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0. Introduction

The primary motivation for studying inverse semigroups has been that they are the
algebraic structures encountered most often in the formal study of partial symmetries. Yet
numerous significant (types of) mathematical objects have partial symmetries which
collectively possess a richer algebraic structure than that captured in the definition of
an inverse semigroup. This observation has led the author to define an "inverse
algebra" to be any inverse monoid S possessing a natural meet operation. Thus given
any pair of elements x, y e S, an infimum x Ay exists relative to the natural partial
ordering. The algebra is called "complete" when arbitrary nonempty subsets possess
natural infima. A primarily algebraic investigation was carried out on both types of
algebras by the author in [13].

We shall refer to inverse semigroups of partial symmetries as symmetric inverse
monoids. This is an extension of the usual meaning of the term symmetric inverse
monoid which usually refers to the inverse monoid of all partial bijections on a set.

If symmetric inverse monoids turn out to be complete inverse algebras in so many
instances where the corresponding objects are of mathematical interest, then why is this
so? This leads us to consider a related, but more precisely posed question: When are
the symmetric inverse monoids for all objects in a given category necessarily (complete)
inverse algebras? It is the purpose of this paper to provide answers to this and several
closely related questions.

Since these answers are stated in the terminology of category theory, we begin by
recalling in Section 1 the description of symmetric inverse monoids in abstract
categories in [12], and then stating precise conditions for a given category to have
symmetric inverse monoids existing at each of its objects. The essential agreement of
this description with the familiar "isomorphisms between subobjects" picture of a
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2 JONATHAN LEECH

symmetric inverse monoid is demonstrated, and examples are given showing how to
exploit instances of duality between categories.

Section 2 begins by first recalling the definition of an inverse algebra and then
examining an alternative description not found in [13]. The above question about when
the symmetric inverse monoids of all objects in a given category must be (complete)
inverse algebras is then considered, with precise answers given in Theorems 2.6 and
2.7. Criteria insuring that symmetric inverse monoids in a given category are
respectively E-unitary monoids, finitely complete inverse algebras or semilattices, are
given in Theorems 2.8, 2.10 and 2.16.

In the third and final section, symmetric inverse monoids of objects in free categories
are studied. In so doing, certain inverse monoids arising in the study of co-semigroups
are cast in a new light.

1. Settings and inverse monoids

A monocontext is a pair [M,X| consisting of a category M whose morphisms are
all monic and an object X, called the maximal object of M, such that every object of M
is a subobject of X. Upon dualizing one has the concept of an epicontext (E, X) where
E is a category of epimorphisms, whose objects are all quotient objects of the maximal
object X. One visualizes a monocontext as a "flow" of monomorphisms moving
towards the maximal object, while an epicontext is visualized in reverse fashion.
(M, X) is called a monosetting when M also has finite intersections. An episetting
(E, X) is defined in dual fashion. Often the terms "context" or "setting" will be used
when we do not wish to specify whether the situation is monic or epic.

An equivalence of contexts is any equivalence functor between the ambient categories
which preserves the maximal objects. A duality of contexts is a duality (contravariant
equivalence) between the ambient categories preserving the maximal objects. Given an
equivalence or a duality of contexts, if either context is a setting, then so is the other.
Contexts and settings are encountered in ordinary categories as follows:

Let K be a category and let X be any object in K. The monocontext of X in K is
the pair (M(X), X), where M(J*Q denotes the subcategory of K of all monomorphisms
between all objects A of K for which a monomorphism a: A -> X exists. One defines in
dual fashion the epicontext (E(X), X) of X in K. When K has finite [co-] intersections,
then all monocontexts, [respectively, epicontexts] in K are monosettings [episettings].
Any equivalence [or duality] between a pair of categories induces a host of offspring
equivalences [dualities] between the various derived contexts in the two categories.

From any small setting one can construct an inverse monoid of fractional morphisms
which classifies that setting to within (contravariant) equivalence. This directly
generalizes results published in 1953 by A. H. Clifford [3] who showed that any
bisimple inverse monoid S can be constructed from a one object episetting, that is,
from a right cancellative monoid whose principal left ideals are closed under finite
intersection. We present the construction for monosettings.

Let (M,X) be a small monosetting. Consider parallel pairs of morphisms
(a, a!): A -*• X in M where the common domain A varies with the pair. Two such pairs
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(a, a') and (/?, p) are equivalent if there is an isomorphism \i € M such that both
P = cc/i and )? = a'/i. A fractional morphism is an equivalence class of such pairs, with
the class of (a, a') denoted by [a, a']. Let I(M, X) denote the set of all such fractions. A
multiplication is defined on I(M,JQ by setting

where K and X arise from taking the intersection of the middle pair, a' and /?, in M:
a' n /} = <X'K = PX. It is easy to see that the class [OLK, &X] is independent (i) of the
particular choice of (K, X) to represent the intersection a! n P, and (ii) of the particular
representatives, (a, a') and (/?, ft1). Multiplication is thus well defined. We have the
following pair of results taken from [12]. (See also [5, Section VII.8].)

Theorem 1.1. Given a small monosetting (M, X), I(M, X) forms an inverse monoid
under the above multiplication. In particular:

(i) the idempotents o/I(M, X) are classes of the form [a, a], with the identity element
being [\x, \x\

(ii) the semilattice of idempotents in I(M, X) is isomorphic with the semilattice of
subobjects ofX.

(iii) inverses in I(M, X) are given b the rule, [a, a']"1 = [a\ a].

Theorem 1.2. Two small monosettings are equivalent if and only if their classifying
monoids are isomorphic. In particular, given an equivalence of small monosettings,
F: (M, X) « (N, Y), an isomorphism IF: I(M, X) ^ I(N, Y) is defined by IF[a, a'] =
[Fa, Fa']. Moreover, to within isomorphism, every inverse monoid arises as the classifying
monoid for some small monosetting.

The inverse monoid I(M, X) is thus called the classifying monoid of the monosetting
(M, X). In this paper we only need the obvious assertion that the induced map IF is an
isomorphism; however, the reader should take note of the final assertion of Theorem 1.2
which guarantees that the scope of this paper is all inverse monoids and inverse algebras.

