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Abstract

In 1980, McCaughan and Stonehewer showed that a finite soluble group in which every subnor-
mal subgroup has defect at most two has derived length at most nine and Fitting length at most
five, and gave an example of derived length five and Fitting length four. In 1984 Casolo showed
that derived length five and Fitting length four are best possible bounds.

In this paper we show that for groups of odd order the bounds can be improved. A group of
odd order with every subnormal subgroup of defect at most two has derived and Fitting length
at most three, and these bounds are best possible.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 D 35, 20 E 34.

1. Introduction

Groups in which every subnormal subgroup is normal (so that normality is
transitive, and hence the name r-groups) have been extensively studied, the
study of finite soluble r-groups was begun by Zacher [15] in 1952. Gaschutz
[3] gave a detailed picture of their structure in 1957, Robinson [12] and Peng
[11] provided some additional detail. A summary of their structure can be
found in Robinson [13].

In 1980, McCaughan and Stonehewer [10] began the study of finite soluble
groups in which every subnormal subgroup has defect at most two (we call this
class of groups 3§2 , following McCaughan and Stonehewer). They showed
that groups in ^ 2 have bounded derived and Fitting lengths, the bounds
they obtained being 9 and 5 respectively. They also observed that the split
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332 John Cossey [2]

extension of the natural module for GL(2, 3) by GL(2,3) is a group in 3§2

of derived length 5 and Fitting length 4. Their bounds have been improved
to 5 and 4 respectively by Casolo [2], and these bounds are thus best possible.

Our aim in this paper is to show that these bounds can be improved for
groups of odd order. We show that the best possible bound for both derived
and Fitting length is 3 for odd order groups in 3§2. In fact we will prove
a little more. Any finite group can be written as a subdirect product of
monolithic groups (that is, groups with a unique minimal normal subgroup);
since 3§2 is quotient closed, any group in 3S1 can be written as a subdirect
product of monolithic groups in 3§2 (though not every subdirect product of
groups in 382 is in 3§2). Thus to establish bounds for the derived or Fitting
length it is enough to consider monolithic odd order groups in 3§2. We show
that the structure of a monolithic odd order group in 3§2 is quite restricted.
Note that for a monolithic group, the Fitting subgroup must be a p-group
for some prime p .

THEOREM. Let G be a monolithic group of odd order in 3§2 and let p be
the prime dividing the order of F(G). Then one of the following holds.

(i) G is nilpotent of class at most 3.
(ii) F(G) is nonabelian and G/F(G) is an abelian p-group.

(iii) F(G) is abelian and complemented in G, by H say. Moreover,
Oq{H) is cyclic if q does not divide p - 1; and if q divides p - 1,
either Oq(H) is abelian and every chief factor K/L of H with K <

Oq{H) has \K/L\ < q2 or Oq{H) is nonabelian and every chief factor
K/L of H with K < Oq(H) is central.

That a monolithic odd order group in 3§2 has derived and Fitting length
at most 3 is an easy corollary. If F(G) is nonabelian then since F(G) is
in 3§2 we have F(G) metabelian by (i) and so G clearly has derived length
at most 3 and Fitting length at most 2. If F(G) is abelian let H be a
complement for F{G) in G. It follows immediately from (iii) that if K/L
is a chief factor of H with K < F(H), \K/L\ < q2 , for some prime q. Thus
H/CH(K/L) is either cyclic or an odd order subgroup of GL2(q), and it then
follows that H/CH(K/L) is abelian (using Curtis and Reiner [1, Theorem
53.17] for example). Since F(H) is the intersection of the centralisers of
chief factors of H contained in F(H), we get H/F(H) is abelian. If q
is a prime dividing \F(H)\, we let C be a normal subgroup of H chosen
maximal such that CnOq(H) = 1. We then have that F(H) < C.Oq{H) and
so H/COq{H) is abelian. Thus if Oq{H) is abelian H/C is metabelian. If
Oq(H) is nonabelian, we have all q chief factors of H/C central and hence
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[3] Groups of odd order 333

H/C is a #-group and since it is also in 38^, H/C is again metabelian.
Finally H is metabelian, being a subdirect product of metabelian groups. To
see that this bound is best possible, let p, q be odd primes with q dividing
p - 1, let H be a nonabelian group of order pq, and let U be a faithful
irreducible GF(q)H-modnle. Then G = UH is a group in 3§2 of derived
and Fitting length 3.

