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A dual-model approach to blind quality
assessment of noisy images
guangtao zhai1, andre kaup2, jia wang1 and xiaokang yang1

We propose a new paradigm for no-reference image quality assessment (IQA) exploiting neurological and psychophysical prop-
erties of the human visual system (HVS)1. Physiological and psychological evidences exist that HVS has different behavioral
patterns under low and high noise/artifact levels. In this paper, we propose a dual-model approach for blind IQA under
near-threshold and suprathreshold noise conditions. The underlying assumption for the proposed dual-model approach is
that for images with low-level near-threshold noise, HVS tries to gauge the strength of the noise, so image quality can be
well approximated via measuring strength of the noise. On the other hand, for images with structures overwhelmed by high-
level suprathreshold noise, perceptual quality assessment relies on a cognitive model and the HVS tries to recover meaningful
contents from the noisy pixels using past experiences and prior knowledge encoded into an internal generative model of the
brain. And image quality is therefore closely related to the agreement between the noisy observation and the internal genera-
tive model explainable part of the image. Specifically, under near-threshold noise condition, a noise level estimation algorithm
using natural image statistics is used, while under suprathreshold condition, an active inference model based on the free-energy
principle is adopted. The near- and suprathreshold models can be seamlessly integrated through a mathematical transformation
between estimates from both models. The proposed dual-model algorithm has been tested on additive Gaussian noise contami-
nated images. Experimental results and comparative studies suggest that although being a no-reference approach, the proposed
algorithm has prediction accuracy comparable with some of the best full-reference IQAmethods. The dual-model perspective of
IQA presented in this paper is expected to facilitate future research in the field of visual perceptual modeling.
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I . I NTRODUCT ION

Thepsychovisual process of image quality assessment (IQA)
is an interaction between the human visual system (HVS)
and the visual stimuli [2]. For visual communication sys-
tems, visual stimuli is generally a combination of the mean-
ingful image contents and the inevitably introduced noises
or artifacts during acquisition, compression, and trans-
mission. According to the psychophysical study of human
sensory-threshold [3], for visual stimuli, the inherent arti-
facts can be classified into three categories [4, 5]: Imper-
ceptible noise or subthreshold noise is considered invisible
to the HVS and is therefore often out of the question for
visual quality assessment.Near-threshold noise is observable
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to the HVS, and it may obscure some fine image struc-
tures but does not obstacle the process of visual recognition.
Suprathreshold noise is so intensive that it overwhelms some
key image structures and features that are essential for visual
perception. The threshold-related behavior of visual per-
ception has a physiological explanation that the HVS has a
set of sensory neurons being tuned to specific orientations
and frequencies [6], and the excitation of someneuronsmay
reduce the activity of others. This effect is also known as
lateral inhibition [7, 8].

It has long been realized that near- and suprathreshold
visual stimuli should be discriminated since the psychovi-
sual processes involved are quite different [10–12]. The psy-
chological studies of the “priming” effect of human vision
confirm that viewing context can have substantial impacts
on visual perception [13]. In the premise of threshold-
related visual perception, it is easy to imagine that the pro-
cess of visual quality assessment will also be affected by the
visibility level of the noise or artifacts. For images contain-
ing near-threshold noise, the IQA process of the HVS is a
task of detecting artifacts and distortions from the obser-
vation. The image quality is better if less artifact can be
detected. On the other hand, for images contaminated by
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Fig. 1. IQA in the near- and suprathreshold conditions (noisy images taken from LIVE database [9]).

suprathreshold noise, subjective IQA becomes a work of
inferring meaningful image structures using past experi-
ence and prior knowledge. The image quality is better if
more significant structures can be discovered.

