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Pulsar electrodynamics is reviewed emphasizing the role of the inductive electric
field in an oblique rotator and the incomplete screening of its parallel component
by charges, leaving ‘gaps’ with E‖ 6= 0. The response of the plasma leads to a
self-consistent electric field that complements the inductive electric field with a
potential field leading to an electric drift and a polarization current associated with
the total field. The electrodynamic models determine the charge density, ρ, and
the current density, J; charge starvation refers to situations where the plasma cannot
supply ρ, resulting in a gap and associated particle acceleration and pair creation. It is
pointed out that a form of current starvation also occurs implying a new class of gaps.
The properties of gaps are discussed, emphasizing that static models are unstable, the
role of large-amplitude longitudinal waves and the azimuthal dependence that arises
across a gap in an oblique rotator. Wave dispersion in a pulsar plasma is reviewed
briefly, emphasizing its role in radio emission. Pulsar radio emission mechanisms are
reviewed, and it is suggested that the most plausible is a form of plasma emission.

1. Introduction
Pulsars are strongly magnetized, rapidly rotating neutron stars. Their pulsed

radiation is emitted in a pencil beam that sweeps across the line of sight as the star
rotates. The observed emission can extend from <100 MHz to extreme gamma-ray
frequencies. There is an enormous body of detailed observational data on individual
pulsars, including over 2000 radio pulsars (Lorimer 2008) with approximately 10%
of these observed at high energy (Abdo et al. 2010). The basic parameters that are
measured (for most pulsars) are the period, P, and its rate of increase, Ṗ. A vacuum
dipole model (VDM, cf. § 2.2) is used to identify a characteristic magnetic field,
B∗∝ (PṖ)1/2, and a characteristic age, P/2Ṗ. Based primarily on the value B∗, pulsars
may be separated into three classes: normal pulsars with B∗ of order 109 T, recycled
(or millisecond) pulsars with much smaller B∗ and magnetars with much larger B∗.
Despite the wide range of parameters, the radio emission from all three classes is
remarkably similar. For most pulsars the integrated (over many pulse periods) pulse
profile is known, and the ‘pulse window’ is identified as the fraction of a rotational
period within which radiation is observed. Single pulses are observed from a subset
of radio pulsars, and these exhibit a rich variety of features: subpulses, micropulses,
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jumps between orthogonal polarizations and so on. The integrated pulse profile is
stable over relatively long times, with some pulsars jumping between two or more
different profiles (confusingly referred to as modes). Individual pulses show strong
pulse-to-pulse variability, implying a large variance about a quasi-stable mean. The
pulse window increases with decreasing frequency, and this is interpreted in terms of
a radius-to-frequency mapping, with the beam pattern consistent with emission along
a dipolar magnetic flux tube as it broadens with height.

In this paper, we attempt to answer the question: why is there still no widely
accepted theory for the pulsar radio emission mechanism? Despite enormous progress
in understanding the electrodynamics of pulsars (Michel 1990; Beskin, Gurevich &
Istomin 1993; Mestel 1999), there remain important unsolved problems, including the
radio emission mechanism. We comment on three different approaches to identifying
the radio emission mechanism: the first approach is observational, the second approach
is theoretical and based on pulsar electrodynamics and the third approach, also
theoretical, is based on the properties of radio emission mechanisms.

First: the enormous body of observational data, especially on pulsar radio
emission, can be summarized in various ‘rules’ that describe the properties of the
observed emission, and one might expect such rules to provide severe constraints on
possible emission mechanisms. However, such an observationally based approach is
complicated by the fact that there seems to be exceptions to every rule, leading to
differences of opinion as to the emphasis to be given to various rules and to the
exceptions to them. An example concerns the polarization of pulsar radio emission.
Early observations suggested a simple rule: the polarization is predominantly linear
with a characteristic S-shaped sweep in position angle through the pulse. This was
interpreted in terms of a rotating vector model (Radhakrishnan & Cooke 1969).
However, this rule is now recognized as, at best, an oversimplification. Observations
of individual pulses show that they can be highly elliptically polarized, with a large
pulse-to-pulse variation (McKinnon & Stinebring 2000; Edwards & Stappers 2004;
Johnston 2004), requiring a statistical interpretation (Melrose et al. 2006). Even
in cases where there is a steady average swing in the position angle, it can jump
by 90◦ at specific phases, with the sign of the circular polarization reversing. This
last feature, referred to as orthogonally polarized modes (Stinebring et al. 1984;
McKinnon & Stinebring 2000; McKinnon 2002), is strongly indicative of propagation
through a birefringent medium with elliptically polarized natural modes (Petrova &
Lyubarskii 2000; Wang, Lai & Han 2010; Beskin & Philippov 2012). An implication
is that important features of the observed polarization must be due to propagation
through a birefringent magnetospheric plasma, cf. § 5.2, greatly complicating use of
the polarization characteristics to constrain the emission mechanism.

Second: one might hope that a detailed model for pulsar electrodynamics, defined
here to mean a self-consistent model for the plasma and electromagnetic field in
the pulsar magnetosphere and the pulsar wind, would identify plausible locations
where the radio-emitting particles are accelerated. There is a widely accepted model
in which the magnetosphere is populated by relativistic electron/positron pairs that
are continuously being created in the inner magnetosphere (r � rL = Pc/2π) and
escaping through the light cylinder, at radius r = rL, to form the wind (r � rL).
This occurs along ‘open’ magnetic field lines that define polar-cap regions, with the
‘closed’ magnetosphere defined by field lines confined to r< rL. The pairs are created
in regions, called ‘gaps’, where the parallel electric field, E‖, accelerates charges to
extremely high energy, such that they emit gamma rays that decay into pairs in the
superstrong magnetic field (Sturrock 1971). In this model it seems plausible that
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the radio emission should be related to the pair creation, and hence to the location
of gaps. However, there is no consensus on the location of gaps: there are models
for inner gaps, near the stellar surface, outer gaps near the light cylinder and slot
gaps, near the boundary between open and closed field lines (Bai & Spitkovsky
2010; Yuki & Shibata 2012). Moreover, there are alternative models in which the
acceleration by E‖ occurs in a current sheet (Coroniti 1990; Uzdensky 2003; Wada &
Shibata 2007; Chen & Beloborodov 2014; Philippov & Spitkovsky 2014) rather than
a gap. There are also alternative electrodynamics models, including an electrosphere
(Krause-Polstorff & Michel 1985) rather than a polar-cap model, and an ion proton
plasma (Jones 2014), rather than a pair plasma. Pulsar electrodynamics does not give
a clear identification of the source region of the radio emission, or of the specific
radio emission mechanism.

Third: the number of conceivable radio emission mechanisms for pulsars is
relatively modest, and by considering all possible emission mechanisms, one
might hope to identify at least one that is consistent with the observations.
Possible mechanisms include plasma-type emission, curvature emission, linear
acceleration emission and anomalous Doppler emission. Each mechanism has its
own characteristics, including typical frequency and polarization, and one might
expect to identify the most favourable mechanism by comparing the predicted and
observed characteristics. However, this is not straightforward due to uncertainties in
the location of the source region, the plasma parameters there and the properties of
the radio-emitting particles. No consensus on which of these (or some other) is the
most plausible mechanism has emerged. Moreover, pulsar radio emission requires a
‘coherent’ emission mechanism, requiring either emission by bunches or some form
of plasma instability, and again opinions differ as to which of these applies in pulsar
radio emission.

The source region for the radio emission, although not well determined, is widely
assumed to be on open field lines well inside the light cylinder. We accept this
assumption, and concentrate our discussion on the region r � rL, where retarded
effects and the modification of the dipolar magnetic field due to magnetospheric
current can be neglected (to lowest order in r/rL).

Pulsar electrodynamics is summarized in § 2: the dichotomy in the use of two
early models (VDM and RMM) is pointed out and some more recent approaches
involving numerical modelling are discussed briefly. Whether or not the plasma can
supply the charge density, ρ, and current density, J, required by electrodynamic
models is discussed in § 3, where we discuss screening of the parallel component of
the inductive electric field. Failure of the plasma response to meet the requirements
of the electrodynamics on ρ and J are referred to as charge and current starvation,
respectively, and implies the need for regions with E‖ 6= 0. Such ‘gaps’ are discussed
in § 4, where it is argued that regions with E‖ 6=0 are intrinsically time dependent, and
are probably associated with large-amplitude longitudinal oscillations. Interpretation
of the radio emission depends in part on the dispersive properties of the plasma, and
wave dispersion in a pulsar plasma is discussed in § 5. Several of the suggested pulsar
radio emission mechanisms are reviewed critically in § 6, allowing the reader to see
why there is no consensus on one specific mechanism. The results are discussed and
conclusions are summarized in § 7.