Upon dualizing the above concepts, any small episetting (E, X) has a classifying
monoid I(E, X) defined on the set of equivalence classes [a, a'] of pairs (a, a') of
epimorphisms form X to some common codomain. Multiplication is given by co-
intersection in the middle: [a, a'] [ft, f¥] = [KX, Xff], where xa' = Xfi is the co-intersection
of a' with p. Clearly I(E, X) is an inverse monoid and the dual assertions of Theorems
1.1 and 1.2 must hold.

Let K be a well-powered (i.e., locally small) category with object X. If the context
M(X) is a setting, then the symmetric inverse monoid of X in K, denoted Ix, is the
classifying monoid of any small monosetting (M, X) equivalent to (M(X), X). Since
any two choices for (M, X) must be equivalent, Ix is well defined to within
isomorphism. For objects X in most categories of mathematical interest, there is a
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standard choice for M(AT) and thus a standard form for Ix. Suppose instead that the
duals to these conditions all hold at X. In this case, the dual symmetric inverse monoid
I*x at X is defined as the classifying monoid of any small episetting (E, X) equivalent
to (E(X), X). Again Fx is unique to within isomorphism. Most important categories in
mathematics have both types of monoids existing for each of their objects, with the
two monoids usually being non-isomorphic. In any case, a category has [dual]
symmetric inverse monoids if such monoids exist at each of its objects. We sum up our
remarks with the following theorem.

Theorem 1.3. A well-powered category has symmetric inverse monoids if and only if
it has finite intersections. Dually a co-well-powered category has dual symmetric inverse
monoids if and only if it has finite co-intersections.

The essential agreement of our description of symmetric inverse monoids with the
standard description in terms of isomorphisms between subobjects of the ambient
object (the groupoid approach) is demonstrated as follows.

Example 1.4. Let X be a set in the category Set of sets and functions; let [a, a'] be
a fractional morphism in Ix, with A, A' c X being the respective images of a and a! in
X. Both A and A' are independent of the pair (a, a'): D-*-X representing [a, a']. Let a and
a' be factored as a = id and a' = I'S, where i and i' are the inclusions of A and A' into X,
and 5: D -*• A' are bijections. Then the bijection a = 8(8'Yl: A' -*• A also depends only on
the class [a, a']. Thus: Elements of Ix are uniquely represented by bijections between
subsets ofX under the compound bijection a -> {ia, i') -> [io, i'\ where a:A'-*-A is such
a bijection, with i and i' being inclusion maps of A and A' into X.

Let [/}, p] e Ix be represented by (nx, rf), for T: B -*• B a bijection between the images
B and B in X of 0 and ft, with the ^'s being the inclusion maps for these images.
We compute [a, a'] [/?, ft] using (iff,»') and (rjz, r(). The intersection i' n r\x is obtained
from the subset C = z~\A' C\B) of B together with the restriction K = T | C:C -+A
and the inclusion A: C c B.
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The product is precisely the class of (NTK, n'X) where n'X is just the inclusion of C into
X. Upon calculating the bijection representing this class we obtain the composition
{a\A n B)(T|C). Hence, for Set, our definition of Ix is equivalent to the familiar one.

The details of the above example easily extend to any category of concrete
mathematical objects. Indeed they may be generalized to objects X in any well-
powered category K having finite intersections. Upon choosing for each equivalence
class of subobjects of A" a representative monomorphism (the designated inclusion)
v.A -*X, every fraction [a, a'] is uniquely represented by a pair (HX, i') where i and i'
both represent their subobject classes and a: A -*• A' is an isomorphism between their
domains. Because K has finite intersections, the multiplication of fractions
[a, a'] [fl, ft] may again be carried out by composing isomorphisms between subobject
representatives.

The monoid-of-fractions approach facilitates the use of instances of duality between
categories to double the fruit of our labours.

Lemma 1.5. Let F: K -> K' be a duality functor. Upon restriction, F induces for each
object X in K a duality of (M(X), X) with (E(FZ), FX) and similarly, a duality of

), X) with (M(FX), FX).

Theorem 1.6. Let F: K -*• K' be a duality functor. If K has symmetric inverse
monoids, then K' has dual symmetric inverse monoids. Moreover at each object X in K, F
induces an isomorphism oflx with I^x.

Proof. Let (M, AT) be a small subcontext of (M(X), X) for which inclusion is an
equivalence. Then F induces, by restriction, a duality of (M, X) with (FM, FX), with
the inclusion of the latter into (E(FAT), FX) being an equivalence. (M(X), X) is thus a
setting if and only if (E(FA^, FX) is likewise, in which case both Ix and I^x exist. If the
two monoids are constructed from the restricted settings (M, X) and (FM, FX), then
the map [a, a'] - • [Fa, Fa'] yields an isomorphism of classifying monoids.

Examples 1.7. Some familiar instances of duality may be applied as follows.

(i) Pontryagin duality for locally compact Hausdorff Abelian groups restricts to
yield a duality between the category of discrete groups and the category of compact,
Hausdorff abelian groups. Thus if A is an abelian group and A* denotes its compact
character group, then both IA ^ rA. and IA. ^ I*A.

(ii) In particular, since A = A' for finite abelian groups, it follows that in the
category of abelian groups, the symmetric inverse monoid of a finite abelian group is
isomorphic with its dual symmetric inverse monoid.

(iii) If V* = Hom(K F) is the dual space of a vector space V over field F, then one
has V ^ V in the finite dimensional case as both dimensions agree. It follows that the
symmetric inverse monoid of any finite dimensional vector space V is isomorphic with
its dual symmetric inverse monoid.
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Example 1.8. We calculate simultaneously Jz and PT where T is the multiplicative
circle group {2 € C | |z| = 1} forming the Pontryagin dual of the additive group of
integers, Z. To begin, let P be the inverse monoid having as elements pairs (m, n) of
positive integers, with the multiplication defined by:

(m, n) (p, q) = (mp/gcd{n, p), nq/gcd{n, p}>

where gcd{«, p) denotes the greatest common divisor of n and p. P is the multiplicative
analogue of the bicyclic semigroup B defined on N x N (for N denoting the natural
numbers) with bicyclic "addition" given by

(m, n) + (p, q) = (m + p — min{«, p), n + q - min{«, p)).