Although apparent gap exists between near- and
suprathreshold IQA, currently there lacks the effective IQA
method to account for the difference between near- and
suprathreshold noise conditions. Andmost of existing qual-
ity metrics try to handle all noise and artifact levels irre-
spective of the physiological and psychological differences
between near- and suprathreshold noise conditions men-
tioned above. For the problem of blind (no-reference) IQA,
since no information about the original image is available,
both the artifacts and meaningful image features have to
be detected and discovered solely from the noisy obser-
vations. Therefore, the discrimination between near- and
suprathreshold noise conditions becomes evenmore imper-
ative. In this work, we propose a dual-model approach
to quality assessment of noisy images under near- and
suprathreshold noise conditions. For theoretical simplic-
ity and operational amenability, our study in this work is
focused on additive Gaussian white noise (AGWN), which
is considered as one of the most simple type of distortions
because the noisy signals are independent among pixels.
Although being straightforward by itself, AGWN is often
considered as a building component for other more com-
plicated distortion types [14–16]. For example, impacts of
quantization noises on perceptual quality can be modeled
using Gaussian blurring plus AGWN as introduced in [14].
This is part of the reason why AGWNhas been widely stud-
ied in the literature of IQA [9, 17, 18]. The study of AGWN
can therefore serve as a pilot for the research of other more
complicated types of distortions.

For near-threshold AGWN, it will be shown that high
correlation exists between subjective quality score and
strength (variance) of the noise. This coincides with our
conjecture above that IQA is a noise detection/estimation
problem under near-threshold conditions. So the near-
threshold model of the proposed approach is based on a

noise estimation algorithm using natural scene statistics. As
aforementioned, for suprathreshold AGWN, IQA transfers
to the problem of recovering original image structures from
noisy observations. This echoes the general belief that vision
is a process of inference, making assumptions and drawing
conclusions based on experiences [19, 20], or using an inter-
nal generative model [21–23]. Therefore a Bayesian brain
theory [21] inspired the inferencemethod based on the free-
energy principle [22, 23] will be used as the suprathreshold
model of the proposed blind IQA scheme. A mathemati-
cal transformation will be used to calibrate the estimates
from the near- and suprathreshold models and drive the
dual-model distortion metric (DMDM) for blind quality
assessment. Plot of the proposed dual-model approach to
quality assessment of noisy images is illustrated in Fig. 1.
We emphasize that the scope of this paper is beyond the
mere introduction of a new blind image quality metric. The
dual-model approach combining an artifact detection stage
and an active inference stage presented in this paper should
be applicable to the general problem of perceptual model-
ing and perceptual quality assessment and is expected to
facilitate future research in the field.

The rest of the paper is organized as follows: Section II
introduces the near- and suprathreshold models of the pro-
posed dual-model approach in detail. Section III deals with
the unification of the two models. Section IV provides
the experimental results and comparative studies. Finally,
Section V concludes the paper.

I I . DMDM FOR BL IND QUAL ITY
ASSESSMENT

System diagram of the proposed DMDM for blind qual-
ity assessment is illustrated in Fig. 2, wherein the near-
threshold model based on noise estimation using natu-
ral image statistics and the suprathreshold model based
on image feature inference using the free-energy principle
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Fig. 2. Block diagram of the dual-model approach for blind quality assessment of noisy images.

will be introduced in detail in Sections II-A and II-B,
respectively.

A) Near-threshold model: noise estimation
using natural image statistics
Assuming an additive noise model Y = X + N in the pixel
domain, where X is the original image, N is the noise and Y
is the noisy observation of X . If X and N are independent,
then in the transform domain we also have

y = x + n, (1)

where x and y are the transformation of X and Y , and n is
the noise in transform domain. Note that N and n will have
the same variance, as long as the transform is unitary. It has
been discovered that the high-order statistics (e.g. Kurtosis)
of transform coefficients of natural images are stable across
different frequency indexes [24–27], which can be used for
noise variance estimation.

Kurtosis of x is defined as the fourth cumulant divided
by the square of the second cumulant, which equals the
normalized fourth central moments minus 3

K(x) = κ4(x)

κ2
2 (x)

= μ4(x)

σ 4(x)
− 3. (2)

From the relationship between cumulant and the central
moments k4(·) = μ4(·)− 3σ 4(·) we have

μ4(y) = k4(y)+ 3σ 4(y)

= k4(x)+ k4(n)+ 3σ 4(y)

= μ4(x)− 3σ 4(x)+ μ4(n)− 3σ 4(n)+ 3σ 4(y)

= K(x)σ 4(x)+ K(n)σ 4(n)+ 3σ 4(y), (3)

where we used the fact that x and n are independent.
From (2) we have μ4(·) = (K(·)+ 3)σ 4(·), and letting this

into (3) we further have

K(y) = σ 4(x)

σ 4(y)
K(x)+ σ 4(n)

σ 4(y)
K(n), (4)

which reveals that kurtosis of y are essentially weighted
averages of that of x and n and the weights are determined
by the ratios between the standard deviation of signals.
Again, from the independence between x and y, we have
σ 2(y) = σ 2(x)+ σ 2(n), letting which into (4), we arrive at

K(y) =
(
σ 2(y)− σ 2(n)

σ 2(y)

)2

K(x)+
(
σ 2(n)

σ 2(y)

)2

K(n), (5)

which enables us to quantify the relationships between the
kurtosis of the original and the noisy transformed signals
using the second moments (variances) of the noise n and
the noisy observation y.