2. Global models
Pulsar electrodynamics is concerned with the large-scale distributions of fields and

plasmas in the magnetosphere of a strongly magnetized, rapidly rotating neutron star.
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Two early models for the electrodynamics are the vacuum dipole model (VDM) and
the rotating magnetosphere model (RMM). Both the VDM and RMM predated the
discovery of pulsars, and already led to controversy (Davis Jr 1947; Alfvén 1950)
decades before the discovery of pulsars. There remains a dichotomy between the VDM
and the RMM, with one or other used selectively for different purposes. A more
recent approach involves numerical modelling using force-free electrodynamics (FFE).
Although the RMM and FFE are sometimes regarded as equivalent, the distinction is
maintained here. The defining assumption in a RMM is that the plasma is corotating
with the star, whereas the defining assumption in FFE is that the electromagnetic force
is zero. (Neither assumption can be strictly correct.)

2.1. Maxwell’s equations
All models for electrodynamics are based on Maxwell’s equations. These can always
be written in the form

∇×E=−∂B
∂t
, ∇ ·B= 0, (2.1a,b)

∇×B=µ0J+ 1
c2

∂E
∂t
, ∇ ·E= ρ

ε0
. (2.2a,b)

These equations imply the wave equation,(
1
c2

∂2

∂t2
−∇2

)
E=−µ0

∂J
∂t
− ∇ρ
ε0
. (2.3)

The Maxwell stress tensor is

(T EM)ij =−
(

B2

2µ0
+ ε0E2

2

)
δij + 1

µ0
BiBj + ε0EiEj, (2.4)

and its divergence, combined with Maxwell’s equations, gives the electromagnetic
force per unit volume,

f EM = ρE+ J×B+ ∂PEM

∂t
, (2.5)

where PEM =E×B/µ0c2 is the momentum density in the electromagnetic field.

2.2. Vacuum dipole model (VDM)
In the VDM the star is assumed to be surrounded by a vacuum, implying ρ= 0, J= 0.
The magnetic field is assumed to be due to a magnetic moment, m(t), rotating with
the same angular frequency, ω, as the star, ω = 2π/P. Early versions of the VDM
(Davis Jr 1947; Deutsch 1955) assumed the dipole is at the centre of a conducting
sphere, and then there is a surface charge on the sphere that leads to a quadrupolar
potential field in the surrounding vacuum. The VDM was applied to neutron stars by
Pacini (1967, 1968).

A major advantage of the VDM is that the fields can be evaluated explicitly, using

A= µ0

4π
∇×

[
m(t− r/c)

r

]
, B=∇×A, E=−∂A

∂t
,

∂m
∂t
=ω×m, (2.6a−d)
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where r = |x| is the radial distance from the centre. When retarded effects are
neglected, t− r/c→ t, B is the ‘dipolar’ field, and E∝ 1/r2 is the ‘inductive’ electric
field,

Bdip = B∗R3
∗

2r3
(3m̂ · r̂r̂− m̂), B∗ = 2µ0m

4πR3∗
, Eind = µ0mω

4πr2
(m̂ · r̂ω̂− ω̂ · r̂m̂), (2.7a−c)

where r̂= x/r, m̂, ω̂ are unit vectors and B∗ is the magnetic field at the pole on the
stellar surface, r = R∗. The retarded terms give additional contributions ∝1/r2 and
∝1/r to B and ∝1/r to E. The terms ∝1/r give a radially outward Poynting vector
∝r̂/r2 for r→∞, and integrating over a sphere at infinity gives the power in magnetic
dipole radiation,

P = µ0m2ω4 sin2 α

12πc3
, cos α = m̂ · ω̂, (2.8a,b)

where α is the obliquity angle.
In the application of the VDM to pulsars, the rate of loss of angular momentum,

P/ω, to magnetic dipolar radiation, is equated to the rate of loss of rotational angular
momentum, I∗ω̇, where I∗ is the moment of inertia of the star, which is assumed to
be approximately the same for all neutron stars. Using (2.7) and (2.8), this determines
the magnetic field B∗ sin α = 6 × 1015(PṖ)1/2 T in terms of the observables, where
the constant of proportionality is uncertain by a factor of order unity. The age is
identified as P/2Ṗ on the basis of the VDM with α assumed independent of time.
The assumption that α is constant is artificial: the VDM implies that the torque due
to magnetic dipole radiation has a component leading to the slowing down and a
component orthogonal to it that causes α to decrease on the same time scale as the
slowing down (Davis & Goldstein 1970). Observations suggest that alignment occurs,
but only over approximately 107 yrs (Lyne & Manchester 1988), inconsistent with the
prediction. It is now accepted that the slowing down of a pulsar is due to a wind.

If plasma is present in the magnetosphere at sufficiently low density such that it
does not modify E significantly, the VDM implies an electric drift determined by
Eind:

vind = Eind ×B
B2

=ωrm̂ · r̂
3m̂ · r̂ω̂× r̂− 3ω̂ · r̂m̂× r̂− ω̂× m̂

3(m̂ · r̂)2 + 1
. (2.9)

This velocity is of the same order of magnitude, ωr, as the corotation velocity, ω× x,
but differs from it in both direction and magnitude. The velocity (2.9) corresponds
to a rotating vector field, in the sense that the field pattern is periodic with period
P= 2π/ω. The plasma flow is not periodic: a given blob of plasma does not return
to the same location after one rotation.

2.3. Rotating magnetosphere model (RMM)
Soon after the discovery of pulsars, a RMM was proposed (Goldreich & Julian
1969). The basic assumption is that the neutron star is surrounded by plasma that
corotates with the star, analogous to planetary magnetospheres, like those of the Earth
and Jupiter (Hones Jr & Bergeson 1965). For simplicity, Goldreich & Julian (1969)
assumed alignment of the magnetic and rotation axes; subsequently the assumption
sin α = 0 dominated much of the pulsar literature on the RMM. This neglects some
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essential electrodynamics: an aligned model has no inductive electric field and no
magnetic dipole radiation. An oblique version of the RMM (Hones Jr & Bergeson
1965) predated the discovery of pulsars, and the discussion of the RMM in this paper
presupposed the more general case with sin α 6= 0. A notable distinction between
RMMs for planetary and pulsar magnetospheres is that the distance, called the light
cylinder, where the corotation speed equals the speed of light is important in the
pulsar case, where it separates the inner magnetosphere from the pulsar wind. In a
RMM, the charge and current densities become infinite at the light cylinder (Goldreich
& Julian 1969) and in the discussion of RMMs here we assume they only apply well
within the light cylinder.

Plasma motion in a (pulsar) magnetosphere is determined by the electric drift
velocity, and the electric field corresponding to corotation is Ecor = −vcor × B
with vcor = ω × x = ωrφ̂. The electric drift implies only the component, vcor⊥ =
vcor − bb · vcor, perpendicular to B= Bb. Hones Jr & Bergeson (1965) noted that, in
an obliquely rotating planetary magnetosphere, the parallel component, vcor‖ = b · vcor,
can be set-up mechanically due to a trapped particle being reflected from moving
mirror points as the star rotates. This is not possible in a pulsar magnetosphere: due to
the superstrong magnetic field, electrons and positrons radiate away their perpendicular
energy extremely rapidly so that their orbital magnetic moment, mv2

⊥/2B, is identically
zero. This precludes any mirroring. There is no other mechanical force that can set-up
or maintain vcor‖ in a neutron star magnetosphere. Hence ‘corotation’ in an oblique
pulsar should be interpreted as the electric drift velocity vE = vcor⊥ with

vcor⊥ =ωr
[3(m̂ · r̂)2 + 1]ω̂× r̂− ω̂× m̂ · r̂(3m̂ · r̂r̂− m̂)

3(m̂ · r̂)2 + 1
. (2.10)

The corotation electric field has both an inductive (divergence-free) and a potential
(curl-free) component (Melrose 1967),

Ecor =Eind +Epot, Eind =−∂A
∂t
, Epot =−∇Φcor, Φcor =ω× x ·A. (2.11a−d)

The inductive field is unchanged from its value in vacuo (in the VDM), and the
additional potential field is due to the corotation charge density, ρ = ρcor, with

ρcor

ε0
=∇ ·Ecor =−2ω ·B+ (ω× x) · ∇×B. (2.12)

The final term in (2.12) may be rewritten using Ampère’s equation (2.1).
Ampère’s equation can be separated into three parts. One part with J = 0

corresponds to the VDM, with the retarded parts of ∇ × B and the displacement
current, Jdisp= ε0∂E/∂t, due to Eind in balance. A second part involves the contribution
to Jdisp from Epot being balanced by a corotation current density. The explicit form
for Epot for r� rL is