2. Preliminaries

Our notation is mostly standard. The following should be noted. We
denote the centre of G by £((?), the /th term of the lower central series of
G by yt{G), and the socle of G by a(G). The class of #-nilpotent soluble
groups, q a prime, is denoted by ^ ' - 5 ^ , and the class of finite soluble
groups of nilpotent length at most n is denoted by JVn . If y is a class
of finite soluble groups closed under taking subdirect products, and G is a
finite group, we call the smallest normal subgroup N such that G/N is in
y the y-residual of G and denote it by G9'.

For the remainder of this paper, all groups are finite and of odd order.
Throughout this section, let p, q be distinct odd primes and let K be a field
of characteristic p.

There are a number of results we will need to use frequently, most are
well known. Results concerning modules for which no reference is given can
be found in Huppert [7] or Curtis and Reiner [1]. We will also need the
following results.

LEMMA 1. Let A be an abelian group on which H acts as a group of oper-
ators. Let N be a normal subgroup ofH of order coprime to \A\. Then A =
BxC, where B and C are H-subgroups of A and [B, N]= 1, [C, N] = C.

For a proof see Higman [6].

LEMMA 2. Let G be a group with a faithful irreducible representation over
K. If N is a normal subgroup of G with N <a{G) then N is the normal
closure of a single element.

This is a special case of a theorem of Gaschiitz [4].

LEMMA 3. Let G be a p-nilpotent group and U an indecomposable KG-
module. Then all the composition factors of U are isomorphic.

For a proof see Huppert and Blackburn [8, Theorem VII. 14.9].
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The next group of lemmas are technical ones we will need in the proof of
the main theorem.

LEMMA 4. Let H — QR, where Q is a nonabelian normal q-subgroup
and R is a q-group. Suppose that Q = MN, where M, N are abelian
subgroups of Q with M, N normal in H and Q/M, Q/N noncentral cyclic
chief factors of H. If Q/M, Q/N are nonisomorphic as H-modules then H
is not in 3§2.

PROOF. Note that if we set L — M n N, L < £(G). Since quotients of
groups in £&2 are also in 38^ , it will be enough to prove the lemma for the
case where Q' is a minimal normal subgroup of H. Moreover, L must be
cyclic (so that all chief factors of H in L are isomorphic as H-modules).
Note that R acts on Q/M and Q/N as distinct power automorphisms and
hence on Q' as a power automorphism distinct from both of these. Thus
M, N cannot be cyclic and it is now easy to see that L = Q' and Q has
order q3 and exponent q . But then we can choose an element x with x in
neither M nor N such that {x)H = Q. Since (x) is not normal in Q we
have H $ 3S1.

LEMMA 5. Let H be a group with an elementary abelian normal q-sub-
group N such that N is the normal closure of a single element, \N\ > q3

and either N has at most one subgroup of index q which is normal in H or
H/CH(N) is cyclic. Let U be a faithful irreducible KH-module, let W be a
homogeneous component of UN and set C = CN(W). Then for some h in H
we have Wh ^ W, Ch ^ C but (ChnC)H = N. If X is a diagonal subspace
ofW®Wh and V = X®Y, where Y is a complement for W@Wh in UN,
then U/V is trivial as a (Ch n C)-module but V is not an N-submodule of
U.

PROOF. Since C\heH c'1 = 1 we have C ^ C for some h in H and then
W ^ Wh . Set C n Ch = Ch and suppose that Cf ^ N for any h such that
Ch?C.

Suppose first that N has a unique maximal subgroup M with M normal
in H. Then we must have c" < M. Since \N/C\ = q, \N/Ch\ = q2.
Moreover C n M cannot be M and so we get M > C n M > C n M n C / l =
Ch. Thus C n M = Ch and M > (C n M)h = Ch n M > Ch, giving
(Cr\M)h = CnM for all h in H. But CnM # 1 and C can contain no
nontrivial normal subgroup of if, a contradiction.
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Hence suppose that H/CH{N) is cyclic. If h is an element of H such
that hCH(N) generates H/CH(N), then c" = M ^ N. As above we see

that C n M = Ch n M and hence (C n M f = C n M for all a in / / , again
giving a contradiction.