Recently, Zoran andWeiss [28] propose to estimate noise
variance by applying the equation (5) upon multiple sub-
bands of discrete cosine transform (DCT) coefficients of the
noisy images. However, Zhai and Wu’s work [29] suggests
that the dominant horizontal and vertical edges in images
may lead to a violation of the scale invariance assump-
tion for DCT subbands [25, 26]. On the other hand, Huang
[30, 31] first noticed that random transform coefficients of
natural images have high kurtosis. In addition, the research
in [29] validate that for random transform coefficients the
kurtosis is not only high but also remains approximately
a constant, which is a very useful property in estimating
noise variance, and to preserve the noise energy in the trans-
form domain, a unitary transform has to be used. For a
k × k datamatrix A, its two-dimensional (2D) randomuni-
tary transform (RUT) [29] can be computed as follows:
we first compute the QR decomposition of a k × k ran-
dom matrix C as Q R = C . We then extract the diagonal
elements of the upper triangular matrix V = diag(R) and
normalize it as V = V/|V |. A new upper triangular matrix
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is formed as R ′ = diag(V) and the RUTmatrix is computed
as T = Q R ′. The unitary of T is obvious since T T T =
(Q R ′)T Q R ′ = R ′T R ′ = Ik , where we use the fact that R ′

is a diagonal matrix with normalized entries. The 2D RUT
for A can then be computed as B = T AT T .

By employing (5) on the subbands of the RUT coeffi-
cients, we can estimate the noise variance by solving the
following constrained nonlinear programming problems:

K̂(x), K̂(n), σ̂ 2(n) = arg min
K(x),K(n),σ 2(n)

∑
i∈I

(6)

∥∥∥∥∥K̂(yi )−
(
σ̂ 2(yi )− σ 2(n)

σ̂ 2(yi )

)2

K(x)+
(
σ 2(n)

σ̂ 2(yi )

)2

K(n)

∥∥∥∥∥
1

subject to K(x),K(n) ≥ −2,

where I denotes the set of frequency indexes of RUT and
the constraints are from the definition of Kurtosis. We
emphasize that the analysis in this section is only based on
the independent additive noise model as given in (1), and
there is no underlying assumption about the distributions
of transform coefficients x and n.

B) Suprathreshold model: structure inference
with generative model
Recently, Friston [22, 23] proposed the free-energy princi-
ple to explain and unify several brain theories in biologi-
cal and physical sciences about human action, perception,
and learning. Similar to the Bayesian brain hypothesis, a
basic premise of the free energy-based brain theory is that
the cognitive process is governed by an internal generative
model. Using the generative model, human brain renders
predictions of those encountered scenes in a constructive
manner, and the constructive model is essentially a proba-
bilistic model that decomposes into a likelihood term and a
prior term.Visual perception is then the process of inverting
this likelihood term so as to infer the posterior possibili-
ties of the given scene. Not surprisingly, since the internal
generative model cannot be universal (implying the limita-
tion of one’s knowledge and experience), there always exists
a gap between the encountered scene and brain’s prediction.
As mentioned in the Introduction section, for images with
suprathreshold noise, features, and cues that are essential
for visual perception are overwhelmed, so visual perception
reasonably follows the manner of inference as outline by
the free-energy principle, and under those conditions, the
gap between the external input and its generative-model-
explainable part is intimately related to the quality of per-
ceptions and therefore determines the perceptual quality of
the image.