Prime power factorization yields an isomorphism of P with the "direct sum" E^B,
consisting of all co-tuples ((uk, vk)) e B" such that (uk, t>k) = (0,0) for all but finitely
many k. The isomorphism is defined by

(m, n) -+ ((log, m, log, n) | p is the fc-th prime)

where log,, denotes the p-exponent in the prime power factorization of the argument.
Next let sgn = {+, —} be the "sign group" with multiplication given by the usual
rule of signs. Claim: Iz and I*T are both isomorphic with (sgn x P)°. To see this,
consider the skeletal monosetting at Z consisting of objects, 0 = {0} and Z, together
with morphisms: l0 at 0; 0:0 ->• Z; and n: Z -*• Z for all n ^ 0 in Z where n here
represents the monomorphism z ->nz for z e Z . Elements of the classifying monoid
consist of [0,0] and all [m, n] such that m,n^0, with [m, n] being identified with
[—m, —n]. Due to this identification, when forming a product [m, n] [p, q] we may
assume n, p > 0. Case 1: if [m, n] or [p, q] is [0,0], then n and p intersect at 0 and so
the product is [0,0]. Case 2: neither are [0,0]. Then one has the intersection
diagram

p/gcd(n, p)

n/gcd(n, p)
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which yields [m,n]\p,q] = [mp/gcd(n,p),nq/gcd(n,p)]. Let us denote [m,n] by (|m|,|n|)
when m and n share a common sign, and by — (|m|, \n\) when the signs are opposite.
With this notation, the claim follows.

Example 1.9. Consider the additive group of real numbers R endowed with its
standard topology. R is isomorphic to its Pontryagin dual (in the category of
locally compact Hausdorff Abelian groups) R* under the mapping x -> x* where
x*(y) = cos(xy) + i sin(xy). The monosetting at R is thus dual to its episetting, so that
/„ and /£ are isomorphic.

The structure of JR is nontrivial. Indeed let RD be the additive group of real numbers
with the discrete topology. Then the identity map RD -> R is a continuous homo-
morphism which yields, in turn, the inverse monoid /RD as a subsemigroup (in fact, the
maximal ideal) of/K.

Thus far we have restricted our attention to the subcategory M(K) of all mono-
morphisms and the subcategory E(K) of all epimorphisms of some given category K.
Other subcategories may also be of interest, especially in concrete situations where
monomorphisms need not be injective or epimorphisms need not be surjective. In such
cases, there is the subcategory Inj(K) of injective monomorphisms and the subcategory
Sur(K) of surjective epimorphisms. There is also the class M*(K) of extremal
monomorphisms and the class EX(K) of extremal epimorphisms. (Recall that a mono-
morphism \i is called extremal, if given a factorization n = ve where e is epic, then e is
an isomorphism. Extremal epimorphisms are defined in dual fashion. Regular mono-
morphisms which arise as equalizers are always extremal.) In general, neither M*(K)
nor E*(K) need be subcategories of K, but they are in many cases, and in particular
when they coincide with Inj(K) or Sur(K) respectively. For any of these variant forms
of M(K) or E(K), the corresponding statement of Theorem 1.3 or its dual still hold.

Example 1.10. Let XR denote the inverse monoid of isomorphisms between the
extremal subobjects of R, the additive reals with the usual topology. (We are thus
considering /„ relative to M*(K) for the category K of locally compact Hausdorff Abelian
groups.) To within isomorphism, the extremal subobjects of R consist of all closed
subgroups of R with the inherited topology: R and its cyclic subgroups, Zx for x > 0.
The units of XB, are the nonzero multiplicative translations of R and may thus be
identified with the multiplicative group R* of nonzero reals. Given x, y > 0 in R, the two
isomorphisms of Zx upon Zy are the map (y, x) sending nx to ny, and the map — (y, x)
sending nx to -ny. The complement of R# is a maximal ideal M consisting of the D-class
of all isomorphisms between the nontrivial cyclic subgroups and the D-class {0}.

To further describe M, we define its rational core to be the bisimple subsemigroup
Me of all isomorphisms between nonzero cyclic subgroups of the additive group of
rationals Q. Given positive rationals u, v, x and y with a, x e sgn (the sign group
defined in Example 1.8), multiplication in Mc is described by:

a{v, u)x{y, x) = ox(vy/(u, y), ux/{u, y))

https://doi.org/10.1017/S0013091500019398 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019398


8 JONATHAN LEECH

where (u, y) denotes the largest rational number q for which both u/q and y/q are
integers. MQ thus factors as the product of the group sgn with the subsemigroup P+ of
all positive cyclic isomorphisms, extending to all of Q+ x Q+ (for Q+ denoting the
positive rationals) the multiplication defined for P in Example 1.8. If B' denotes the
semigroup defined on all Z x Z by extending the multiplication rule given for the
bicyclic semigroup B in Example 1.8, then a decomposition P+ ^ l^B' is obtained
by extending the isomorphism given for P in Example 1.8 to allow for negative
exponents.

The maximal ideal, M, is isomorphic to the matrix semigroup (/ x MQ X if, for /
a set of coset representatives for the subgroup of positive rationals in the multiplicative
group of positive reals, where nontrivial instances of multiplication are given by letting
(i, CL,])(k, p, I) be (i, a/?, 0 if 7 = k, and 0 otherwise.

Finally, since extremal monomorphisms and extremal epimorphisms dualize each
other, XK is isomorphic with the dual monoid X^ arising in EX(K).

2. Symmetric monoids and inverse algebras

Almost all important categories of mathematical objects are well endowed as
categories. In particular, they are usually both complete and cocomplete. It follows
that when one carefully examines the [dual] symmetric inverse monoids of their objects,
one should expect to discover monoids that are correspondingly well endowed.

To see what occurs, recall first that an inverse monoid S comes equipped with a
natural partial ordering which is given by: x > y in an inverse monoid S if and only if
any of the following equivalent conditions holds:

(i) 3e e E(S), y = ex (ii) 3 / e E(S), y = xf

(iii) y = yy~xx (iv) y = xy~ly

where E(S) denotes the set of idempotents in S. (See [7, V.2].) Stated intuitively, x > y
asserts that y is a restriction of x, which is the case when one examines the symmetric
inverse monoid of a set X, or of any mathematical structure. (See [7, V.I.10].) An
important property of this partial ordering is that it is compatible with both multiplica-
tion and inversion: x > y and u > 0 imply xu > yv and x"1 > y~l. Even more is true:

Lemma 2.1. Let S be an inverse monoid. Then with respect to the natural partial
ordering on S, both inversion and multiplication distribute over conditional infima. Thus if
{xji e / } for 7 ^ 0 has an infimum, then so do {xf' | ie/} and {ux,v\i e /} for any
u,v e S with

inf^xf1} = (infi6l{Xi})"' and inf^ux^} = u(infi6,{Xi})i>.