To complete the proof of the lemma, observe that X = V n (W © WA)
would be an ./V-submodule if V were, and X is clearly not an A^-submodule.

LEMMA 6. Let H be a group in 3§2 and suppose H = QR, where Q is
a q-group and is normal in H and R is a p-nilpotent group whose order is
prime to q. Suppose that Q is nonabelian and [Q, R] / 1. Suppose further
that U is a faithful irreducible KH-module. Then there is a subgroup S of
Q and a subspace V of U such that V is an S-submodule of U and S acts
trivially on U/V but V is not an SH-submodule of U.

PROOF. We suppose the lemma is not true and let H, U be a counterex-
ample with H chosen to have smallest possible order.

If M is a maximal normal subgroup of H with Q < M, then \H/M\ is
prime to q. We have UM completely reducible so let UM = W®X, with W

irreducible and set C = CH{W). Since Oq{M/C) = QC/C and C\h€H
 c>1 =

1 we have Oq{M/C) nonabelian. It then follows from the minimality of
H that if T is a Hall ^'-subgroup of M and [Oq{M/C), TC/C] ? 1 then
there is a subgroup S/C < Oq(M/C) and an S/C submodule V of W with

S/C (and hence S) acting trivially on W/V and with V not an (S/C)M/C-
submodule of W. It is then clear that if Sq is a Sylow ^-subgroup of S then
V © V is an Sq-submodule of U with Sq acting trivially on U/(V © X),

but V © X is not an S^-submodule of U. Thus H, U is not a counter-
example, a contradiction. Hence we may assume that [QC/C, TC/C] = 1
and since this holds for each irreducible constituent of UM we may assume
that [Q,T] = l.

Next choose M maximal such that M is normal in H and properly con-
tained in Q. Consider UMR. Since H is p-nilpotent, by Lemma 3 UMR

is a direct sum of indecomposable modules each of which has all its com-
position factors isomorphic. Let W be an irreducible submodule of UMR

and C = CMR{W). Moreover, UM is a direct sum of conjugate irreducible
modules and as before, if M is nonabelian then MC/C is nonabelian. If
as well [MC/C, RC/C] ^ 1 we again get a contradiction. Thus either M
is abelian or [M, R] = 1.

Suppose that M = O(Q). Then Q/M is an irreducible module for the
group R/T of prime order. Since Q is not cyclic, any noncentral #-chief
factor of H must have order at least q2 . We consider the cases [M, R] = 1
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and [M, R] ^ separately. If [M, R] = 1 then M = Q' since Q/Q' can
contain no elements centralised by R (by Lemma 1). Moreover, if Q has
class greater than 2 we would have y3(Q)/y4(Q) is clearly not centralised by
R if y2(Q)/y3(Q) is; hence Q must have class 2 and M is abelian. Since
Q/Q' has exponent q, so does (?' and since Q' is central in H it must be
cyclic by Lemma 2. Thus \M\ = q and Q is itself monolithic. By Huppert
[7, Hilfssatz III. 12.2], Q contains an element x of order q not in M. If
UQ = W © X with W irreducible, W is clearly faithful. Thus W(x) is
faithful and so 0 ^ [W, x] = {wx - w: w e W) ^ W. Put S = (x) and
F = [W, x]®X. Then F is an 5-submodule of U, S acts trivially on U/V
and SH = Q, so that F is not an S^-submodule of U. If [M, R] ^ l then
Af is abelian and it follows that a(M) contains a subgroup iV which is the
normal closure of a single element and contains a nontrivial chief factor of
H. If \Q/M\ > q3 then |A |̂ > q3 and Lemma 5 gives a contradiction. Thus
\Q/M\ = q2 . We then have that [R, Q1] < y3(Q) and hence a(M) contains
both central and noncentral chief factors of H, giving that a(M) contains a
subgroup N which is the normal closure of a single element in H and with
\N\ > q*. Again Lemma 5 gives a contradiction and so it follows that M
cannot be abelian.