For operational amenability, we assume that the inter-
nal generative model G for visual perception is parametric,
which explains perceived scenes by adjusting the vector θ

of parameters. Given a visual stimuli, or an image I , its
“surprise” (measured by entropy) can be computed by inte-
grating the joint distribution P (I , θ |G) over the space of

model parameters θ

− log P (I |G) = − log
∫

P (I , θ |G)dθ . (7)

We further introduce an auxiliary term Q(θ |I ) into both
the denominator and numerator in (7) and have

− log P (I |G) = − log
∫

Q(θ |I ) P (I , θ |G)
Q(θ |I ) dθ . (8)

Here Q(θ |I ) is a posterior distribution of themodel param-
eters given the image. It can be thought of as an approximate
posterior to the true posterior of the model parameters
P (θ |I ,G) that can be calculated by the brain. The brain
minimizes the discrepancy between the approximate pos-
terior Q(θ |I ,G) and the true posterior P (θ |I ,G) when
perceiving I , or adjusting the parameters θ of Q(θ |I ,G)
to best explain I . Therefore, it is also called the recogni-
tion density in Bayesian brain theory [21]. Note that in (8),
the negative “surprise” log P (I |G) is also known as the log-
evidence of the image data I given the model. Clearly, the
minimization of surprise equals the maximization of model
evidence. In our analysis below, the dependency on the gen-
erative model G is dropped for simplicity. Using Jensen’s
inequality, from (8) we have

− log P (I ) ≤ −
∫

Q(θ |I ) log
P (I , θ)

Q(θ |I )dθ , (9)

and the right-hand side which is defined as the free energy

F (θ) = −
∫

Q(θ |I ) log
P (I , θ)

Q(θ |I )dθ . (10)

By letting P (I , θ) = P (θ |I )P (I ) into (10) we have

F (θ) =
∫

Q(θ |I ) log
Q(θ |I )

P (θ |I )P (I )dθ

= − log P (I )+
∫

Q(θ |I ) log
Q(θ |I )
P (θ |I ) dθ

= − log P (I )+ K L (Q(θ |I )‖P (θ |I )) . (11)

According to Gibbs’ inequality, the Kullback–Leibler diver-
gence K L(·||·) between the recognition (approximate) pos-
terior and true posterior parameter distribution in (11) is
non-negative, i.e. K L (Q(θ |I )‖P (θ |I )) ≥ 0, with equality
if and only if Q(θ |I ) = P (θ |I ). Here the free energy F (θ)
defines a strict upper bound of the “surprise” or negative
model evidence. As indicated in (11), for fixed image data
I , the free energy is suppressed by minimizing the diver-
gence term. In other words, the brain tries to lower the
divergence K L (Q(θ |I )‖P (θ |I )) between the approximate
recognition density of model parameters and its true poste-
rior density when perceiving a given scene. And following
the analysis wemade at the beginning of this subsection, the
computed free-energy term can be used directly as a no ref-
erencemeasure of image quality. For a clean imagewith little
noise contamination, an ideal generative model is expected
to recognize the essential image features well and the free
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energy will be low, indicating a higher image quality. While
for noisy image with perceptually important features being
besmirched, the free energy induced the generative model
will be high, indicating a lower perceptual quality.

In practice, the internal generative model can be fur-
ther simplified as a linear model such as the noncausal
autoregressive (AR) model and the linear AR model can be
locally optimized from the observation. Some implemen-
tation details will be briefly introduced in the next section
and more theoretical treatments regarding the free-energy
principle and the approximation using an AR model can
be found in [32]. The calibration and combination of the
near- and suprathresholdmodels toward a final dual-model
quality metric will be discussed in the next section.

I I I . MODEL CAL IBRAT ION AND
INTEGRAT ION

The near- and suprathreshold quality metrics based on nat-
ural image statistics and the free-energy principle have been
introduced in Sections II-A and II-B, respectively. For near-
threshold quality assessment, the noise estimation is used
as a distortion measure, whereas for suprathreshold qual-
ity assessment, the free energy of the noisy observation is
used as a distortion measure. Obviously, the noise strength
measure by variance and free-energy measure by entropy
are of different dimension so the two-quality model cannot
be combined directly, and this section discusses the unifi-
cation and calibration of the two distortion measures and
defines the so-called DMDM, for blind quality assessment.