Epot =− ω2m
4πr2c2

(3ω̂ · r̂m̂ · r̂r̂− ω̂ · m̂r̂− m̂ · r̂ω̂− ω̂ · r̂m̂), (2.13)

implying (see Fawley, Arons & Scharlemann 1977)

Jcor =−ε0
∂Epot

∂t
= ω2m

4πr2c2
[ω̂× m̂ · r̂(3ω̂ · r̂r̂− ω̂)− ω̂ · r̂ω̂× m̂]. (2.14)
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The remaining part involves additional currents in the plasma, including ρcorvcor⊥ and
a remaining part, Jext say, that are balanced by an additional contribution to ∇ × B.
Then (2.12) implies

ρcor = ε0

1− |vcor⊥|2/c2

[
−2ω ·B+ (ω× x) ·

(
µ0Jext + 1

c2

∂Eind

∂t

)]
, (2.15)

which reduces to the Goldreich–Julian charge density in the aligned case with Jext= 0.
The plasma velocity (2.10) in the oblique corotation model may be regarded as the

sum of the electric drift velocities due to Eind and Epot. This allows one to identify a
class of intermediate models (Melrose & Yuen 2012, 2014) with electric drift velocity

v′E = yvind + (1− y)vcor⊥, (2.16)

reducing to the VDM and the RMM for y= 1 and y= 0, respectively.
In early RMMs it was assumed that the stellar surface is a source of charge

(‘primary’ charges), and that pair creation (‘secondary’ charges) in gaps is needed to
allow the plasma to provide the required charge density. However, the assumptions
that charges arise from the stellar surface leads to an ‘electrosphere’ (Krause-Polstorff
& Michel 1985; Spitkovsky 2004), rather than the widely accepted polar-cap
model. As discussed below, older electrostatic models for pair creation in gaps are
unstable to temporal perturbations, and the acceleration by E‖ 6= 0 is in intrinsically
time-dependent structures. This has led to the suggestion, which we favour, that the
stellar surface plays no significant role in populating the magnetosphere with charges.

2.4. Force-free electrodynamics (FFE)
More recently, force-free electrodynamics (FFE) has been used as the basis for
models for the global electrodynamics, particularly for the region r & rL covering the
transition from the inner magnetosphere to the pulsar wind (Contopoulos, Kazanas &
Fendt 1999; Komissarov 2006; Li, Spitkovsky & Tchekhovskoy 2012). FFE may be
interpreted as a modified form of magnetohydrodynamics (MHD) in which relativistic
effects and the displacement current are included, and the inertia of the plasma is
neglected. As in MHD, the assumption E‖ = 0 is made in FFE.

The force-free condition is f EM = 0 in (2.5), and this reduces to the standard
form assumed in the FFE, ρE + J × B = 0, when the momentum density of the
electromagnetic field is neglected. The plasma inertia is included implicitly through
the polarization (or inertia) current, and neglecting the plasma inertia corresponds to
omitting the polarization current from J. This assumption may be justified in pulsar
magnetospheric plasma by noting that the Alfvén speed, vA, is much greater than
the speed of light, and that the ratio of Jpol to Jdisp is c2/v2

A � 1. Stresses that are
transmitted by Alfvén waves in MHD are transmitted at v0= vA/(1+ c2/v2

A)
1/2≈ c in a

pulsar plasma. Although the force-free condition cannot be strictly valid, because the
slowing-down torque must be transmitted from the wind to the star by the Maxwell
stress in the magnetosphere, the non-zero f EM is of the same order as that in the
VDM. It has been shown that an FFE model effectively reduces to the VDM (Pétri
2012) as the vacuum limit is approached.

A major achievement of FFE models is in describing the transition region from
the inner magnetosphere at r � rL to the wind zone at r � rL. The FFE solutions
break down, leading to discontinuities, near the light cylinder and along the last closed
field lines (Coroniti 1990; Uzdensky 2003; Chen & Beloborodov 2014; Philippov &
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Spitkovsky 2014). The discontinuities are interpreted in terms of a Y-shaped current
sheet, with the solutions on either side of the sheet linked by the boundary conditions
at the sheet. This was first recognized for an aligned rotator; solutions for an oblique
rotator show similar features (Tchekhovskoy, Spitkovsky & Li 2013).

The assumption E‖ = 0, made in MHD and FFE, cannot apply everywhere in a
pulsar magnetosphere. A realistic pulsar model needs to include regions with E‖ 6= 0
(Kalapotharakos et al. 2012), where acceleration and associated pair creation occur.
The regions with E‖ 6= 0 are assumed to be localized, as gaps in RMMs and current
sheets in global FFE models. One interpretation of the need for regions with E‖ 6= 0
is that (in MHD and FFE) ρ and J are determined by the electrodynamics, without
reference to whether or not the plasma can supply the required charges and currents,
and a model based on E‖ = 0 must be modified when the plasma cannot support
the required ρ or J, in particular when these become infinite. If the source of the
radio emission is assumed to be close to the acceleration regions, the identification of
the acceleration site with current sheets in a global FFE model would imply that the
radio source is near the light cylinder. It seems more plausible that the radio source
is at r � rL and that the electrons and positrons that produce the radio emission
are accelerated in gaps at r � rL. One approach to modelling the effects of such
regions using FFE is to replace the assumption E‖ = 0 in ‘ideal’ FFE by allowing
a non-zero resistivity (Kalapotharakos et al. 2012; Li et al. 2012). Another approach
is to complement a global FFE model with PIC calculations describing localized pair
creation (Timokhin 2010; Timokhin & Arons 2013; Cerutti et al. 2015; Philippov,
Spitkovsky & Cerutti 2015). Although these approaches are encouraging, they have
yet to result in a self-consistent model that is useful in constraining the location and
properties of the radio source region.

3. Response of a pulsar plasma
The response of the plasma needs to be considered in two separated contexts: the

response to the ‘background’ electromagnetic field, and wave dispersion in a pulsar
plasma. The first of these is discussed in this section, and the second is discussed
in § 5.

3.1. Response to the background field
In a pulsar magnetosphere, the ‘background’ electromagnetic field is that due to the
rotating magnetized star, approximated here by a rotating magnetic dipole at the centre
of the star. Currents flowing in the magnetosphere provide an additional magnetic field.
Here we concentrate on the region r� rL, where the modification to the dipolar field
as a result of magnetospheric currents (and due to retarded effects) is small, and can
be neglected to a first approximation.

The electrodynamic problem is to determine ρ, J and an associated potential field,
Epot, given the background electromagnetic field. In the VDM the solution is known:
ρ and J are assumed zero, and Epot is attributed to a surface charge distribution on
the star. In the RMM, E is, by hypothesis, the corotation field, Ecor, and ρ and J are
determined from it by Maxwell’s equations, cf. (2.12) and (2.14). In FFE, E is found
from Maxwell’s equations with ρE+ J×B= 0 and E‖= 0, and for assumed boundary
conditions. Such solutions are derived without consideration as to whether the plasma
can provide the required ρ and J.

The relevant response of the plasma to this background electric field corresponds to
the low-frequency long-wavelength limit. Although the self-consistent E is not known
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in general, one can write down the response to it. The response is quite different for
the perpendicular and parallel components. It is convenient to separate into these two
components by writing

E=−u×B+ E‖b, u= E×B
B2

. (3.1a,b)

The response of individual particles to E⊥ = −u × B may be described in terms of
orbit theory, and the collective response to E⊥ may be approximated by the low-
frequency long-wavelength limit of the plasma response tensor.

The response of the plasma to Eind‖ is strongly oscillatory (Levinson et al. 2005),
and there is a strong tendency to set-up a potential field whose parallel component
is equal and opposite to Eind‖, so that the self-consistent field has E‖ ≈ 0. Before
discussing how such screening of Eind‖ occurs, let us consider the response in a region
with E‖ = 0.

3.2. Drift motions
In a region with E‖ = 0, individual particles in the plasma respond to E through
drift motions. The electric drift velocity, vE = u with u given by (3.1), applies to
all particles. The electric drift is derived as the first-order term in an expansion of
Newton’s equation of motion for a charge in crossed electric and magnetic fields. With
E‖ = 0 the perpendicular equation of motion,

mγ
dv⊥
dt
= q(E⊥ + v⊥ ×B), (3.2)

is approximated by expanding v⊥ in powers of 1/B. The zeroth-order term is zero
in a pulsar magnetosphere due to the perpendicular momentum being radiated away
in the superstrong magnetic field. Writing the first- and second-order terms as v⊥ =
u+ vpol, the first-order solution of (3.2) gives u= vE. The second-order term gives the
polarization drift

mγ
du
dt
= qvpol ×B, vpol =−mγ

qB2

du
dt
×B. (3.3a,b)

The polarization current density is given by integrating qvpol over the distribution of
particles and summing over all species.

