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Abstract
Here we investigate the effects of extensive sociality and mobility on the oral microbiome of 138 Agta
hunter–gatherers from the Philippines. Our comparisons of microbiome composition showed that the
Agta are more similar to Central African BaYaka hunter–gatherers than to neighbouring farmers.
We also defined the Agta social microbiome as a set of 137 oral bacteria (only 7% of 1980 amplicon
sequence variants) significantly influenced by social contact (quantified through wireless sensors of
short-range interactions). We show that large interaction networks including strong links between close
kin, spouses and even unrelated friends can significantly predict bacterial transmission networks across
Agta camps. Finally, we show that more central individuals to social networks are also bacterial
supersharers. We conclude that hunter–gatherer social microbiomes are predominantly pathogenic and
were shaped by evolutionary tradeoffs between extensive sociality and disease spread.

Keywords: Hunter–gatherers; social networks; oral microbiome; disease spread

Social media summary: Agta hunter–gatherer oral microbiomes are shaped by network structure and
tradeoffs between sociality and disease spread

†These authors contributed equally.
‡These authors contributed equally.

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0), which permits non-
commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is used to distribute the
re-used or adapted article and the original article is properly cited. The written permission of Cambridge University Press must be obtained
prior to any commercial use.

Evolutionary Human Sciences (2023), 5, e9, page 1 of 14
doi:10.1017/ehs.2023.4

https://doi.org/10.1017/ehs.2023.4 Published online by Cambridge University Press

https://orcid.org/0000-0002-5608-6021
https://orcid.org/0000-0001-7528-8529
https://orcid.org/0000-0001-9538-3064
https://orcid.org/0000-0002-9396-3249
https://orcid.org/0000-0003-4364-2735
mailto:jaume.bertranpetit@upf.edu
mailto:andrea.migliano@uzh.ch
http://creativecommons.org/licenses/by-nc-sa/4.0
http://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1017/ehs.2023.4


Introduction

Hominins have significantly diverged from other African apes regarding social behaviour and structure
(Migliano & Vinicius, 2022). Compared with polygynous mating and male philopatric residence pat-
terns typically found in chimpanzees, bonobos and gorillas, archaeological and ethnographic evidence
points to a stepwise emergence of features such as pair bonding, multilocal residence, high mobility
between residential camps and increased co-residence with unrelated individuals (Apicella et al.,
2012; Hill et al., 2011). Such traits were the foundations of multilevel social structuring appearing in
ancestral Homo sapiens and possibly earlier hominins. The niche of extant hunter–gatherers may
offer a window into past human adaptations as it still exhibits some features prevalent before the advent
of agriculture, such as a high-quality diet including meat and tubers, and multilevel sociality. Multilevel
organisation results in interconnected social networks covering large areas and multiple residential
camps (K. M. Smith et al., 2018), and in frequent interactions between individuals differing by sex,
age and relatedness level. Interconnected networks may have accelerated the evolution of cultural inno-
vations in humans compared with other apes (Derex & Boyd, 2016; Migliano et al., 2020). However,
efficient networks may also facilitate the spread of infectious diseases (Page et al., 2017), potentially
affecting the structure and composition of hunter–gatherer microbiomes. Previous studies have inves-
tigated the role of diet, ecology and environment in hunter–gatherer oral, gut and milk microbiomes
(Fragiadakis et al., 2019; Gomez et al., 2016; Meehan et al., 2018; Moeller, 2017; Nasidze et al.,
2011; Rampelli et al., 2015; Schnorr et al., 2014; Smits et al., 2017) and revealed higher oral microbiome
diversity in hunter–gatherers than in farming populations (Lassalle et al., 2018). However, they have not
been able to isolate the contribution of high sociality and mobility to microbial transmission from other
factors such as shared environments or diet. Although the more fluid and complex sociality of hunter–
gatherers results in high levels of camp coresidence (Hill et al., 2011), cooperation and social interac-
tions among unrelated individuals (Migliano et al., 2017), its potential effects on microbiome transmis-
sion have not been fully determined. For this reason we present here a comprehensive investigation of
the oral microbiome of Agta hunter–gatherers to analyse the specific effect of sociality and social net-
work structure on its composition, supplementing an examination of the roles of environmental (diet)
and biological (age, sex, host genotype) factors presented elsewhere (Dobon et al., 2021).