If Q/M is a central chief factor of H, we must have [M, R] ^ 1 and
hence abelian. Again by Lemma 1 we have M = A x B, where A, B are
normal in H and [A, R] = 1, [B, R] = B; note that B ^ 1. We also
have that B is the ^ ' ^ residual of H and so is complemented in H
(Huppert [7, VI.7.15]). If S is a Sylow ^-subgroup of a complement then
S is a complement for B in Q. Suppose that [S, B] = 1. Then we must
have Q = SxB,H = Sx (BR), and S nonabelian. By Huppert [7, Satz
III. 12.3], S contains an elementary abelian normal subgroup E of order q2 .
Since H is faithfully and irreducibly represented on U, and E is normal
in H, it must be the normal closure of a single element. If D < a{B) is a
minimal normal subgroup of H then N = E x D satisfies the hypotheses
of Lemma 5 and which then gives a contradiction. Thus for some x in
S we have [B, x] # 1 and the minimality of H then gives S = (x). If
UQ = W{ © • • • © Wt, where the Wt are the homogeneous components of
UQ, we have t > 1 and we may suppose that WXD and W1D are non-
isomorphic, where D < a{B) is minimal normal and noncentral in H.
Noting that Z = {xq) is central in H, we have Uz is homogeneous. If X
is an irreducible submodule of Wx then we have X = YQ , where 7 is an
irreducible KM-module. It then follows from the Mackey subgroup theorem
that Xs = Y^ and hence the WjS are all isomorphic. Let Vo be a diagonal
tfS-submodule of Wx @W2 and set V = Vo © W3 © • • • © Wt. Then S, V
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satisfy the hypotheses and conclusion of the lemma, giving a contradiction.
Thus we may assume that there is no M with Q/M a central chief factor.

If

<2/<D«2) = (MJO(Q)) x . . . x (Mt/<t>(Q)),

with MJ<t>(Q) a (noncentral) chief factor of H, then each M{ is abelian
and so [Mt, M\ / 1 for some i, j . If t > 2 then MtMj < M for some M
maximal in Q with M normal in H. But then M is abelian, a contradic-
tion. Hence Q = M{M2 and since Ml, M2 are both abelian, Q has class 2
with O(Q) < C{Q) • Set L = <&(£>) = Afj n M2 and suppose that MJL is
noncyclic. Since Q can contain no elementary abelian subgroup normal in
H of order greater than q3, Af( must be homocyclic and indecomposable
as /?-group and \Mt/L\ = q2, i — 1, 2 (this follows easily from Taunt [14,
Lemma 6.1 and Corollary 6.2]). We thus have that L is the unique maximal
subgroup of M{ normal in H and MJL is isomorphic as i?-module to
a{L). It is easy to see that if M is any subgroup of Q such that Q/M is a
chief factor of H then M is homocyclic. If x is an element of Q not in L
and M is the normal closure of (x) then we have Q/M a chief factor of H
and hence x does not have order q . But then, since Q cannot be generated
by 3 elements it has an abelian normal subgroup (and hence an elementary
abelian normal subgroup, S say) requiring at least 3 generators, by Huppert
[7, Satz III. 12.3]. Since we must have S < L and L is a 2-generator group
we have a contradiction.

Thus we can assume Mx/L and M2/L cyclic and hence Q is a 2 generator
group of class 2. By Lemma 4 we can assume that Mi/L and M2/L are
isomorphic as //-modules and hence Q' is not central in H. Note that any
subgroup of Q containing Q' is then normal in H. Further, if L/Q' is not
cyclic then H will contain at least two minimal normal subgroups isomorphic
to Q/Ml as //-modules, a contradiction. Thus Q/Q' = (X/Q1) x (Y/Q1),
wher X, Y are normal in H and we may assume \X/Q'\ = q. But then
it follows from Taunt [14, Lemma 6.1 and Corollary 6.2] and the fact that
X/Q' is not isomorphic to the chief factors of H contained in Q' that we
can find S < X with S n L = 1. Let UQ = Ul®---®Ut, where the Ui are
the homogeneous components. If q divides p - 1 then we have that UQl