Assuming an additive noise model Y = X + N , where
N ∼ N (0, σ) is the Gaussian noise term. For N ∼ ψ(n) =
(1/

√
2πσ 2)× e−n2/2σ 2 , its differential entropy can be com-

puted as

H(ψ) = −
∫
ψ(n) lnψ(n)dn

= −
∫
ψ(n)

(
− n2

2σ 2
− ln

√
2πσ 2

)
dn

= 1

2
+ 1

2
ln 2πσ 2 = 1

2
ln 2πeσ 2. (12)

Note that the entropy in (12) is in nats, and by changing the
logarithm base, we get the entropy in bits as

H(ψ) = 1

2
log 2πeσ 2. (13)

Equation (13) provides ameans to convert the estimate from
the near-threshold noise estimation model to the entropy-
based qualitymeasure as given by the near-threshold quality
model

Hnear (Y) = 1

2
log 2πeσ̂ 2 (14)

with σ̂ being the variance estimate from (6) and Y is the
noisy observation.

One should excise caution when combining the trans-
formed entropy measure from near-threshold model and

the entropy measure from the suprathreshold model. This
is because the free-energy value, when being approximated
using a locally learnt linear AR model as introduced in
Section II-B, contains contributions from the meaningful
image structures. Ideally, for a perfect internal generative
model, the approximation error of the free-energy model
contains only the AGWN. However, in practice, since a lin-
ear ARmodel is used as an delegate of the idealistic internal
model and is optimized with the noisy samples, the estima-
tion error inevitably carries some of the image structures
and has to be calibrated before model integration.

The linear estimation using a linearARmodel fromnoisy
observation Y can be written as

Ŷ = AY0, (15)

where Y0 is a vector consists of samples from the neigh-
borhood and A is the coefficient matrix. To minimize the
estimation error E = Y − Ŷ , from the orthogonal princi-
ple, the error must be perpendicular to the observation Y0.
Therefore we have

E [(Y − Ŷ)YT
0 ] = E [(Y − AY0)Y

T
0 ] = 0. (16)

From (16) we can get �YYT
0

= A�Y0 , so the optimal linear
coefficient matrix is

A = �YYT
0
�−1

Y0
. (17)

The covariance matrix of error vector E can be written as

�E = E [(Y − Ŷ)(Y − Ŷ)T ]

= E [(Y − AY0)(Y − AY0)
T ]

= E [(Y − AY0)(Y
T − YT

0 AT )]

= �Y −�YYT
0

AT − A�Y0YT + A�Y0 AT . (18)

From (17) we have

A�Y0 AT = �YYT
0
�−1

Y0
�Y0 AT = �YYT

0
AT . (19)

And letting (19) into (18) we arrive at

�E = �Y − A�Y0YT = �Y −�YYT
0
�−1

Y0
�Y0YT . (20)

On the other hand, from the independence between Y and
N , we have �YYT

0
= �Y0YT = �X and �Y = �X + σ 2

n I .
Therefore (20) reduces to

�E = (�X + σ 2
n I )−�X(�X + σ 2

n I )−1�X . (21)

Using the equation of the inverse of sum of matrices2 (21)
can be further written as

�E = σ 2
n I + (�−1

X + (σ 2
n I )−1)−1, (22)

which indicates that the covariance of the residual signal
from the linear prediction is larger than that of the noise

2(B + C )−1 = B−1 − B−1(B−1 + C−1)−1 B−1, and letting B−1 =
�X and C−1 = σ 2

n I .
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Fig. 3. Scatter plots of DMOS/MOS versus full-reference quality metrics on test databases LIVE [9]
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signal alone, and under the simplest condition of pixel-wise
estimation, (22) becomes

σ 2
e = σ 2

n + ((σ 2
x )

−1 + (σ 2
n )

−1)−1, (23)

where σ 2
e and σ 2

x are respectively the variance for the error
term and the image signal. Equation (23) indicates that
variance of the estimate error of the free-energy model, as
computed from a linear AR model, is larger than variance
of the inherent AGWN in the observation. Therefore, care
should be taken to properly shrink the free-energy term
before combiningwith the estimate from the near-threshold
model.

However, a precise correction using (23) requires the
variance of the original signal x, which is out of question
for blind quality assessment algorithm. In fact, the differ-
ence term ((σ 2

x )
−1 + (σ 2

n )
−1)−1 in (23) defines a harmonic

mean between σ 2
x and σ 2

n . On the other hand, σ 2
x can change

drastically from one location to another due to different
local features of the image signal, making the relationship
between σ 2

e and σ 2
x even more complicated. Fortunately, in

practice, on average for the whole image, it is possible to
assume a constant shrinkage

H supra(Y) = ξ · F (θ), (24)

where F (θ) is the free-energy value computed with a lin-
ear AR model using the noisy observation Y . We empiri-
cally find ξ = 0.89which gives a reasonablywell-calibration
result.

