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We say that a group G has finite lower central depth (or simply, finite depth) if the
lower central series of G stabilises after a finite number of steps.

In [1], we proved that if G is a finitely generated soluble group in which each two
generator subgroup has finite depth then G is a finite-by-nilpotent group. Here, in answer
to a question of R. Baer, we prove the following stronger version of this result.

THEOREM. Suppose that G is a finitely generated soluble-by-finite group in which every
subgroup of the form {x, xy), x and y in G, has finite lower central depth. Then G is finite-
by-nilpotent.

It is easy to deduce, by methods analogous to those in [1], that the result also holds
for the classes of finitely generated linear groups and finitely generated hyper-(abelian-by-
finite) groups.

Proof. Arguing as in the first part of the proof of Theorem 3 of [1], we may assume
that G has a residually nilpotent soluble subgroup N of finite index.

Let x, y be elements of N. Then X = (x, xy) is residually nilpotent and has finite lower
central depth by hypothesis. Hence X is nilpotent. Let N be any finite homomorphic
image of N. Then the image X of X in N is nilpotent and hence, if a and /3 are the images
of x and y in N, we have that there exists a positive integer n such that the repeated
commutator

Since N is finite and y is arbitrary it follows from a result of Peng [2] (see also [3, 7.22])
that the normal closure of a in N is nilpotent. Since x is arbitrary and N is finite, it
follows that N is nilpotent.

Thus N has all of its finite homomorphic images nilpotent and is finitely generated
since it is of finite index in a finitely generated group. It now follows from a theorem of
Robinson [3, 10.51] that N is nilpotent.

The fact that G is finite-by-nilpotent follows as in the last three paragraphs of the
proof of Theorem 3 of [1].
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