That inversion distributes over conditional infima, as well as conditional suprema,
is well-known. Less known, perhaps, has been the similar fact for multiplication, which
appeared as an incidental result in a 1973 paper by Schein [17]. In order to exploit
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maximally the natural partial ordering in a systematic fashion, we shall require the
following concept from [13]:

An inverse algebra is an inverse monoid which forms a meet semilattice under the
natural partial ordering. More formally, an inverse algebra is an algebra (S; •, A,"1,1)
of type (2,2,1,0) such that:

(i) the reduct (S; • ," ' , 1) is an inverse monoid (with the symbol • omitted when
writing products);

(ii) the reduct (A; A) is a meet semilattice;

(iii) the identities, (aa~lb) A b = aa~lb and (a A b)(a A b)~lb = (a A b) hold.

Condition (iii) asserts that the natural partial order of both reducts agree. Clearly
inverse algebras form a variety of algebras. An inverse algebra is complete if all
nonempty subsets have infima. In what follows, the algebra under consideration is
usually denoted by its underlying set S.

Perhaps the most striking contrast between inverse semigroups in general and inverse
algebras is that of the role of the idempotents in the structure of an inverse algebra. To
see this, let x e S, for S an inverse monoid. If an idempotent/ e E(S) exists such that

(0 x > / , that is, xf —f =fx, and

(ii) for any idempotent e e S such that x > e it follows that / > e,

then / is unique and is called the fixed point idempotent of x, to be denoted by f[x].
If f[x] exists for all x e S, then the induced unary operator/: S -*• E(S) is called the
fixed point operator of S and the inverse monoid S is said to "have fixed point
idempotents." When this is the case, compatability of the partial order implies that for
any x,y e S,f[x~i]=f[x] and f[xy] >/[x]/[y]. We now recall the following
fundamental result:

Theorem 2.2. ([13, Theorem 1.9]) An inverse monoid S is an inverse algebra if and
only if it has fixed point idempotents. When S is an inverse algebra then also:

(i) For allx,yeS,xAy =/[xy"']v = x/[x"'y] andf[x] = 1 A x.

(ii) S is complete if and only if E(S) forms a complete lattice, in which case infima of
nonempty subsets ofS are given by:

inf.ei Xj = (infij6l /[XjXf'JK, for any fee/.

The pleasing fact that multiplication and inversion distribute over meets suggests a
third approach to inverse algebras. To begin, a meet semilattice operation A defined on
an inverse monoid is distributive if all inverse monoid operations distribute over A.
Question: Must distributive meets be natural? That is, does the presence of such a meet
ensure (i) that the monoid is an inverse algebra and (ii) that the given meet coincides
with the natural meet? To see that this need not be the case, consider a distributive
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lattice with a maximal element: (£); v, A, 1). While (D; A, 1) forms an inverse monoid,
the distributive "meet" v is not natural. Thus further conditions are needed to insure
that the given meet is directed down the monoid. We pursue the matter further,
beginning with a lemma.

Lemma 2.3. Let S be an inverse monoid on which a distributive meet operation A is
defined. Upon denoting the natural partial ordering by < and the meet partial ordering by
<*, the following hold in S:

(i) x <* y implies uxv <* uyv and x"1 <* y"1.

(ii) e, f G E(S) implies e A / e E(S) with e A / <* ef.

Moreover, the following are equivalent assertions:

(iii) e <• 1 for all e e E(S).

(iv) eAf-effor all e, f e E(S).

(v) x < y implies x <* y for all x,y e S.

Proof. Distributivity plus the fact that x <* y means x A y — x yields (i). For (ii)
first observe that e A / = e~l A / " ' = (e A / ) " ' and hence (e A ff = e A f. Distribution
implies (e A ff = e A / A ef and so (e A ff <* e A /, e/. But then also, e A / =
(e A / ) 3 <* (e A ff by (i) and so (ii) follows. To see the equivalence of (iii)-(v), observe
first that (v) implies ef <* e A / and hence (iv), which in turn implies (iii). So assume
(iii). If x < y, then x A y = yx~'x A y = y(x~'x A 1) = yx~'x = x and (v) follows.

Theorem 2.4. Let S be an inverse monoid with a distributive meet operation A for
which the induced partial ordering <* satisfies e <* 1 for all e e E(S). Then S is an inverse
algebra with the given meet A being the natural meet.

Proof. Pick x e S and se t / = 1 A x. Distributivity implies that / " ' = 1 A x"1 and
also that / = / / " ' / = 1 A x A x"1 A . . . <* 1 A X"1 = / " ' . Similarly / " ' <*/ and so
/ = / - ' . Thus / =f. But f = 1 A x A xx <• / , so that f <* f < • / and hence / = / 2 .
Now / <* x implies / = / / <*fx = (1 A X~')X = X A XX"1 <* x A 1 = / . Thus / = /x and
/ < x in the natural ordering. But if e e E(S) and e < x, then by Lemma 2.3(v) e <* x
and so by Lemma 2.3(iv), e = eAlAx = eAf — ef, that is, e < f. Thus / is the fixed
point idempotent of x, and S is seen to form an inverse algebra. In fact f[x] is given
by the standard identity f[x] = 1 A x, but using the given meet. To complete the proof
of the theorem, by Lemma 2.3(v), it suffices to show that x <* y implies x < y. So
suppose x <* y. By Lemma 2.3(i) we have x = xx~'x <* yx~xx so that x = x A yx~xx =
(1 A yx~')x =f\yx~l]x. But by Theorem 2.2(i), f\yx~l]x is the natural meet x AN y.
Hence x = x AN y < y.

Thus as algebras (S; •, A,"1 ,1) of type (2,2,1,0), inverse algebras are determined
by inverse monoid identities on (S; • ," ' , 1), semilattice identities on (S; A), the
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distributive identities, u(x A y)v = uxv A uyv and (x A y)~l — x"1 A y~l, and the identity,
1 AXX"1 = xx~'.

