense described by Hocking and Forbes [4]. When the number of coefficients
N in the spectral representation (2.10a) is small, the Newton's method tech-
nique converges to a free-surface shape which contains nonphysical wavelets,
for F > 1.4. As N is increased, however, the surface profile does not be-
come independent of N, and eventually the Newton algorithm fails to yield
a solution at all for sufficiently large N. When F < 1.4, these difficulties do
not occur, and highly converged surface profiles have been obtained.

When the surface tension is not zero, the deflection increases with increas-
ing Froude number, until some maximum Froude number is attained. At this
point, the deflection curves actually undergo a fold, so that there is an interval
of Froude numbers within which two different solutions can exist simultane-
ously. This behavior is evident in Figure 3, for the two curves obtained with
/? = 0.02 and /? = 0.04. As the surface-tension parameter /? is decreased,
the maximum Froude number (at which the fold occurs) likewise decreases.
It is presumably the case that the solution branch before the fold is reached
is stable, and that beyond the fold is possibly unstable, although this conjec-
ture could only be confirmed by an investigation of the full time-dependent
problem.
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1

[12]

y
(a)

sink

\

x

(b)

sink

FIGURE 4. Free-surface profile predicted by the asymptotic solution of Section 3 ( ) ,
and non-unique profiles computed numerically at a point below the fold singularity (-) and
above the fold ( ) . Results are shown for (a) F = 2.6 , fi = 0.02 , and for (b) F = 2.9 ,
/? = 0.04 . The scale on the vertical and horizontal axes is the same, and the location of the line
sink is shown.

https://doi.org/10.1017/S0334270000008961 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008961


[13] Flow induced by a line sink 389

The solution branches in Figure 3 were continued around the fold singular-
ities using a modified numerical method, in which the first Fourier coefficient
bx in equation (2.10a) was given in advance, and the Froude number F al-
lowed to be determined as part of the solution. Slightly beyond the fold,
however, the numerical results appear to break down in the sense of Hocking
and Forbes [4], for a reason that is again not clear.

Non-unique surface profiles are displayed in Figures 4; these are a con-
sequence of the fold singularities encountered in Figure 3. In Figure 4(a),
results are displayed for the case F = 2.6, /? = 0.02. The solid line is the
surface profile corresponding to the portion of the curve in Figure 3 before
the fold had been reached, and the broken line is the (presumably unsta-
ble) solution in the portion of the branch beyond the fold singularity. The
dashed line is the surface profile predicted by the asymptotic solution (3.1)
and (3.4), and it gives surprisingly good agreement with the nonlinear so-
lutions for x > 2, even in these extreme cases. The situation in Figure
4(b) is similar, and shows surface profiles for the case F — 2.9, /? = 0.04.
The solid line is again the solution below the fold singularity and the broken
line is the solution beyond it. The dashed line represents the predictions of
the asymptotic theory of Section 3, and again is in good agreement with the
nonlinear results for x > 2.

5. Summary and discussion

This paper continues the work of Tuck and Vanden-Broeck [11] and Hock-
ing and Forbes [4] on stagnation-point type flow caused by a line sink or
source beneath the free surface of otherwise stationary fluid. The solution
technique has again made extensive use of conformal mappings, and involves
a Galerkin method. The results of Hocking and Forbes have been recovered
for zero surface tension, and show that the method fails for Froude num-
bers F greater than about 1.4. For nonzero surface tension /?, there is a
maximum possible Froude number at which solutions of this type can be
achieved, and this maximum is associated with the formation of a fold in
the bifurcation diagram. There is thus an interval of Froude numbers slightly
below this maximum, within which two different solutions are possible.

Even a small amount of surface tension can evidently have significant
effects on the overall solution behaviour. In particular, the maximum per-
missible Froude number is very sensitive to this parameter, which could have
a major influence on a model experiment where the effects of surface tension
were ignored. Thus the maximum Froude number F = 1.4 for zero surface
tension, reported by Hocking and Forbes [4], is already increased to about
F = 2.67 for /? = 0.02.
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Our original motivation for investigating this problem, in which surface-
tension effects are included, was strongly influenced by the desire to explain
the failure of the solution branch at F = 1.4 with zero surface tension,
reported by Hocking and Forbes [4]. Perhaps some partial success in this aim
has been achieved. When surface-tension effects are included, the deflection
curves in Figure 3 undergo a fold at the maximum Froude number; as the
surface-tension parameter 0 is reduced, both the strength of the fold and
the value of the maximum Froude number decrease. In the limit 0 —> 0,
it seems that the maximum Froude number decreases to 1.4, at which point
some sort of degenerate fold singularity is evidently present. It appears that
steady solutions are no longer possible past this point.

We have not commented in this paper on the other type of flow possible in
this situation, in which, in the absence of surface tension, the surface is drawn
down into a cusp, as described by Tuck and Vanden-Broeck [11]. It is to be
expected that this cusped solution at zero surface tension may be continued
analytically to parameter values involving nonzero surface tension, although
the cusp will presumably be replaced by a finite-angle wedge at the surface,
immediately above the line sink. In addition, when surface tension effects are
present, there is available a second, meniscus-type solution at zero Froude
number, in addition to that discussed in Section 3. This solution also involves
a free-surface wedge of finite angle, and presumably may also be continued
numerically to nonzero values of the Froude number. A consideration of
these additional solution types is beyond the scope of the present paper, and
work is currently in progress to compute such flows, using methods similar
to those of Vanden-Broeck [12], [13] in which the unknown surface angle at
the singular point is computed as part of the solution.
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