is not homogeneous since Q' is not central in H and so we may suppose
in this case that UlQi is not isomorphic to U2QI . If W is an irreducible
constituent of UQ, the Mackey subgroup theorem gives Ws contains a trivial
irreducible. Let UIS = TX®ZX, U2S = T2®Z2, where T,, T2 are trivial
irreducible modules. Let D be a diagonal subspace of T{ © T2 and set
V = D © Zj © Z2 © U3 © • • • © Ut. We now have V is an 5-submodule of U
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with U/V trivial. Clearly Qr < SH and V is not a £>'-submodule of U.
This completes the proof of the lemma.

LEMMA 7. Let G be a group with F(G) = Op(G) nonabelian. Set P =
Op{G) and suppose that for some chief factor A/B of G with C(P) < B, A <
P, we have G/CG{A/B) nonabelian. Then there is a subgroup S of O (G)
with S not normal in SG.

PROOF. Suppose the result is not true and choose G to be a minimal
counterexample. It is easy to see that G must be monolithic. Set H/P =
Op,(G/P) and let Q be a Hall //-subgroup of H. Suppose that CQ(P/C(P))
= D / 1. Then we must have [£(P), D] ^ 1 (since [P, D] # 1). But
a(G) < P' and hence [a{G), D] = 1. Since a(G) < £(P), Lemma 1 gives a
contradiction. Thus D = 1.

Choose M/P minimal such that M/P is nonabelian and subnormal in
G/P and every subnormal subgroup of M/P isabelian. Since Op{M/P) = 1
and CM/P(P/C(P)) = 1, we must have some chief factor U/V of M with
C(-P) < V, U < P, with M/CM(U/V) nonabelian, a contradiction unless
M = G. Thus we have G/P has all subnormal subgroups abelian. If G/P
does not have a unique maximal normal subgroup then it will be nilpotent
(since it is then the product of nilpotent normal subgroups). If G/P is not
a //-group it cannot be nilpotent and hence must have a unique maximal
normal subgroup (which is then an abelian //-group) whose quotient has
orderp. In either case (G/P)' = Xo/P is an abelian //-group. Let X be a
Hall //-subgroup of Xo.

Let

where the UJ^P) are indecomposable as G-modules. If G/P is a p'-group
then all the UJ<J>(P) are irreducible. If G/P is not a //-group then G/P
is /7-nilpotent and so all the composition factors of C/1/O(/>) are isomorphic
by Lemma 3. If UJV is a nontrivial irreducible then it is an easy deduction
from Blichfeldt's Theorem and the Mackey Subgroup Theorem that UJV is
projective and hence UJO(P) is irreducible.

Suppose that P/R is a noncentral chief factor of G with G/CG(P/R)
abelian. Since P/R is the <^"5^ residual of G/R, P/R is a complemented
chief factor of G. Let H be a complement for P/R in G. Note that R is
the Fitting subgroup of H and that R contains a chief factor A/B for H
with H/CH{A/B) nonabelian. The minimality of G also gives that if C/D
is a chief factor of H with £(/?) <D,C<R, H/CH(C/D) is abelian. If
R is nonabelian we get [R1, X] = 1. We have that XR/R is a normal

https://doi.org/10.1017/S1446788700034285 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034285


[9] Groups of odd order 339

//-subgroup of G/R and Lemma 1 then gives us that £(/?) = U xV, with
[U, X] = 1 and [V, X] = V and we have U ^ 1, V ± 1. Since both
U and V are normal in G we have a contradiction. Thus R must be
abelian and if A/B is any chief factor of G with A < R we cannot have
X < CG(A/B) and so we must have G/CG(A/B) nonabelian. Again from
the minimality of G we see that P/a(G) must be abelian and hence P has
class 2.