When is a symmetric inverse monoid an inverse algebra? When does a category have
symmetric inverse algebras for each of its objects? When are such algebras complete?
We begin with a lemma.

Lemma 2.5. Let (M, X) be a small monosetting. If S = I(M, X) is the classifying
monoid of the setting, then:

(i) E(S) = {[a, a] | a has codomain X]

(ii) [a, a'] > [fi, p] if and only if (3K e M) (ft, $) = (a/c, a'*)

(iii) [a, a'] > [/?, /?] € E(S) if and only if there is a morphism 5 e M such that
*5 = p = a'<5.

(iv) [a, a'] has a fixed point idempotent in E(S) if and only if the pair (a, a') has an
equalizer y in M, in which case f [a, a'] = [ay, a'y].

(v) S is an inverse algebra if and only ifM has equalizers.

(vi) S is a complete inverse algebra if and only if M has equalizers and arbitrary
nonempty intersections.

Proof. Assertion (i) is just Theorem 1.1 (i) restated for convenience. To see (ii) let
[a, a'] e S and [e, e] € E(S) be given, and let K and A be morphisms yielding intersection
of the middle pair: OC'K = a' n e = eA. We calculate:

[a, a'] [e, e] = [IXK, eA] = [<XK, OC'K:].

From the definition of the natural partial ordering, both (ii) and (iii) must follow. To
see (iv), first suppose that y equalizes a and a'. Then by (iii) we have
[a, a'] > [ay, a'y] e E(S). Suppose next that [a, a'] > [fi, /J]. By (iii) again, a5 = P = a!5 for
some morphism 5. Since y equalizes the pair (a, a'), there must be a factorization,
5 = yx. Thus by (ii), [ay, a'y] > [ayjc, a'yx] = [/?, /?], so that [ay, a'y] is the fixed point
idempotent /[a, a']. Conversely, suppose that S has fixed point idempotents, and let a
parallel pair (a, a') be given. Let /[a, a'] = [e, e]. By (iii) a factorization ay = e = a'y
exists. We claim that y is the equalizer. For let a<5 = a'<5. By (iii), [a, a'] >
[aS, a!5] e E(S). But since [e, e] =/[a, a'], we have [£, e] = [ay, a'y] > [a<5, alS\. Thus by (ii)
there is a (necessarily unique) K such that <x8 = ay* = a'yjc = a'<5, so that y must indeed
equalize (a, a') and (iv) follows. Next, observe that by (iv) S is an inverse algebra
precisely when every pair (a, a') with codomain X has an equalizer in M. Thus when M
has equalizers, S is an inverse algebra. For the converse, let (a, a'): A -> Y be any
parallel pair in M. By the maximality of X, a morphism A: Y -*• X must exist. If S is an
algebra, then the pair (Aa, Aa7) has an equalizer y: K -> A. But since A is a mono-
morphism, y also equalizes (a, a'), so that (v) follows. Finally, (v), together with
Theorem 2.2(ii), yields (vi).
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A category has [dual] symmetric inverse algebras if it has [dual] symmetric inverse
monoids existing at each of its objects, with all such monoids being inverse algebras.
When the algebras are also complete, the category is said to have complete [dual]
symmetric inverse algebras. Immediate corollaries to the previous lemma are the
following theorems and their duals.

Theorem 2.6. A well-powered category has symmetric inverse algebras if and only if(i)
it has finite intersections and (ii) it has equalizers for parallel pairs of monomorphisms. In
particular, any finitely complete, well-powered category has symmetric inverse algebras.

Theorem 2.7. A well-powered category K has symmetric inverse algebras that are
complete if and only if (i) K has arbitrary, nonempty intersections and (ii) K has
equalizers for all parallel pairs of monomorphisms. In particular, any complete, well-
powered category has complete symmetric inverse algebras.

Except for multiplicative semilattices, an E-unitary inverse monoid cannot be an
inverse algebra since no non-idempotent in such a monoid is bounded below by an
idempotent. This observation enables us to determine when a category has E-unitary
symmetric inverse monoids.

Theorem 2.8. A well-powered category K with finite intersections has E-unitary
symmetric inverse monoids if and only if its subcategory M(K) of all monomorphisms is
cancellative. In particular, any well-powered cancellative category with finite intersections
has E-unitary symmetric inverse monoids.

Proof. To assert that no non-idempotent in any monoid / x is bounded below by an
idempotent is, by Lemma 2.5(iii), to assert that for any parallel pair (a, a') in M(K),
OHC = a'K for some K in M(K) if and only if a = cd, which in turn is to assert that M(K) is
right cancellative. Since monocategories are left cancellative by definition, the result
follows.

There is more. Recall that an inverse monoid S has conditional joins if every pair of
elements x, y € S bounded above in (S, >), has a least upper bound, x v y called the
natural join of x and y. An inverse algebra with conditional joins is called finitely
complete (the finitary version of complete inverse algebras which possess conditional
suprema). Having conditional joins is a partial dual to having unconditional meets (in
an inverse algebra), but in general it is the best one can expect. Both inverse algebras
and E-unitary inverse monoids (but not arbitrary inverse monoids!) have conditional
joins whenever their idempotents form a lattice, since xv y = (xx'1 v yy~*)u for any
upper bound u of x and y.

Theorem 2.9. A well-powered and co-well-powered, cancellative category with both
intersections and co-intersections has E-unitary [dual] symmetric inverse monoids which
have conditional joins.
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Proof. In view of Theorem 1.1 (i), we need to show that any object X in such a
category K has a lattice of subobjects. So let a: A -*• X and /?: B -*• X be a pair of
representative subobject morphisms. The meet a A /? is given by the intersection
morphism CLK = /?A, where K: I -*• A and A: I -»• B provide the intersection. The join
a v fi is the morphism ?;: J -»• X induced from the co-intersection in K of the pair K and
k from I. Indeed there exist morphisms p. A -> J and v: B -»• J creating the pushout.
Since OCK = /U, the pair (a: A -*• X, /J: B -»• X) factors through the pair (ji: A -»• J,
v: B -»• J), with 77 being the common complementary factor. (Draw the diagram.) It is
easily seen that r\ factors through any morphism d: K -*• X which is a common upper
bound for a and /?.