To combine the estimates from the near-thresholdmodel
in (14) and suprathreshold model in (24) and to derive
the final DMDM value H DM , we can simply use a binary
integration

H DM(Y) =
{

Hnear(Y) if Hnear(Y) ≤ ζ ,

H supra(Y) otherwise,
(25)

where ζ is a predefined switching threshold and we empir-
ically set ζ = 6.2 in this research. Note that besides the
binary combination scheme used above, other linear/non-
linear combinations are also possible.

Matlab code of the proposed DMDM algorithm can be
found at multimedia.sjtu.edu.cn.

I V . EXPER IMENTAL RESULTS AND
COMPARAT IVE STUDY

The test images used in this work are taken from the widely
used LIVE database [9]. Note some of other emerging test
databases, such as TID2008 [18] and CSIQ [17] also have
subsets of AGWNcontaminated images, but the noise levels
(variances) used in both TID2008 and CSIQ databases are
very limited3, making themselves not suitable for a fair and
trustable test of image quality metric based on noise level
estimation.

3Only four and five noise variance levels were used respectively in the
sub-databases TID2008 and CSIQ.

Table 1. Comparisons of full-reference image quality metrics on
AGWN images in LIVE database.

SSIM VIF VSNR IWSSIM FSIM
PSNR [33] [15] [34] [16] [35]

CC 0.986 0.969 0.981 0.841 0.969 0.964
SROCC 0.985 0.963 0.985 0.817 0.966 0.965
MAE 2.164 3.256 3.115 6.643 3.346 3.401
RMSE 2.680 3.916 2.536 8.620 3.943 4.196

We first report the performances of some classic and
contemporary general-purpose full-reference quality met-
rics on AGWN contaminated images. The full-reference
quality metrics tested in this paper include the ubiquitous
peak signal-to-noise ratio (PSNR), state-of-the-art SSIM
[33], VIF [15], and VSNR [34], and two of the newest qual-
ity metrics IWSSIM [16] and FSIM [35]. Figure 3 shows the
scatter plots of scores of the qualitymetrics versus difference
mean opinion score (DMOS) of the test images from the
LIVE database. And solid line in those plots is the nonlin-
ear regression curve using the 4 parameter logistic function
suggested by the video quality expert group (VQEG) [39]

M(s ) = β1 − β2

1 + exp(−(s − β3)/β4)
+ β2, (26)

where s is the input score, while M(s ) is the mapped score
and β1, . . . ,β4 are free parameters to be determined dur-
ing the curve-fitting process. The numerical performance
analysis suggested by VQEG [39] is provided in Table 1,
including four commonly used testing criteria: the corre-
lation coefficient (CC), Spearman rank-order correlation
coefficient (SROCC), mean absolute error (MAE) and root-
mean-squared error (RMSE). Note that higher correlations
and lower mean errors in the table indicate better per-
formance of the quality metric. It can be concluded from
Fig. 3 is that the five general-purpose full-reference quality
metrics PSNR, SSIM, VIF, IWSSIM, and FSIM all perform
fairly well for the IQA of AGWN contaminated images.
And the numerical performances in Table 1 indicate that
the linear/nonlinear correlations between the IQA scores
and the DMOS are as good as 0.96 ∼ 0.98, much higher
than the metrics’ performances on other subset of the LIVE
database4. However, those full-reference quality metrics all
require the original pristine images as inputs, which greatly
restrains the application scenario, and we will focus on how
to design a blind/no-reference quality metric in this work.

The scatter plots of DMOS versus some no-reference
image quality metrics on the LIVE database are illus-
trated in Fig. 4. The results of the scale-invariant noise
estimation (SINE) i.e. near-threshold model and the no-
reference free energy-based distortion metric (NFEDM),
i.e. the suprathreshold model are shown respectively in
Figs. 4(a) and 4(b). Not surprisingly, the near-threshold
model and the suprathreshold model have dissimilar yet

4The performances of PSNR, SSIM, and VIF on other subsets of the
LIVE database can be found in [32].
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Fig. 4. Scatter plots of DMOS/MOS versus no-reference quality metrics on test databases LIVE [9]
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Table 2. Comparisons of no-reference image quality metrics on AGWN
images in LIVE database.