Two other familiar drift motions, the grad-B and grad-P drifts, are ∝v2
⊥, and hence

are identically zero in a pulsar plasma. The curvature drift is non-zero, and its effect
is to cause particles (with v⊥= 0) to follow the curved field lines (Chugunov, Eidman
& Suvorov 1975). Only the electric and polarization drifts are relevant here.

3.3. Cold-plasma response
In the low-frequency long-wavelength limit, the response may be described by
that of a cold plasma, with appropriate reinterpretations of the cyclotron and
plasma frequencies to include relativistic effects. The induced current density has
components

Jpol = c2

v2
A
ε0
∂E⊥
∂t
, JH = ρE⊥ ×B

B2
, (3.4a,b)

∂J‖
∂t
= ε0ω

2
pE‖ + σ‖ ∂E‖

∂t
. (3.5)
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The first of the currents (3.5) reproduces the polarization current derived from the
polarization drift (3.3) for a constant magnetic field, with the Alfvén speed in a pulsar
magnetosphere satisfying v2

A� c2. The second of the currents (3.5) is the Hall current,
with the obvious interpretation of the charge density drifting at velocity u, cf. (3.1).

The parallel response is oscillatory, with J‖ and E‖ tending to oscillate at the
plasma frequency, ωp. Dissipation associated with the parallel response is included in
(3.5) through a parallel conductivity, σ‖. In a cold plasma, dissipation is associated
with an electron collision frequency, νc, which provides a frictional drag on the
electrons, and implies a conductivity σ‖ = ε0ω

2
p/νc. The generalization of the parallel

response to a pulsar plasma retains these two features: oscillation and dissipation,
with J‖ and E‖ oscillating at a relativistically modified plasma frequency. The relevant
dissipation is collisionless and due to acceleration of particles, and this requires a
detailed model. It is conventional to simulate the effect of acceleration through an
anomalous conductivity, defined by replacing νc by an effective collision frequency,
νeff .

3.4. Screening of E‖
It is impossible for charges to screen an inductive electric field, but charges can flow
freely along field lines to screen the parallel component, Eind‖. The effectiveness of
such screening can be estimated by considering the parallel component of the wave
equation (2.3). Assuming the parallel response (3.5) and ignoring the conductivity, this
becomes (

1
c2

∂2

∂t2
− ω

2
p

c2
−∇2

⊥ −
∂2

∂s2

)
E‖ =− 1

ε0

∂ρ

∂s
−µ0

∂Jext‖
∂t

, (3.6)

where s denotes distance along the field line, and where Jext is any extraneous current
not included in the response (3.5). For the slowly (spatially and temporally) varying
part of E‖, the term involving ω2

p/c
2 dominates on the left-hand side. Supposing that

Eind‖ varies over a characteristic distance `‖, the right-hand side is of order Eind‖/`2
‖.

It follows that the screened E‖ is smaller than (the unscreened) Eind‖ by a factor of
order c2/ω2

p`
2
‖� 1, implying that screening of Eind‖ is very effective.

A localized region with E‖ 6= 0 may be attributed to anomalous conductivity, with

E‖ = J‖
σ‖
= c2νeff

ω2
p

µ0J‖, (3.7)

and with the anomalously conductivity identified as σ‖ = ε0ω
2
p/νeff . This leads to a

power dissipated per unit volume of E‖J‖ = J2
‖/σ‖, which needs to be equated to the

power per unit volume transferred to particles due to the acceleration of charges by
E‖. Although such a model based on anomalous conductivity is simplistic, two general
conclusion based on it are likely to be valid more generally: gaps with E‖ 6= 0 are
highly localized, and effective dissipation within gaps is associated with acceleration
of particles by E‖.

4. Role of gaps
An essential ingredient in any global model for pulsar electrodynamics is the

presence of regions with E‖ 6= 0. Here we give a general argument as to why E‖ = 0
cannot apply everywhere, and then discuss specific gap models for aligned and
oblique rotators.
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4.1. Need for gaps
One cannot have E‖ = 0 everywhere in an obliquely rotating pulsar magnetosphere
because this would lead to an inconsistency with the integrated form of Faraday’s
equation in the presence of the time-changing magnetic field. The integral of E along
any closed path is equal to minus the rate of change of the enclosed magnetic flux.
One may separate any closed path into a sets of closed subpaths, each of which
includes paths along two field lines, and two paths across the field lines joining these
two field lines. If one assumed E‖ = 0 then the field lines are equipotentials and this
integral is trivially zero around any such subpath. A time-changing magnetic field
implies that that there must be some regions with E‖ 6= 0 and that the field lines that
pass through such regions are not equipotentials. The regions with E‖ 6=0 are identified
as gaps.

The familiar frozen-in condition does not apply within a gap. The plasma motion
above a gap may be regarded as slipping across field lines relative to the plasma
motion below the gap. Such slippage is driven by the stress of the wind dragging the
plasma in the inner magnetosphere backwards relative to corotation. This stress must
be electrodynamic, cf. (2.4), (2.5), and communicated by parallel currents between the
wind and the stellar surface (Shibata 1991). However, such arguments do not provide
any useful constraint on the possible locations of gaps (Bai & Spitkovsky 2010; Yuki
& Shibata 2012).

4.2. Charge starvation and gaps
The concept of charge starvation arose in models for an aligned rotator in which the
only source of charge is the stellar surface. If the plasma is incapable of meeting
the requirement on ρ everywhere along a field line, it is assumed that a region with
E‖ 6= 0 develops and results in pair creation, providing the necessary additional source
of charges.

A ‘vacuum gap’ with E‖ 6= 0, first proposed by Ruderman & Sutherland (1975),
became the basis for ‘inner’ gap models. The concept of a gap was later generalized
to include a slot gap (Arons & Scharlemann 1979) and an outer gap (Cheng, Ho &
Ruderman 1986). Ruderman & Sutherland (1975) assumed that the plasma above the
vacuum gap is rotating at a lower angular speed, ω∗ =ω−1ω say, to the corotating
plasma below the gap. In the aligned case, the corotation potential (2.11) becomes
Φcor = ±µ0mω sin2 θ/4πr = ±µ0mω/4πr0, where r0 = r/ sin2 θ is the field-line
constant, implying that Φcor is constant along a given field line (given r0). In the
presence of a gap, there is a potential difference 1Φ = µ0m1ω/4πr0, along a field
line through the gap. 1Φ is zero along the axis (r0→∞, sin θ = 0) and is maximum
at the last closed field line (r0 = rL, sin2 θ = r/rL), favouring a slot-gap model. An
outer gap is needed to provide additional charges near the point where ρcor changes
sign which, for an aligned rotator, is at r= 2r0/3 and cos2 θ = 1/3.

In brief, the corotation charge density cannot be provided by charges from the stellar
surface alone, requiring a purely magnetospheric source of charge, which is attributed
to pair creation by charges accelerated by E‖ 6= 0. Further arguments suggest that pair
creation in the magnetosphere is the dominant source of charge, and that charges from
the stellar surface may play no significant role (Timokhin 2010).

4.3. Gaps in an oblique rotator
A generalization of the foregoing gap model to an oblique rotator is possible. Suppose
that one has E‖ = 0 between gaps. For a dipolar field, one can ensure E‖ = 0 by
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assuming the electric field of the form

E=Ecor − gradΦ ′(χ, φ0), (4.1)

where χ = sin2 θb/r, φ0 = φb are the field-line constants for a particular dipolar field
line, in terms of the polar and azimuthal angles relative to the magnetic axis. A model
for a specific gap involves specifying the function Φ ′(χ, φ0) on either side of the gap.
A complication, compared with a gap in an aligned model, is that the potential drop
across the gap includes the contribution from the line integral of Eind through the gap,
in addition to the change in Φ ′(χ, φ0) from below to above the gap.

4.4. Drifting subpulses
A potentially attractive feature of a gap model in an oblique rotator relates to drifting
subpulses. Observations of drifting subpulses imply azimuthally dependent structures
drifting at an angular velocity different from that of the star. In the carousel model
(Deshpande & Rankin 1999) drifting subpulses are associated with magnetospheric
density structures ∝cos mφb where m is an integer. The possible description in terms
of a gap in an oblique rotator is that Φ ′ can change from being independent of
φb below the gap to ∝cos mφb above the gap. A specific plasma instability within
the gap is needed in any detailed model for the development of such azimuthal
structures, and several have been suggested (Kazbegi, Machabeli & Melikidze 1991).
For example, a gradient in the flow velocity, as a function of θb, implies a shear that
can lead to a diocotron instability (Pétri, Heyvaerts & Bonazzola 2002), resulting
in the development of an azimuthally asymmetric structure (Spitkovsky 2004; Fung,
Khechinashvili & Kuijpers 2006). This instability could lead to a structure dominated
by a particular Ylm(θb, φb) with a large l,m, as suggested by the carousel model.