The introduction of conditional joins into the discussion reveals a linear hierarchy
of algebraic structures: inverse monoids, inverse algebras, finitely complete inverse
algebras, and complete inverse algebras. Our perspective thus leads us to ask: Under
what conditions will a category K possess finitely complete symmetric inverse algebras? If
we relax the assumption of arbitrary intersections, then finite completeness will not
suffice. Indeed let (S, >) be a meet semilattice, which is not a lattice, but has a
supremum, fi. Then the dual category, (S, >)op is finitely complete, but the subobject
semilattice at fi is not a lattice. Will finite completeness and finite cocompleteness
combined yield both symmetric and dual symmetric inverse algebras which are finitely
complete? Yes, if we assume that K also has unique epi-mono factorizations so that
every morphism factors into the composite a/? of an epimorphism /?, followed by a
monomorphism a, with all other such factorizations a'/f being of the form ft = fifi and
a' = a/i"1 for some isomorphism /i.

Theorem 2.10. If category K is both finitely complete and finitely cocomplete and
possesses unique epi-mono factorizations, then symmetric inverse algebras and dual
symmetric inverse algebras for all objects in K are finitely complete.

Proof. If category K has finite coproducts and unique epi-mono factorizations, then
all subobject classes of objects in K have finite joins. For given subobjects a: A -*• X
and ft: B -*• X, a morphism 6: A + B -*• X is determined such that a = QnK and /? = drjB

where ^A and rjB are coproduct injections of A and B into A + B. The epi-mono
factorization, 6 = ye, yields the subobject join setup: y: C -*• X, tnK: A^-C and
eBf/: B -> C. The theorem follows from the implication and its dual.

Two very important classes of categories exist which satisfy the above conditions,
but for which [co]-completeness is neither assumed nor implied.

Corollary 2.11. If K is an Abelian category, then it has finitely complete [dual]
symmetric inverse algebras.

Corollary 2.12. If K. is a topos, then it has finitely complete [dual] symmetric inverse
algebras.
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For numerous familiar categories, epi-mono factorizations need not be unique, unless
added conditions are required of the factorizations. These include the categories of rings
and of [Hausdorff] topological spaces, both of which have complete [dual] symmetric
inverse algebras anyway, as they are both complete and cocomplete categories. These
categories do have unique factorizations if we replace "epi" by "extremal epi" [or else
"mono" by "extremal mono"], in which case the [dual] argument in the above theorem
still holds.

Like inverse monoids and inverse algebras, finitely complete inverse algebras also form
a variety. The join v on E(S) can be extended to & pseudo-join operation + on S defined by
x + y = xx~l v yy~x, which also has E(S) as its set of idempotents. The standard lattice
identities holding on E(S) can be transformed into identities involving +, thus determining
a variety of enriched algebras (S, •, A,+,"', 1) of type (2,2,2,1,0). For instance,
e v / = / v e and e A (e v / ) = e on E(S) induce x + y = y + x and xx~'(x -f y) = xx"1

on S. Conversely, given any inverse monoid S upon which an operator + is defined
satisfying all transformed identities plus x-fx = xx~', then (E(S), A,+), where
e A / = ef, is a lattice. If S is an inverse algebra, then by previous remarks S is also
finitely complete. A variety of finitely complete inverse algebras is thus determined.

Complete inverse algebras, on the other hand, do not form a variety of algebras.
Nonetheless, free complete inverse algebras exist. For given any set X, if F{X) is the
free inverse monoid on X, then the free complete inverse algebra on X is given as the
full coset algebra K(F(X)) together with the composite inclusion: X -*• F(X) ->
K(F(AT)). (See [13] for details.) Complete inverse algebras thus behave like ordinary
algebras in a variety, as well as like infinitary structures such as sup-semilattices and
compact Hausdorff spaces. In this regard they are unlike complete lattices or complete
Boolean algebras which in general fail to have free algebras. (See Gaifman [4] and
Hales [6], or Johnstone [8].)

A category has symmetric inverse semilattices if it has symmetric inverse monoids,
all of which are semilattices. In this regard, recall that a category is a quasi-order if all
of its morphism sets hom(.4, B) have a most one morphism. An immediate corollary
of Theorem 1.1 (i) is:

Lemma 2.13. A well-powered category K has symmetric inverse semilattices if and
only i/K has finite intersections and the monocategory M(K) of all monomorphisms in K
is a quasi-order.

Before presenting our next theorem, we state two more lemmas.

Lemma 2.14. In any monocategory, morphisms arising in any factorization of an
isomorphism are also isomorphisms (so that isomorphisms are closed under
factorization).

Lemma 2.15. Let K be a category whose isomorphisms are closed under factorization.
Then for any object XofK the power X x X exists if and only if for all objects U in
K, the morphism class hom(l/, X) has at most one morphism, in which case X x X = X
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with the power projections n,: X ->X for i= 1, 2 being the identity morphisms. Dual
remarks hold for the copower, X + X.

Theorem 2.16. Given a category K with finite intersections, the following are
equivalent.

(i) The monocategory M(K) has powers X x X.

(ii) The monocategory M(K) has copowers A + A.

(iii) The monocategory M(K) is a quasi-order.

(iv) All objects ofK are terminal in their monosettings.

(v) All objects ofK have symmetric inverse semilattices.

(vi) All objects ofK. have finitely complete monosettings.

Proof. By the previous three results, conditions (i)-(v) are equivalent. Clearly (vi)
implies (i). Conversely, given (i)-(v), any monosetting in K is finitely complete, since it
is a quasi-order with finite intersections.

Theorem 2.16 can, in part, be generalized. To begin, by the tail x{S) of an
inverse semigroup S is meant the set { x e S | xSx"1 c E(S)}, or equivalently, the set
{x e S | xx"'Sxx"' c E(S)}. When S = T(S), then S is a subdirect product of Brandt
semigroups having trivial subgroups, and conversely. (See [15, II.4, and in particular,
Exercise II.4.8(ix)].) In general T(T(S)) = T(S) and when nonempty, 7t(S) forms an
ideal.

An object A in a category K is subterminal if for all objects B in K, the morphism
set hom(B, A) has at most one element. Subobjects of subterminal objects are clearly
subterminal, and if K has finite intersections, then the class of subterminal subobjects
of any object X in K is closed under pairwise intersection. By Lemma 2.5, subterminal
objects in a monosetting are precisely those objects A for which the power A x A exists
in the given monosetting. The effect of subterminal objects upon the structure of the
classifying monoid is as follows.