We obtained both oral microbiome sequences and high-resolution social network data from the same
138 Agta hunter–gatherers from the Philippines. We also collected oral microbiome data for 21 BaYaka
hunter–gatherers from Congo Brazzavile, and 14 Palanan farmers neighbouring the Agta territory.
We sequenced the 16S rRNA region and identified 6409 amplicon sequence variants (ASVs)
(Callahan et al., 2017), later reduced to 1980 ASVs (with at least 10 counts and present in at least
two individuals), to detect fine-scale variation between individuals. We also collected data on proximity
interactions and social networks using radio sensor technology that recorded close-range dyadic
interactions every 2 minutes for 5–7 days (Migliano et al., 2017, 2020) from four Agta camps, and
from two longer multi-camp experiments (interactions recorded every hour for one month).
Proximity data were supplemented with information on household composition, kinship and affinal
relationships from all Agta individuals.

Our extensive dataset on oral microbiome composition and social interactions obtained from the
same individuals allowed us to investigate in depth the possible effects of sociality on oral microbiome
transmission and composition in Agta hunter–gatherers. Our aims were to investigate the roles of
hunter–gatherer niche and geography on oral microbiome diversity in hunter–gatherers from two con-
tinents and a neighbouring farming population from the Philippines; determine which fraction of the
Agta oral microbiome specifically responds to levels of social interaction; identify levels of pathogen-
icity of the oral microbiome transmitted through social contact; investigate potential tradeoffs between
increased sociality and the spread of infectious disease; and verify potential tradeoffs at individual level
by testing whether ‘hypersocial’ individuals also shared more bacteria. In the following, we provide
evidence that the oral microbiome of extant hunter–gatherers was partially shaped by tradeoffs
between extensive sociality and the spread of infectious disease.
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Results

Hunter gatherer niches shape the oral microbiome

To investigate the contributions of lifestyle vs. environment to the hunter–gatherer oral microbiome,
we compared the Agta (n = 138) with smaller samples of BaYaka hunter–gatherers from Congo
Brazzaville (n = 21) and neighbouring Palanan farmers from the Philippines (n = 14) (see
Methods). Both Agta (mean of 252.1 ± 90 ASVs per individual) and BaYaka (280.1 ± 83) exhibited
significantly more ASVs than Palanan farmers (163.4 ± 34) ( p < 0.0001; Figure 1a), and higher levels
of ASV diversity as measured by Faith’s Phylogenetic Diversity index (Figure 1b). Comparisons based
on the total set of 6409 ASVs (controlling for differences in sample size through subsampling) revealed
that the Agta shared more bacteria with African BaYaka (471.2 ± 33.9) than with neighbouring

Figure 1. Oral microbiome diversity in Agta hunter–gatherers, neighbouring Palanan farmers, and BaYaka hunter–gatherers. (a)
Number of amplicon sequence variants (ASVs) in the Agta (n = 138), BaYaka (n = 21) and Palanan farmers (n = 14). (b) Oral micro-
biome diversity assessed by Faith’s Phylogenetic Diversity index accounting for ASV phylogenetic distances (Agta = 17.52 ± 3.83;
BaYaka = 18.45 ± 4.10; Palanan farmers = 12.62 ± 1.86). (c) Shared ASVs between populations, estimated by randomly sampling 10
individuals from each population (averaged over 100 permutations). (d) Exclusive ASVs per individual, estimated by randomly sam-
pling 10 individuals from each population (100 permutations). Boxplot midlines represent medians, and box limits represent first
and third quartiles (**** false discovery rate-adjusted p < 0.0001; *** p < 0.001; ** p < 0.01).
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Palanan farmers (423.4 ± 23.8) (Figure 1c). Finally, Agta and BaYaka resampled groups showed
respectively 651.5 ± 93.7 and 688.1 ± 61.9 exclusive ASVs, against only 285.1 ± 16.9 in Palanan farmers
(Figure 1d). In summary, the two hunter–gatherer populations show higher microbiome diversity and
uniqueness than Palanan farmers, consistent with findings that farming significantly reduced gut
microbiome diversity (Schnorr et al., 2014). The results therefore demonstrate the precedence of
niche over geography in shaping hunter–gatherer oral microbiomes.

The social microbiome is a socially transmitted fraction of the oral microbiome

Primate social ‘pan-microbiomes’ were recently defined as the totality of microorganisms present in a
host population or species (Sarkar et al., 2020), but this definition also includes microorganisms
acquired owing to common diet or environment. Here we define the ‘social microbiome’ as the oral
microbiome specifically transmitted through close-range social interactions (Migliano et al., 2017).
To identify the socially transmitted fraction of the Agta oral microbiome, we used the contact network
derived from data collected by portable radio sensor devices and split all Agta dyadic social interac-
tions into a strong (top 25% from the distribution of dyadic link weights) and a weak set (the remain-
ing 75% links; see Methods). We then reduced our bacterial set to 1980 ASVs, or those present in at
least two individuals and with an abundance of at least 10 counts per individual. We tested for differ-
ences in the proportion of each of the 1980 ASVs between the strong and weak sets. We identified 137
ASVs (7% of the Agta oral microbiome; see Supplementary Figure S1 and Supplementary Table S1)
whose presence was significantly higher in the strong set, and therefore statistically associated with
higher frequencies of social interactions. In the following we investigate the transmission patterns
and composition of the hunter–gatherer social microbiome.