4.5. Large-amplitude longitudinal oscillations (LALOs)
Static models for gaps are unstable to temporal perturbations (Levinson et al. 2005).
This does not invalidate the requirement for regions with E‖ 6= 0, but it does require
a reinterpretation of what a gap is.

The parallel response of a pulsar plasma, consisting of streaming, relativistic
electrons and positrons with p⊥ = 0, differs in detail from that of a cold plasma, but
retains the important feature that it is oscillatory at the generalization of ωp, which
includes a factor 〈γ 〉1/2 in the denominator, where 〈γ 〉 is a weighted average of the
Lorentz factor of the particles. Specific models show that large-amplitude longitudinal
oscillations (LALOs) develop (Levinson et al. 2005; Beloborogov & Thompson 2007)
with a saw-tooth profile for E‖. One suggestion is that ‘gaps’, in the sense of regions
with E‖ 6= 0 where effective acceleration occurs, be regarded as propagating LALOs
(Luo & Melrose 2008) rather than quasi-stationary structures.

4.6. Current starvation
Any model for pulsar electrodynamics can be valid only if the plasma is able to supply
not only the required charge density, but also the required current density. ‘Current
starvation’ refers to situations where the plasma cannot supply the current density Jcor,
given by (2.14). The current Jcor is required to maintain the time-changing ρcor at its
instantaneous value. The current density (3.5) that the plasma can provide is different
in the three orthogonal directions, E⊥, E × B, B. Ignoring angular factors, one finds
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that Jcor is of order ρcorωr, which is the same order as the response along E × B.
The polarization current, which is the response along E⊥, includes the very small
factor c2/v2

A� 1. As a consequence, the plasma cannot provide the required current
along E⊥. Specifically, Jcor is determined by (minus) the displacement current, due to
Epot =Ecor −Eind, whereas Jpol is equal to c2/v2

A times Jdisp. It follows that c2/v2
A� 1

implies |Jpol| � |Jcor|. This would appear to invalidate the RMM in the oblique case.
However, there is another way in which the time-changing ρcor could be maintained.

The required cross-field current could be supplied by a current flow along field
lines to a conducting surface, here the stellar surface, closure across field lines at the
surface, and return current flow along neighbouring field lines. This form of cross-field
current flow has been invoked in connection with laboratory plasmas (Simon 1955),
and with the ‘current wedge’ in a (terrestrial) substorm (McPherran, Russel & Aubry
1978). However, such current flow can be effective in a pulsar only near the surface of
the star. At distances that are a significant fraction of rL, the lapse time associated with
propagation (at c) to the surface of the star and back becomes comparable with the
pulsar period, P, which is also the time scale on which ρcor is required to change. This
way of providing the required Jcor is possible only if the lapse time ≈2(r−R∗)P/rL is
much smaller than P. When this condition is not satisfied, there is current starvation,
and (ω × x)⊥ cannot be maintained at its required instantaneous value. Corotation,
even in the restricted sense implied by vcor⊥, cf. (2.10), is then not possible and the
RMM is invalid.

4.7. Partial current starvation
A simple model for the case where there is partial current starvation involves first
considering the case where the time-varying part of ρcor is absent. This case is given
by replacing ρcor and Epot = Ecor − Eind by their time averages 〈ρcor〉 and 〈Epot〉,
respectively; this is achieved by the replacement m̂ → m̂ − m̂ · ω̂ω̂ in (2.12) and
(2.13), respectively. Introducing a parameter 0 6 y′ 6 1 to describe the degree of
current starvation, the model corresponds to replacing ρcor and Epot by

ρ ′cor = (1− y′)ρcor + y′〈ρcor〉, E′pot = (1− y′)Epot + y′〈Epot〉, (4.2a,b)

respectively. The parallel component of the inductive electric field, Eind‖, is screened
by Epot‖ for y′ = 0, and this screening is incomplete for y′ 6= 0. There is a non-zero
parallel electric field in this model:

E′‖ = y′(Eind‖ + 〈Epot‖〉). (4.3)

The foregoing arguments imply that the parameter y′ is of order r/rL. It follows
that current starvation increases in significance as r/rL increases. The retarded terms
in the VDM, which are neglected in the discussion here are of order r/rL, and in any
detailed model for current starvation, the retarded terms need to be taken into account.
An interesting feature of a gap due to this current starvation is that, unlike gaps that
form due to charge starvation, such a gap is not restricted to the open-field region.

4.8. Location of source regions
A reliable model for the location of gaps is required to make predictions concerning
the acceleration of particles and the resulting pair creation. Emphasis has been placed
on the location of gaps that lead to the emission of high-energy photons. Even for the
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high-energy emission, the electrodynamics does not lead to a convincing identification
of the location of the gaps (Bai & Spitkovsky 2010), but it is plausible that the
acceleration and emission regions are colocated. Identifying the location of the radio
source region is more problematic because the relationship between the acceleration
region and the radio emission region is not known. For the two established coherent
emission mechanisms, cf. § 6, this relationship is (observationally) quite different.
The acceleration and emission regions are different but closely correlated for electron
cyclotron maser emission, and are not only different but can be very widely separated
for plasma emission. Attempting to identify the source region for pulsar radio
emission from first principles seems unrealistic.

5. Wave dispersion in pulsar plasma
Wave dispersion in any magnetized plasma is determined by the plasma response

tensor, which depends on the distributions of particles.

5.1. Pulsar plasma
Unusual features of a pulsar plasma in the polar-cap regions include: the plasma is
dominated by relativistic electrons and positrons that are streaming outward with a
mean Lorentz factor 〈γ 〉� 1; there is also a relativistic spread in Lorentz factor about
this mean; the plasma in one-dimensional (1-D), in the sense that all particles are in
their ground Landau state, corresponding classically to p⊥=0; the cyclotron frequency,
Ωe, is much higher than the plasma frequency.

In earlier literature it was assumed that ‘primary’ particles are accelerated from
the stellar surface to very high Lorentz factors, 106–107, and that these trigger the
pair creation of the much more numerous ‘secondary’ pairs. The number densities,
n±, of the secondary positrons and electrons, respectively, satisfy e(n+ − n−) = ρ,
and a multiplicity, M, may be defined by writing (n+ + n−)/2 = M|ρ|/e, with ρ =
ρcor in the RMM. The distributions of electrons and positrons have been estimated
from numerical models of the pair creation (Hibschman & Arons 2001; Arendt Jr &
Eilek 2002). The numbers have considerable uncertainty, due to uncertainties in the
parameters assumed in the numerical models. Estimates suggest M in the range of
a few tens to 103, and streaming Lorentz factors in the range 〈γ 〉 = 102–103 with a
thermal like spread about this mean (Arendt Jr & Eilek 2002).

5.2. Cold, relativistically streaming pair plasma
A simple model for wave dispersion in a pulsar plasma involves assuming that, in the
rest frame of the plasma, the electrons and positrons are cold (Melrose & Stoneham
1977; Arons & Barnard 1986; Barnard & Arons 1986). Wave dispersion in this frame
may be regarded as a modification of the magnetoionic theory, which applies to a cold
electron gas, to include a mixture of electrons and positrons. The wave properties in
the pulsar frame may be found by solving for the wave properties in the rest frame
and Lorentz transforming these properties to the pulsar frame.

The mixture of electrons and positrons may be described by a parameter ε, which
is the average charge per particle, with ε =−1 for a pure electron gas, ε = 0 for a
pure pair plasma. Dispersion in an electron gas, ε =−1, is conventionally described
in terms of two magnetoionic parameters, denoted X = ω2

p/ω
2, Y =Ωe/ω here, with

ε being a third parameter in the case of a mixture. The dispersion equation becomes
a quadratic equation for n2 (the square of the refractive index) as a function of the
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angle, θ , between the wave normal and the magnetic field, in addition to X, Y, ε. In
a pulsar plasma, Ωe is much higher than all other frequencies of interest and one is
justified in expanding in inverse powers of Ωe, which is equivalent to expanding in
X/Y2=ω2

p/Ω
2
e = 1/β2

A, where βA= vA/c. One has β2
A� 1 in a pulsar plasma, and then

the characteristic speed of MHD waves is βAc/(1+ β2
A)

1/2 ≈ c.
The dispersion equation for a cold pair plasma with ε 6= −1 is, to first order in

1/β2
A,

(n2 − 1)[(1− X cos2 θ)n2 − (1− X)] + 1
β2

A
{n4 sin2 θ − [(2− ε2X) sin2 θ

+ (1− X)(1+ cos2 θ)] n2 + (1− X)(2− ε2X)} = 0. (5.1)

To zeroth order in 1/β2
A for the ordinary (o) mode and to first order for the

extraordinary (x) mode, (5.1) gives

n2
o =

1− X
1− X cos2 θ

= ω2 −ω2
p

ω2 −ω2
p cos2 θ

, n2
x = 1+ 1

β2
A
. (5.2a,b)

The o mode separates into a low-frequency branch, ω2 < ω2
p cos2 θ , and a high-

frequency branch ω2 > ω2
p. There is a resonance at ω2 = ω2

p cos2 θ in the lower
branch and a cutoff at ω2 = ω2

p in the upper branch, which are separated by a stop
band, ω2

p cos2 θ < ω2 < ω2
p. For the o mode, at sufficiently low frequencies, the

dispersion relation approaches ω= |kz|c, which corresponds to an Alfvén wave in the
strong-field limit βA→∞. At high frequencies, ωp�ω�Ωe, the dispersion relation
approaches n2

o ≈ 1 − (ω2
p/ω

2) sin2 θ , which is equivalent to ω2 − |k|2c2 ≈ ω2
p sin2 θ .