Proposition 2.17. Let the inverse monoid S classify a small monosetting (M, X). Then
x{S) = {[a, a'] | a and a' share a subterminal domain}.

Proof. Let (a, a'): Y -*• X be a parallel pair of morphisms in M and let MY

denote the monosetting of Y in M. In general, I(My, Y) = [a, a]S[a, a] under the
function [0,0] -+ [ap, a0% But since [a, a']S[a!, a] = [a, a]S[a, a], it follows that
[a, a']S[a', a] c E(S) if and only if Y is terminal in MY, that is to say, Y is
subterminal in M.

Tails appear in another context. But first, the (idempoteni) cover of an element x in
an inverse monoid S is the least idempotent c such that ex = xc = x. If it exists, c yields
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the smallest principal submonoid cSc of S containing x. When covers exist for all
elements, a covering operator c[x] is defined and S is said to have covers.. This always
occurs when S has conditional joins, since then c[x] = xx~" vx~'x. Having covers is
thus a weakening of having conditional joins. The operator c[x] also dualizes of the
operator f[x], provided one changes the partial ordering from the natural one to that
given by annihilation: x >A y if and only if either x = y or xy = y = yx. An inverse
monoid S has maximal covers if c[x] = 1 holds for all non-idempotents x. (As always,
c[e] = e for any idempotent e.)

Theorem 2.18. An inverse monoid S has maximal idempotent covers if and only if
the complement M in S of the group of units G is an ideal of S lying inside the tail T(S) of
S. Moreover, an inverse monoid S having maximal covers forms an inverse algebra if
and only if each unit u e G has a fixed point idempotent; in particular. S in an inverse
algebra if G = {1}.

Proof. To begin, let S have maximal covers and let uv = 1 in S. If vu ̂  1, then
vu is an idempotent distinct from 1, and v2u is a nonidempotent for which
vu{x?u) = v2u = (v2u)vu, contradicting the maximality assumption for v2u. Thus in S,
uv = 1 if and only if vu = 1, and this insures that the complement M of G is an ideal of
S. If x e M, then xx~' ^ 1 in E(S) and for all y e S: (xx"')xyx"' = xyx"1 =
xyx"'(xx~'). By maximality, xyx"1 e E(S), so that M c T(S) must follow. Conversely,
suppose that M = S — G is an ideal of S such that M c T(S). Clearly c[u] — 1 for all
u e G. Suppose that x e M is not idempotent, but that ex — x = xe for e an
idempotent. Then e = 1, since otherwise e e T(S) in which case x = exe e E(S). Thus
c[x] = 1 for all non-idempotent elements x, so that S must have maximal covers. In
general, for any inverse monoid S, if x e x(S), then/[x] exists and is given by x2. Indeed
the equation x2 = x3 holds in any Brandt semigroup with trivial subgroups, and thus
must hold in T(S) which is a subdirect product of such semigroups, so that/[x] = x2. It
follows that for inverse monoids having maximal idempotent covers, the presence of
fixed point idempotents is reduced to what happens in the case of the units, and so the
second biconditional assertion is verified.

3. Free categories

Let G be a directed graph (possibly infinite) and let G* denote the small category
freely generated from G. In light of Theorem 1.3, it is natural to ask what conditions
on G insure that G* will have finite intersections? We begin with some observations:
(i) G* is well-powered; (ii) the composition in G* is cancellative so that all morphisms
are both monic and epic; (iii) only the identity morphisms are isomorphisms; (iv) every
nonidentity morphism in G* factors uniquely into a product of consecutive edges in
G. (Edges fi and a, in that order, are consecutive if a enters the vertex that /? is leaving,
so that "Pa" denotes a directed path of length 2 when read from right to left. Although
our reading of paths reverses the standard reading in graph theory, it agrees with the
composition of morphisms in the induced free category G*.)
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Lemma 3.1. If the free category G* on a directed graph G has finite intersections,
then every vertex in G has at most one entering edge.

Proof. Suppose that edges a and P in G enter a common vertex v, with a and ft
leaving the respective vertices a and b. If an intersection a n ft exists in G* then there is
a vertex u and morphisms, y*: u->a and 5*: u-*b, such that ay* = pd*. By unique
factorization of the morphisms into consecutive edges, a = /? follows.

The condition on G stated in the lemma is also sufficient to insure that G* has finite
intersections. To see this, consider the following four cases, each involving a graph
with a terminal vertex labelled tig.

(i) L,, with n > 0 is the linear graph,

L,: UQ <- u, •<- «2 < <- t v , •*- ".•

(ii) L^, is ^ e infinite linear graph,

LM: Uo «- u, •«- u2 •« <-«„•< .

(iii) Fd with d > 1 is the circuit (cyclicly directed graph) on d vertices,

rd : Uo <- u, <- u2 < «- wd_2 <- ut_t •«- u0.

(iv) The splice L,,rd with both d, n > 1 and described as follows,

L , , r d : Mo < - U, < < - "n-l « - "n < - " i+ l < < " "n+d-1 <~ «n-

Note that Lo consists of a single vertex, while F, consists of a vertex with a single
directed loop.

Notation. Given vertex v in a directed graph G, then G" denotes the subgraph
consisting of edges arising in some directed path terminating at v, along with all
incident vertices.

Lemma 3.2. All four types of directed graphs listed above satisfy the condition that
each of its vertices has at most one entering edge. Conversely, let G be a directed graph
satisfying this condition. Then for any vertex v in G, the subgraph G" is isomorphic to
exactly one of the types of graphs listed above.

Proof. The first assertion is clear. For the converse, if the condition holds, then
given any vertex v, either there is no edge entering v, or else v has a unique predecessor
vertex u, the starting vertex of the edge entering v. We can thus start at v, back up to
the predecessor u, and then repeat the process. We have the following cases, each
corresponding to the four types of graphs listed above: (i) After n steps we come to a
vertex without a predecessor, and the process stops, (ii) The process never stops. No
vertex upon being first encountered is ever encountered again, (iii) After d steps the
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starting vertex v is encountered again, and the process repeats itself, (iv) After n + d
steps a subsequent vertex u, first encountered after n steps, is re-encountered. The
process, beginning with the first encounter of u, is now like the third case.