Now suppose that no noncentral chief factor P/R has G/CG(P/R)
abelian. It is then clear that a{G) = P'. Thus P must have class 2 and

We may suppose that G/CG(UX/<S>(P)) is nonabelian and £(P) <U2---Ut.
If Ux is nonabelian and x is an element of Ux not in $(/*) then {x)G®(P)
= £/, and so (x)G is nonabelian. We can then choose x so that {x) is not
normal in Ux and hence not normal in (x)G, a contradiction. Thus we have
that Ux is abelian and also that t > 1. Moreover since [Ux, X] ^ I we
have by Lemma 1 and the fact that G is monolithic that [Ul, X] = Ul. We
may also suppose that [Ux, U2] ̂  1 since Ux is not central in P.

Suppose that U2/Q>(P) is not isomorphic to UX/Q>(P) as G module. We
can then find an element x in UXU2 but not in Ux or U2 with (x) not
normal in UXU2 and t/j t/2 = {x)GQ>(P) and hence (x) not normal in (x)G .
Thus we must have UX/O(P) and U2/<t>{P) isomorphicas G modules. Note
that we may deduce as above that U2 is abelian. Now consider O(P). Since
it is central in P, we may regard it as a G/P module. Also, all the chief
factors of G contained in O(P) are projective as G/P modules and hence
<r(O(P)) is completely reducible as G module. But G is monolithic and
so o(®(P)) is irreducible and it follows that ®(P) is an indecomposable
homocyclic subgroup. If Ut is not indecomposable homocyclic, then a(Ut) >
P' and a{Ut) n P' is irreducible. Set Vi = Ut if Ut is an indecomposable
homocyclic subgroup and Vt'• = ff(C/(.) otherwise. By relabelling if necessary,
we may suppose that the exponent of F, is at least the exponent of V2.
If Po = V{ V2, then Vx, V2 are abelian normal subgroups of G and PQ is
nonabelian. Set Wt = Vtr\ &(P), then Xt = VJWi is a chief factor of
G and O(P0) = WXW2. Regarding Xx as a GF(p)G-module we have £ =
En&GF.,G(Xx) is a field and since G/CG{XX) is nonabelian and of odd order,
we have dim£.(JT1) > 3 (using for example Curtis and Reiner [1, Theorem
53.17]). We have P0/Q>(P0) isomorphic to XX®X2 as GF(p)G-module
and then by Curtis and Reiner [1, Theorem 61.16] P0/O(i>

0) is generated
(as module) by a single element. Thus we can find u e Vx, v e V2 such
that (uv)G = Po. Then (uv) is normal in Po by hypothesis and so, setting
Co = CP0((uv)), Po/Co is a nontrivial cyclic group. Moreover O(i)

0) is
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central in Po giving \P0/C0\ = p. If [F,, v] = 1 then [V{, v8] = 1 for all
g € G, giving [Fj, V2] = 1, a contradiction. Thus, setting C = Cvl{v),
we have C # Vl. On the other hand C = CF1(MU) = Co n K,, so that
| Vi /C\ — p. Since there is a one to one correspondence between the subgroup
Y/<P(P0) = {yv<&(P0): y e Vl, yv®(P0) generates an irreducible submodule
of i>0/O(/>0)} and HomGF(p)G(XltX2), we have \Y/O(P0)\ = \E\. Thus
we cannot have YDC. Choose x in VX\C. Since Vl is homocyclic and
C/O(/>

0) is not cyclic, we can choose a 2-generator homocyclic subgroup W
of C with W not contained in ®(PQ) and not contained in Y. We can
then choose u, w e W so that WQ — {uv, w) is a 2-generator homocyclic
group of the same exponent as W. Since Wo is homocyclic, we can choose
y e Wo with y = urwsv and (y) n ([v, x]> = 1. Then we have, setting
z = uws, yx = y" = znvn for some integer n. However we also have
yx — zxvx = zvx and so y"~l = [v , x], a contradiction.

This completes the proof of the lemma.

3. Proof of the theorem

For the rest of this section G denotes a fixed monolithic group of odd
order in 3§2. If G is nilpotent and hence a />-group that it follows from
Heineken [5, Theorem 2] and Mahdavianary [9, Theorem B] that G has class
3. Hence we suppose that G is non-nilpotent.