The polarization of the o mode is mixed longitudinal transverse, with the transverse
component along the projection of the wave vector across the magnetic field. The
x mode is vacuum-like, ω= kc, to zeroth order in 1/β2

A; its polarization is transverse,
perpendicular to both the wave vector and the magnetic field.

On including the first-order term in 1/β2
A in (5.1), the two modes become elliptically

polarized. In the limit ω�ωp the transverse polarization is described by its axial ratio,
T , with T = T± for the two modes satisfying

T± = 1
2

R± 1
2
(R2 + 4)1/2, R= Ωe sin2 θ

εω cos θ
. (5.3a,b)

The modes are nearly circularly polarized, |T±| ≈ 1, for Y2 sin4 θ � 4ε2 cos2 θ , and
nearly linearly polarized for Y2 sin4 θ� 4ε2 cos2 θ .

The observed polarization of single pulses (McKinnon & Stinebring 2000; Edwards
& Stappers 2004; Johnston 2004) is strongly indicative of propagation through a
birefringent medium with elliptically polarized modes (Melrose et al. 2006). In
principle one could use the ellipticity of the observed polarization to estimate R, and
hence to constrain the plasma parameters through a requirement on R, cf. (5.3). In
practice, this approach has not led to useful constraints.

5.3. Lorentz transformation to the pulsar frame
The foregoing wave properties apply to a cold pair plasma in its rest frame, and
a model for dispersion in a pulsar plasma is obtained by applying a Lorentz
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transformation to the pulsar frame, in which the plasma is streaming relativistically
with γ � 1. The dispersion may be treated either by solving for the wave properties
in the and transforming them to the pulsar frame, or by transforming the response
tensor (Melrose 2013) to this frame and solving for the wave properties in the pulsar
frame. Here we ignore the wave dispersion, in which case the Lorentz transformation
implies the formulae for the aberration of light. With quantities in the pulsar frame
be indicated by a prime, this gives

ω= γω′(1− β cos θ ′)≈ ω′

2γ
(1+ γ 2θ ′2), cos θ = cos θ ′ − β

1− β cos θ ′
≈ γ 2θ ′2

1+ γ 2θ ′2
, (5.4a,b)

where the approximate forms apply for θ ′2� 1, γ 2� 1.
The Lorentz transformation (5.4) has the following semi-quantitative effects. The

forward hemisphere, θ < π/2, in the rest frame transforms into a forward cone
θ ′ . 1/γ in the primed frame. The escaping radiation with 1/γ . θ ′ < π/2 arises
from π/2 < θ . π − 1/γ , so that most of the escaping radiation corresponds
to backward-propagating waves in the rest frame. The ratio of the observational
frequency, ω′, to the frequency of the radiation in the rest frame is large, ω′/ω ≈ γ ,
for most angles θ ′� 1/γ , and is small, ω′/ω. 1/γ , only for θ ′� 1/γ .

In summary, if the plasma in the emission region is streaming outward with γ � 1,
as is usually assumed, then the observed emission arises from emission in the rest
frame predominantly in the backward direction at a frequency of order 1/γ times the
observed frequency. The amount of Lorentz boosting of the frequency adds another
uncertainty in relating the observed frequency to the intrinsic frequency of proposed
emission mechanisms.

5.4. Dispersion in intrinsically relativistic pulsar plasmas
In a thermal plasma, the cold-plasma approximation is valid when the phase speed
of the waves is much greater than the mean (thermal) speed of particles. In a pulsar
plasma, the mean speed of the particles is close to c. A relevant counterpart of the
mean speed is the weighted mean δβ2=〈γβ2〉/〈γ 〉, where the angular brackets denote
the average over the 1-D distribution function.

An important special case when considering the radio emission is the generalization
of Langmuir waves in a thermal plasma. The dispersion relation for parallel-
propagating longitudinal waves, denoted the L-mode, is (Melrose et al. 1999)

ω=ωL(z), ω2
L(z)=ω2

pz2W(z), (5.5a,b)

with

W(z)=
〈

1
γ 3(z− β)2

〉
, z= ω

kzc
, (5.6)

when the spread in parallel momenta is taken into account. The L mode has a cutoff
at ω=ωc and crosses the light line at ω=ω1:

ω2
c =ω2

L(∞)=ω2
p〈γ −3〉, ω2

1 =ω2
L(1)=ω2

p〈γ 〉(1+ δβ2). (5.7a,b)

As for Langmuir waves in a non-relativistic plasma, the parallel L mode has a
maximum frequency at a phase speed of order the mean speed of the particles,
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∼(δβ2)1/2c, which is very close to the speed of light in a highly relativistic plasma.
Landau damping results from resonance at ω = kzv, and is strong for phase speeds
near and below the mean speed of the particles. As a consequence, the L mode
effectively ceases to exist for phase speeds near and below this maximum.

An unusual feature of the L–o mode is that it can be generated through Cerenkov
emission, and hence through a streaming instability, as for Langmuir waves generated
by an electron beam propagating through a thermal plasma. (Cerenkov emission
of the x mode is not possible, due to the polarization of the x mode having zero
component along the magnetic field.) A dispersion curve the L–o mode can cross
the light line twice, so that its phase speed becomes subluminal over a range of
parameters. That is, the combination of anisotropy and highly relativistic particles
in a pulsar plasma allows the L–o mode to change from superluminal to subluminal
and back to superluminal along a range of dispersion curves (Melrose et al. 1999).
Subluminal waves can be generated by a beam instability. For a dispersion curve
that joins on continuously to the (superluminal) high-frequency o mode, these waves
can escape (Melrose & Gedalin 1999; Melrose et al. 1999). Such direct escape
has no counterpart for Langmuir waves in a thermal plasma, due to the dispersion
equation separating into separate equations for longitudinal and transverse waves in an
isotropic plasma; longitudinal waves can produce escaping transverse radiation only
through scattering or mode coupling. It also has no counterpart in a cold electron
gas, where the only waves that can escape directly are in the o and x modes, which
have refractive indices less than unity. This unusual feature of the dispersion of the
L–o mode is the basis for one of the possible pulsar radio emission mechanisms
discussed in § 6.

6. Radio emission mechanisms
Pulsar radio emission in one of three recognized coherent emission processes

in astrophysical plasmas, with the other two being plasma emission and electron
cyclotron emission (ECME). Unlike the other two, there is no widely accepted theory
for the pulsar radio emission mechanism. The two most favoured mechanisms are
probably coherent curvature emission and some form of plasma emission. Two
others are linear acceleration emission and anomalous Doppler emission. It is
possible in principle that there may be more than one effective emission mechanism
operating simultaneously, but this seems unlikely because it would require two
separate mechanisms to produce emission at similar frequencies with similar extreme
brightness. In the following discussion it is assumed that there is only one pulsar
radio emission mechanism.

6.1. Classification of radio emission mechanisms
In an early review of pulsar radio emission mechanisms, Ginzburg & Zhelznyakov
(1975) emphasized the effective brightness temperature, Teff , as a measure of
coherence. The brightness temperature is a constant along the ray path from the
source to the observer. To estimate it from observation requires an estimate of
the area, perpendicular to the line of sight, from which the radiation is emitted in
the source. Subject to the large uncertainties involved, Teff for sources of plasma
emission and sources of ECME are typically between 1010 and 1020 K, whereas
pulsar emission is much brighter, 1025–1030 K. In extreme cases of very short pulses,
of duration δt say, an argument that limits the area of emission is that it cannot
have a linear dimension greater than the light-propagation time cδt. For nanosecond
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structures observed in radio emission from the Crab pulsar (Hankins & Eilek 2007),
this implies a source size of order 1 m, and Teff > 1040 K. Less extreme examples,
such as micropulses, suggests that pulsar emission consists of many extremely bright,
transient, localized bursts of emission. A detailed theory needs to be capable of
accounting for such extremely bright fine structures in the emission, as well as
providing a semi-quantitative basis for the average emission, presumably consisting
of a statistically large number of such fine structures.