Lemma 3.3. All four types of graphs listed above freely generate categories having
finite intersections.

Proof. Due to the unique factorization of morphisms into edges, the following
situation holds in all four cases: if morphisms a and /? are of the same length and have
a common codomain vertex, then a = /? = a n /?. (The length of a morphism is the
number of edges appearing in its unique factorization into consecutive edges.)
Otherwise, again let a and /J have a common codomain, but suppose a is of greater
length. By unique factorization again, a unique morphism y exists such that a = f}y.
The intersection a n fi is now given by the pair (J, y) where i is the identity on the
domain vertex of a.

Theorem 3.4. The free category G* on a directed graph G has finite intersections
(and thus symmetric inverse monoids for each vertex) if and only if no vertex vofG has
more than one edge coming into it.

Proof. Let v be a vertex in G. As an object in G*, the monocontext of v is precisely
G*" = G°*. The theorem now follows from the previous three lemmas.

What precisely are the possibilities for G? Clearly it suffices to describe the
possibilities when G is connected as a graph (without considering the direction of its
edges). To do so, we shall need the following concepts.

To begin, recall that a rooted tree is a directed graph T with a distinguished vertex r
(the root) such that given any vertex v, there is a unique directed path in T from r to v.
Given an undirected tree T and a vertex r of T, there is a unique way to direct the
edges of T so that it becomes a rooted tree at r. We allow T to be countably infinite.

A directed tree is a directed graph T which can be expressed as an infinite, properly
ascending, union of subgraphs,

T = UTn, T, C T2 C T3 C . . . C Tn C

each forming a rooted tree which is an "ideal" of T: given vertex va e Tn and a directed
path in T from vB to a vertex x e T , then both x and the path lie in Tn.

Observe that both rooted trees and directed trees have their vertices partially ordered
upon setting u < v if and only if there is a directed path from u to v. As such the
vertices form a meet semilattice. The tree is rooted if and only if there is a minimal
element 0 (given by the root).

Recall that a cycle of order n is any directed graph isomorphic with rn for some
n > 1. A cycle of trees is the directed graph obtained by joining a finite number of
disjoint rooted trees T, TD by inserting the same number of directed edges at the
roots r , , . . . , r0 to form a cycle of the same order: say r, •*- r2 •*—...•*- rB <- r,. (A cycle

https://doi.org/10.1017/S0013091500019398 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019398


INVERSE MONOIDS AND INVERSE ALGEBRAS 19

is thus understood to be a limiting case of a cycle of trees.) The following result is
now clear:

Theorem 3.5. A free category G* on a connected directed graph G has symmetric
inverse monoids if and only if G is isomorphic with one of the following three types of
graphs: a rooted tree, a directed tree, or a cycle of trees. Moreover, if G is a rooted tree,
then every subgraph G° has the form L̂  for n = a(v). If G is a directed tree, then every
subgraph G° has the form L ,̂. Finally ifG is a cycle of trees, then every G" has the form
Fn or Ln.F,, for n fixed, but m dependent on the vertex v.

By the dual of Theorem 3.4, every object (vertex) in a free category G* has finite
co-intersections if and only if every vertex in the graph G has at most one edge leaving
it. From the duals of Theorems 3.4 and 3.5 we obtain:

Theorem 3.6. The free category G* on a directed graph G has both symmetric inverse
monoids and dual symmetric inverse monoids if and only if every vertex vofG has at most
one edge entering it and at most one edge leaving it. To within isomorphism of directed
graphs, the only possible connected graphs satisfying these conditions are the following:

(i)

(ii) IW

(iii) the oppositely directed graph Lj£;

(iv) the splice o/L^L^ given by identifying u,, in both graphs;

(v) the various Ttfor d > 1.

(The graph of (iv) is equivalent to the directed graph Z having the integers as vertices,
and the edges given by the successor relation, n -*• n + 1.)

What kinds of monoids can arise as symmetric inverse monoids in a free category
G* having finite intersections?

Theorem 3.7. The only types of inverse monoids arising as [dual] symmetric inverse
monoids in free categories are finite chains and co-semigroups with trivial subgroups. For
free categories with both finite intersections and finite co-intersections, the only types of
[dual] symmetric inverse monoids which can arise are finite chains, co-semilattices, and
simple co-semigroups with trivial subgroups.

Proof. We need only consider the case where G is connected.

Case 1: G is a rooted tree. At each vertex v, G" is a linear graph of the form L*,,
say v = Uf) -*-U2 ->•• • -*«»-i -*•«.. Then for each uk there is a unique morphism ak in
G°* from uk to Uo. The monoid /„ is thus the totally ordered semilattice of length n.

1 = [ao. Ool > [«i, <*i] > [<x2, Oj] > • • • > [a,, a.].
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Case 2: G is a directed tree, then G" is an infinite linear graph of the form LOT for
each vertex v. By reasoning similar to that in the first case, it follows that in this case
/„ is the co-semilattice,

Case 3: G is a cycle of rooted trees. At each vertex v, the graph G° is isomorphic
to either of a cycle Fd or a splice L^rd with n > 1. We consider the latter, and calculate
/„ for u = Mo in the category I^H. Using the notation for L^F,, the following hold in
I ^ r j . For k < n, a unique morphism ak: uk -^-M,, exists; for k > n, there exist infinitely
many morphisms from uk to «o, to be denoted ak, ak+d, ak+2li,..., «k+p<i> • • • where in all
cases the subscript is given by the length of the morphism. The elements of /„ thus
consists of: (i) an infinitely descending chain of idempotents [aD, a,,], n > 0, as in case 2;
(ii) elements of the form [(Xj, otj] where i, j > n and (i — j) is a multiple of d. Intersection
in I^r j is given by (Xj D otj = <nmaxiiJi with the pair of factors (K, X) being the morphisms
K of length m — i from um to ut and A of length m — j from i^ to u} respectively. Thus
multiplication is a restriction of that encountered in the bicyclic semigroup:

One thus has an co-semigroup consisting of a chain of n idempotents, from [<XQ, XQ] down
to [OB-I.OB-IL followed by a simple ideal Bt characterized to within isomorphism as a
simple co-semigroup having dD-classes and trivial subgroups.

Such semigroups have been characterized separately by Munn [14] and Kochin [9].
(See also [7, Sections V.6 and V.7], or [15, Chapter XI].)
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