We set F(G) = P and suppose next that P is nonabelian. Suppose further
that G/P is nonabelian. Set M/P = (G/P)'nOp,(G/P) then clearly M±P.
If [A, M] < B for every chief factor A/B of G with £(P) < B and A < P
then [£(/>) n P', M] = 1. Since we cannot have [A, M] < B for every
chief factor of G with A < P, we cannot have [C(P), M] = 1. Lemma
1 then gives £(/») = C xD with [C, M] = 1, [D, M] = D and both C
and D nontrivial and normal in G. This gives a contradiction since G is
monolithic. Thus G satisfies the hypotheses of Lemma 7 and the conclusion
of Lemma 7 tells us that G cannot be in 3§2 .

It follows that if P is nonabelian then G/P is abelian of order prime to
p, establishing (ii). Thus we suppose that P is abelian and we suppose also
that G has been chosen minimal such that (iii) is not satisfied.

If S/R is a chief factor of G with S < P and CG(S/R) > P then we
set K/P = CG(S/R)PDF(G/P). Then S = CS(K) x[P,K] (by Lemma 1)
and since G is monolithic we must have CS(K) = 1 and then K acts fixed
point freely on S/R, a contradiction. Thus CG(S/R) = P and if G/P has
nilpotent length precisely n then P is the JYn residual of G and so has
a complement H in G by Huppert [7, Satz VI.7.15]. If P is not minimal
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normal then the minimality of G gives us that a{G)H has the structure
given by (iii) and hence so does H. Thus we may assume that P is minimal
normal in G and has a complement H in G.

Let N be a normal elementary abelian ^-subgroup of H, q a prime.
Let PN=Ui@---@Ut, where the Ut are the homogeneous components of
PN and let C, = CN{Ut)\ note that \N/Ct\ = q. Suppose moreover that q
does not divide p - 1, N is the normal closure of a single element and that
|iV| > q2; note that then t > 1 and \Ut\ > p. Let D be any subgroup of
U1 of order p; note that D is not normalised by N, but is normalised by
C, and that c" = N. Then, setting E = (D © U2 © • • • 0 Ut)Cl, we get E
subnormal in G but not normal in its normal closure PN. Thus if q does
not divide p - 1 then N is cyclic. In fact more is true for if q is a prime
not dividing p - 1 then Oq(H) is cyclic. To see this we first observe that by
Lemma 2 a(H) n Oq{H) is generated by a single element as normal subgroup
and so is cyclic. If Oq{H) is not itself cyclic then suppose it contains a
noncyclic elementary abelian normal subgroup, A say. If a e A\a(H) then
(a)H is not cyclic, a contradiction. In particular, £(Oq(H)) is cyclic and so
if U is an irreducible constituent of Po ^ then U is faithful. We then
have UOq{H) in 3§2 and Oq{H) contains a noncyclic elementary abelian
subgroup by Huppert [7, Satz III. 12.3] and as above we get a contradiction.
Thus Oq(H) is cyclic.

Now suppose that q divides p - 1 and that Oq(H) is abelian. Then

Oq(H) contains a chief factor of H of order at least q3 if and only if
a{0AH)) contains such a chief factor and if a(O (H)) contains such a chief
factor there is a normal subgroup N of H contained in a{Oq{H)) with a

unique maximal //-invariant subgroup M and with \N/M\ > q3. If W
is a homogeneous component of PN and C = CN{W) then CH = N and
Lemma 5 gives a contradiction. Thus if A/B is a chief factor of H with
A < Oq{H) then \A/B\ < q2 .

Finally, suppose that Oq(H) is nonabelian and suppose also that Oq{H)
contains a noncentral chief factor. Set

M/(O(H) x 0,{H)) = OAH/OAH) x O',(//)),

then N = Op,p(M). Then N is p-nilpotent, Oq(N) = Oq{H) and Oq(N)
contains noncentral chief factors of N. Also, if W is an irreducible con-
stituent of PN and C = CN(W) then Oq(N/C) is nonabelian and contains
noncentral chief factors of N/C. Lemma 6 (with W and N/C for U and
H respectively) then tells us that W(N/C) cannot be in 3S2 , a contradiction.
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