Ginzburg & Zhelznyakov (1975) discussed two classes of ‘coherent’ emission
mechanisms: antenna and maser mechanisms. In the simplest form of an antenna
mechanism, a bunch of N particles in a sufficiently small volume radiates N2 times
the power per particle. Antenna mechanisms may be further classified according to
how the bunch is formed. In one class, which we refer to as emission by bunches, the
existence of bunches is simply postulated: how the bunch is formed is not specified,
and its dimensions are assumed small compared with a wavelength of the emitted
radiation. The other class involves growth of the wave due to self-bunching. A maser
mechanism involves negative absorption. These three classes of coherent emission
may be distinguished by the form of the distribution of particles. For the first class,
involving prebunched particles, the postulated bunch is confined to small regions in
both coordinate space and momentum space. For a self-bunching instability, the initial
localization is only in momentum space. A maser instability is driven by some form
of inverted energy populations rather than by bunching. The back reaction to the
emission in each case tends to reduce the feature that drives the coherent emission.
For example, the back reaction to coherent emission by a bunch tends to disperse the
bunch in coordinate space, so that the instability suppresses itself.

Self-bunching mechanisms and maser mechanisms may be interpreted as reactive
and resistive plasma instabilities, attributed to the reactive and resistive parts,
respectively, of the plasma response tensor. In the case of plasma emission, the
instability involves growth of Langmuir waves in a beam instability. If the initial
spread in momentum space is sufficiently small, a reactive versions of the instability
develops, associated with self-bunching along the beam axis. Two different forms of
self-bunching are possible in cyclotron instabilities (Winglee 1983), but only axial
bunching is possible in a 1-D pulsar plasma. The back reaction to the self-bunching
instability broadens the spread in momentum space, until the instability suppresses
itself. As a result the self-bunching instability evolves into a maser instability.

A maser theory applies when the random phase approximation (RPA) is valid, and
this requires that the growth rate of the instability be less than the bandwidth of
the growing waves. (A reactive instability applies when this inequality is reversed.)
In models for plasma emission in solar radio bursts and for sources of ECME,
the growth rates appear consistent with the requirements for the RPA to apply,
and antenna mechanism are not relevant. However, a maser version of coherent
emission seems inconsistent with the brightest fine structures, such as nanopulses, in
pulsar emission. Very bright fine structures required large growth rates, seemingly
inconsistent with the RPA.

A complementary approach to interpreting any specific form of coherent emission
concerns the free energy that drives the relevant plasma instability. Plasma emission
involves a beam instability and the free energy is associated with the beam of fast
electrons moving through the background plasma. The maser version is the bump-in-
tail instability, driven by a distribution with ∂f /∂v‖ > 0, where v‖ is the component
along the direction of the beam. ECME is driven by a distribution with ∂f /∂v⊥ > 0,
and this is not relevant in a pulsar magnetosphere due to v⊥=0. There are two sources
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of free energy for a distribution with p⊥ = 0. One is a distribution with ∂f /∂γ > 0,
with γ ≈ p‖/mc, which is a relativistic counterpart of a bump-in-tail distribution. The
other source of free energy is the extreme form of anisotropy, f ∝ δ(p⊥), implied by
the 1-D distribution.

6.2. Coherent curvature emission
Curvature emission by relativistic particles is similar to synchrotron emission, in the
sense that both may be modelled in terms of a relativistic particle moving along
the arc of a circle. In curvature emission by particles with p⊥ = 0, the radius of
the circle corresponds to the radius of curvature, Rc, of the magnetic field line. The
frequency of curvature emission from an individual particle has a maximum around ωc
of order cγ 3/Rc. Curvature emission was invoked in two different ways in early pulsar
models. One purpose is as a high-frequency emission mechanism, whereby the primary
particles emit gamma rays that decay into pairs. For this purpose, a dipolar field line
near the polar caps has a radius of curvature that is too large for h̄ωc to plausibly
account for the gamma-ray energy required, and it was argued that a much smaller
Rc requires that the magnetic field has substantial multipole components. The other
purpose is as a radio emission mechanism, which applies at low frequencies, ω �
ωc, where the single-particle power spectrum for curvature emission increases ∝ω1/3.
The coherence was postulated to result from a (reactive) beam instability leading to
self-bunching (Ruderman & Sutherland 1975).

An argument against the antenna mechanism for curvature emission concerns the
generalization of the idealized case of N particles emitting N2 times the power per
particle to a more realistic bunch. Consider a bunch of N particles all with the same
velocity with a spatial distribution n(x) about their mean instantaneous position. For
any type of emission, the power in the range d3k/(2π)3 about wave vector k, is
enhanced by a factor |ñ(k)|2, where ñ(k) is the spatial Fourier transform of n(x).
The idealized case of a bunch with zero dimensions, corresponding to n(x)=Nδ3(x),
implies |ñ(k)|2=N2. For a more realistic model of a bunch, the power emitted in the
range d3k/(2π)3 is modified by the k-dependence of the factor |ñ(k)|2. For emission
by highly relativistic particles, one has k⊥/k‖ of order 1/γ , and a plausible model for
a bunch is a pancake with perpendicular to parallel dimensions of order γ (Melrose
1992). Moving along a curved field, such a pancake quickly ceases to be nearly
perpendicular to the field line, and the peak in k in |ñ(k)|2 no longer coincides with
the peak in k in the emission formula for a single particle, so that the coherence
becomes ineffective. A different argument against coherent curvature emission by
bunches was given by Lesch et al. (1998). Despite such objections to it, coherent
curvature emission continues to be applied to the interpretation of the emission from
radio pulsars.

6.3. Plasma emission mechanisms
Plasma emission, e.g. in type III solar radio bursts, involves Langmuir waves being
generated by a beam instability and then being partly converted into escaping
transverse waves by nonlinear processes in the plasma. The brightness temperature
of the resulting emission is restricted to less than the effective temperature of the
Langmuir waves. Semi-quantitative models suggest that the nonlinear conversion
processes saturating at this level can account for the brightness of type III emission
(Melrose 1986). In contrast, to account for the very bright pulsar emission, a plasma
emission mechanism requires both a growth rate larger than simple models suggest,
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and an efficient conversion mechanism. The relatively inefficiency of conversion
processes has been described as a ‘bottleneck’ (Usov 2000) for a pulsar plasma
emission mechanism. Ways of overcoming both these problems have been suggested.

The beam instability invoked in earlier models involves a relatively low-density
very-high-energy beam of ‘primary’ particles propagating through higher-density
lower-energy pair plasma, and the growth rate of this instability is too small to
account for effective growth. One suggestion for overcoming this difficulty is to
postulate that the pair creation is strongly non-stationary, producing ‘clouds’ such
that the faster particles in a following cloud can overtake the slower particles in
a preceding cloud leading to the beam instability (Ursov & Usov 1988). Another
suggestion is that the instability results in soliton-like ‘Langmuir microstructures’
(Asseo, Pelletier & Sol 1990; Asseo 1993), somewhat similar to the suggested
LALOs discussed above in connection with screening of E‖ 6= 0.

The maximum growth rate for the beam instability occurs for a ‘resonant’ form
of the instability. The dispersion relation for longitudinal waves in a relativistic
counterstreaming plasma reduces to a quartic equation for parallel propagation when
the velocity spreads are neglected (Verdon & Melrose 2011). Consider a beam with
number density nb and velocity βbc propagating along B through a 1-D pair plasma
with number density ne. The dispersion equation for parallel longitudinal waves is
given by (5.5), and for a cold beam one has z2W(z)= 1+ (nb/ne)z2/γ 3

b (z− βb)
2, so

that (5.5) becomes

1− ω
2
p

ω2
− nb

ne

ω2
p

γ 3
b (ω− kzβb)2

= 0, (6.1)

which is the quartic equation for ω. For nb/γ
3
b � ne the effect of the beam is

significant only for ω≈ kzβb. In the limit of arbitrarily large kzβb, the four solutions
of (6.1) approach ω = ±ωp, kzβb ± ωp(nb/neγ

3
b )

1/2. The solution near ω = −ωp is of
no interest, and it is removed by approximating the quartic equation (6.1) by the
cubic equation

(ω−ωp)(ω− kzβb)
2 − nb

2neγ
3
b
ωpω

2 = 0. (6.2)

The solutions of the cubic equation simplify in two forms of reactive instability:
a ‘resonant’ form kzβb ≈ ωp, and a ‘non-resonant’ form ω � ωp. The approximate
solutions for the growth rate in these two forms are (Gedalin, Gruman & Melrose
2002a,b)

ω≈


ωp + i

ωp

γb

√
3

2

(
nb

2ne

)1/3

, resonant,

kzβb + i
ωp

γ
3/2
b

(
nb

2ne

)1/2

, nonresonant.