SINE NFEDM MCNE BIQAA BIQI
DMDM [28] [32] [36] [37] [38]

CC 0.981 0.944 0.971 0.947 0.711 0.992
SROCC 0.978 0.957 0.968 0.942 0.615 0.990
MAE 2.867 5.26 3.823 3.900 9.297 1.394
RMSE 2.284 3.822 2.960 5.128 11.21 1.911

complementary performances across different noise levels.
It is noticed in Fig. 4(a) that for images of relatively high
quality (e.g. DMOS≤ 45), SINE seems to correlate well
the subjective scores, confirming the assumption that for
images with near-threshold noise, perceptual quality assess-
ment is process of gauging noise levels. Therefore, image
quality can be well approximated through noise estima-
tion. Note that at very low noise levels (e.g. σ ≤ 2.5) the
performance of SINE drops because of the possible inter-
ference between image signal and noises. Meanwhile, it is
found in Fig. 4(b) that NFEDM performs better for images
of relatively low quality (e.g. DMOS> 45), indicating the
plausibility of a free-energy-based inferencemodel for blind
quality assessment of images corrupted by suprathreshold
noises5. The above observations not only demonstrate the
existence of the dissimilar mechanisms of perceptual qual-
ity assessment for near- and suprathreshold noise condi-
tions, but also justify the appropriateness of the proposed
dual-model approach to IQA combining a noise estima-
tionmodel and an image inferencemodel. Inheritingmerits
from both near- and suprathreshold model, the proposed
DMDM obviously has a more consistent performance over
all noise levels, outperforming both near- and suprathresh-
old models, as illustrated in Fig. 4(c).

For a thorough comparison, some blind quality met-
rics, including the mean curvature-based noise estimation
(MCNE) [36], blind IQA through anisotropy (BIQAA) [37],
and the Blind Image Quality Index (BIQI) [38] are also
included in our comparison in Figs. 4(d)–4(f). Note that
BIQI is a training-based approach with parameters opti-
mized on the LIVE database itself [38], so its performance
is understandably far better than othermetrics. AndMCNE
and BIQAA are clearly outperformed by the proposed
DMDM on a wide quality range. A comparison between
proposed DMDM and those full-reference metrics shown
in Fig. 3 suggests that though being a no-reference method,
DMDM has performance almost equivalent to some of the
best full-reference metrics, such as SSIM and VIF.

Numerical performances of the no-reference quality
assessment algorithms, using metrics suggested by the
VQEG are listed in Table 2. The linear and nonlinear cor-
relation coefficients between DMDM and DMOS are about
0.98, indicating a prediction accuracy comparable with
those of PSNR and VIF and superior than SSIM, VSNR,

5A saturation effect of NFEQM is found under very large noise levels,
this is because 8-bit images are used in this work and the approximated
free-energy level will be bounded by a threshold lower than 9.

IWSSIM, and FSIM, as listed in Table 1. Moreover, the
MAE and RMSE performances of DMDM are even better
than those of VIF and most of other full-reference metrics.
Again, BIQI results included in Table 2 is just for reference,
since BIQI was trained on the LIVE database, and its direct
comparison with other metrics is unfair.

V . CONCLUS ION

Despite all the literatures and discussions of IQA, a fun-
damental question appear not to have been posed clearly,
let alone answered: is there any difference between qual-
ity assessment under different noise/artifact levels. In this
paper, we demonstrate that there does exist dissimilar
psychovisual mechanism of the HVS under near- and
suprathreshold noise levels. Taking the artifact of AGWN
as an example, we approximate the behavior of HVS using
a dual-model approach: a noise estimate model based on
natural image statistic for near-threshold noise and an
image inference model based on the free-energy princi-
ple for suprathreshold noise. We show that the proposed
dual-model-based distortion metric outperforms some of
state-of-the-art blind and full-reference quality metrics.
The proposed dual-model approach to IQA sheds light on
the necessity, possibility and effectuality of incorporating
cognitive factors into the problem of IQA, and the dual-
model framework is also extendable to other more com-
plicated distortion types and is expected to improve the
performances of existing image quality metrics that were
designed to be universal, handling all noise/artifact levels.
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