(6.3)

Enhanced growth in the resonant case partly overcomes the problem of the growth
rate being too low.

The problem of the ‘bottleneck’ in the conversion process can be avoided entirely.
A detailed investigation of the dispersive properties of the plasma (Melrose & Gedalin
1999; Melrose et al. 1999) shows that the Langmuir-like mode for parallel propagation
becomes the L–o mode for oblique angles of propagation. This implies that the
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Langmuir-like mode joins on continuously to the escaping o mode (Gedalin et al.
2002a,b). It follows that no nonlinear conversion is needed to produce escaping
o mode radiation. Some variant of this form of plasma emission is perhaps the most
plausible pulsar radio emission mechanism.

6.4. Maser curvature emission
A maser mechanism involves negative absorption. In the simplest approximation,
the absorption coefficient corresponding to curvature emission is strictly positive
(Blandford 1975; Melrose 1978). Although absorption can be negative when
the curvature drift and field-line torsion are taken into account (Chugunov &
Shaposhnikov 1988; Luo & Melrose 1992, 1995), the growth rate for such maser
curvature emission seems too small for it to be an effective pulsar emission
mechanism. Two other suggested maser emission mechanisms are linear acceleration
emission and anomalous Doppler emission.

6.5. Linear acceleration emission (LAE)
Any accelerated motion of a charged particle leads to radiation, and acceleration by
E‖ 6=0 leads to linear acceleration emission (LAE). In contrast with curvature emission,
LAE involves acceleration along the magnetic field rather than perpendicular to the
magnetic field. In the simplest case, where E‖ is oscillating at a frequency ω0, LAE
occurs at frequencies ω . ω0γ

2. The emission by a charge with p⊥ = 0 accelerated
along a curved magnetic field line is curvature-like at ω . (c/Rc)γ

3, and LAE-like
for (c/Rc)γ

3 .ω.ω0γ
2 (Melrose 1978).

A maser form of LAE is a possible pulsar radio emission mechanism (Melrose
1978). A realistic model for maser LAE needs to be based on a realistic model for
the regions/structures with E‖ 6= 0. It seems plausible that the regions with E‖ 6= 0
can be modelled in terms of large-amplitude longitudinal waves (Asseo et al. 1990;
Asseo 1993; Levinson et al. 2005; Beloborogov & Thompson 2007; Luo & Melrose
2008), and some progress has been made in investigating LAE in such cases (Rowe
1992, 1995; Melrose, Rafat & Luo 2009; Melrose & Luo 2009; Reville & Kirk 2010).
However, it has yet to be shown that maser LAE is a viable radio emission mechanism
for pulsars.

6.6. Anomalous Doppler instability
Negative gyromagnetic absorption is the accepted mechanism for ECME, but it
requires a distribution with ∂f /∂p⊥ > 0 , and this is not possible in a pulsar plasma
due to all particles having p⊥ = 0. Alternative gyromagnetic instabilities have been
suggested for pulsars.

The gyroresonance condition may be written in the form (Kazbegi et al. 1991)

γ (ω− k‖v‖ − kxudrift)− sΩe = 0, (6.4)

where the drift velocity, udrift, is assumed to be along the x axis. In a pulsar plasma,
gyromagnetic absorption can be negative only for s = 0, which corresponds to the
Cerenkov resonance, and for s=−1, which is the anomalous Doppler resonance. The
resonances at both s= 0 and s=−1 require v‖ > ω/k‖, and this is possible only for
waves with phase speed, ω/k‖, less than c. Negative absorption at s = 0 includes a
maser version of the beam instability, cf. § 6.3. Two other maser instabilities based
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on (6.4) were suggested in connection with pulsars by Machabeli & Usov (1979): a
drift instability, which is not discussed here, and an anomalous cyclotron instability
(Lyutikov, Blandford & Machabeli 1999).

One may interpret the gyroresonance condition (6.4) in term of conservation of
energy an momentum on a microscopic level, and this is helpful in interpreting the
anomalous Doppler resonance. In a (relativistic) quantum treatment the energy states
of an electron are ε = εn(p‖) = (m2c4 + p2

‖c
2 + p2

⊥c2)1/2, p2
⊥ = 2h̄neB, with n > 0

the Landau quantum number. The transition assumed is ε→ ε − h̄ω, p‖→ p‖ − h̄k‖,
n→ n − s. The gyroresonance condition (6.4) follows from conservation of energy
and momentum in the limit h̄→ 0. The anomalous Doppler transition here is for an
electron initially in the Landau ground state, n = 0, to its first excited state n = 1,
so that the perpendicular energy increases, despite energy being carried away by the
emitted photon. This is possible only for subluminal phase speeds. Assuming that the
refractive index is 1+1n and that the angle, θ , of emission is small, the frequency
implied by (6.4) becomes

ω≈ 2γΩe

1+ 2γ 21n+ γ 2θ 2
≈ 2Ωeβ

2
A

γ
, (6.5)

where the final approximate relation applies to the x mode, cf. (5.2). The frequency
(6.5) is well above the radio range near the surface of a neutron star.

The anomalous Doppler instability is relevant for radio emission only if it develops
far from that stellar surface, where the frequency (6.5) is in the radio range. The
strong dependence of this frequency on B seemingly excludes anomalous Doppler
emission being the common radio emission mechanism for all three classes of pulsars.

7. Discussion and conclusions
After nearly half a century of research on pulsars, we have no consistent

global model for pulsar electrodynamics, and we have no widely accepted pulsar
emission mechanism. Differences of opinion on the electrodynamics and on the
emission mechanism remain, and some of these have developed into long-standing
misconceptions. Notable examples are the aligned assumption in the electrodynamics,
and coherent curvature emission by bunches as the emission mechanism.

The aligned assumption, and the related electrostatic assumption in an obliquely
corotating frame (Fawley et al. 1977; Scharlemann, Arons & Fawley 1978), are
important from the practical viewpoint of allowing detailed models to be developed,
but any realistic model must be based on an oblique rotator. An aligned model leads
to the neglect of Eind and Jdisp, thereby excluding two effect that we identify here.
First, inclusion of Eind allows an azimuthal dependence to develop across a gap, and
this leads to a possible new model for subpulses, § 4.4. Second, inclusion of Jdisp, in
a corotation model, leads to the inevitability of current starvation, § 4.6, with possibly
important implications.

Similarly, coherent curvature emission by bunches may seem to have the advantage
of simplification, in that the properties of the emission, notably its frequency spectrum
and polarization, can be assumed to be those of single-particle curvature emission,
enabling comparison of the observational data with a known theory. However, this is
the case only for a point-like bunch. For a more realistic bunch, the frequency and
angular dependences are modified by a factor |ñ(k)|2, as discussed in § 6.2. Moreover,
in the absence of a plausible mechanism for creating the postulated bunches, coherent
curvature emission should not be regarded as a realistic mechanism.
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An essential ingredient in any realistic model for a pulsar magnetosphere is the
need for regions with E‖ 6= 0, cf. § 4.1. Such regions are ‘gaps’ in RMMs and current
sheets in FFE models. However, the location and properties of such gaps are poorly
constrained by theory, and this has led to misconceptions. An older misconception
is that gaps are electrostatic structures within which particle acceleration occurs.
Effective particle acceleration by electrostatic structures is known to be impossible
in principle (Bryant, Bingham & de Angelis 1992). Effective acceleration must be
due to incomplete screening of Eind‖, due to charge (or current) starvation. This
misconception does not necessarily lead to significant error due to models for gaps
being 1-D. There is no distinction between inductive and potential fields in a 1-D
model, so that there is no quantitative error, provided that the value of the potential
drop in an electrostatic model is based on the inductive counterpart. Static models for
gaps are violently unstable to temporal perturbations, and gaps need to be reinterpreted
in terms of propagating wave-like structures with E‖ 6= 0, as discussed in § 4.5. A
potentially more serious misconception, emphasized by Song & Lysak (2006), relating
to an appeal to a generalized Ohm’s law discussing the accelerating electric field. It
is essential that the accelerating field be attributed the electrodynamics, specifically
to Eind and Jdisp. The intrinsic time dependence of acceleration and pair creation
are essential ingredients, which are included in some detailed numerical models
(Timokhin 2010; Timokhin & Arons 2013).

In summary, while much progress has been made in understanding pulsars, there
remain major unsolved problems in pulsar electrodynamics, and there is no consensus
of the specific radio emission mechanism. We need to understand the electrodynamics
to identify the source of the radio emission, and we need to identify the radio emission
mechanism in order to use the radio data to constrain the properties of the pulsar
magnetosphere. Progress towards these objective is frustratingly slow.
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