The hunter–gatherer social microbiome is predominantly pathogenic

Human sociality is associated with multiple fitness benefits, including increased reproductive success
(Page et al., 2017), reputation (Chaudhary et al., 2015), food sharing (Dyble et al., 2016), cooperation
(Apicella et al., 2012; D. Smith et al., 2016) and cultural transmission (G. D. Salali et al., 2016), but
may also facilitate pathogen transmission (Migliano et al., 2017; Page et al., 2017). In our dataset,
from the 18 ASVs that could be classified at species level, 14 are socially transmitted, nine of which
(64.3%) are typically pathogenic, and 10 (71.4%) are typically oral. In contrast, all four non-socially
transmitted species were non-pathogenic and typically oral. We were able to classify 1886 of the
1980 ASVs at genus level, resulting in 36 socially (representing ASVs included in the social micro-
biome) and 62 non-socially transmitted genera (the remaining ones). Among the social genera,
61.8% were classified as typically or exclusively pathogenic (21 out of 34; two genera could not be clas-
sified), against only 16.4% among non-socially transmitted genera (10 out of 61; one genus could not
be classified). We identified many socially transmitted genera either typically (Aggregatibacter,
Capnocytophaga) or uniquely (Corynebacterium) associated with dental plaque formation, gingivitis
and calculus, the full red complex of periodontal disease (Porphyromonas, Treponema and
Tannerella), and other potential periodontal pathogens (Prevotella, Desulfobulbus and
Fusobacterium) (Pérez-Chaparro et al., 2014; Simón-Soro et al., 2014; Simón-Soro & Mira, 2015;
Socransky et al., 1998). It should be noticed that the classification of bacterial genera as pathogenic
is not unequivocal in cases where some species within the genus are not pathogenic. Thus, once prac-
tical criteria were applied for assigning a genus to the pathogenic group (see Methods), the social
microbiome was shown to exhibit a higher proportion of pathogenic genera than the non-socially
transmitted fraction.

We also found pathogenic bacteria typical of the gut (Rickenellaceae), non-human environments
(Tetragenococcus and Comamonas), respiratory tract (Staphylococcus, Moraxella and Streptococcus
pneumoniae), urogenital and respiratory tracts (Mycoplasma), suggesting that their spread may be
facilitated by oral transmission (Haq et al., 2017; Jung et al., 2017; Natsis & Cohen, 2018). In summary,
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the predominantly pathogenic nature of the social microbiome suggests a tradeoff between benefits of
hunter–gatherer sociality and costs associated with disease transmission.

Hunter–gatherer multilevel social structure shapes social microbiome sharing

Hunter–gatherer sociality is characterised by specific interaction channels not found in non-human
apes, such as long-term pair bonding and households, extended families, friendships among unrelated
individuals and frequent between-camp relocation. We estimated the effect of relatedness level, resi-
dence camp and friendships on the probability of sharing socially transmitted bacteria. First, we
built a bacterial sharing network, where the weight of each Agta dyadic link is given by how many
of the 137 social bacteria are shared by the two Agta individuals (rather than by the strength of its
social bond, as in the social network). Next, we classified all dyadic links in this network based on
kinship (mother–offspring, father–offspring, siblings, r = 0.5; other kin, r = 0.25 or r = 0.125; non-kin,
r = 0.0625 or lower; spouses, friends, defined as non-kin at the top 25% distribution of social dyadic
weights, and other non-kin) and residence (same or different camp, same or different household). We
then compared the mean weight of each type of dyadic link in our bacterial sharing network with its
mean weight in a sample of 1000 networks of the same size and topology, but where the dyadic
classification was randomised (Figure 2 and Supplementary Tables S2 and S3).

The results showed that some dyadic categories share significantly more socially transmitted
bacteria than expected by chance. First, we observed higher bacterial sharing within the same

Figure 2. Effect of kinship, friendship and residence on Agta dyadic bacterial sharing. Dyads were classified into kinship levels;
same or different households; same or different camps; and between friends in the same or different camps. Dots show the
z-score, or standardised ratio of mean link weight in real to randomised networks, in either social (orange) or non-socially trans-
mitted bacteria (purple). Vertical red dashed line indicates a ratio of 1, or no difference between the number of shared bacteria in
real and randomised networks. For socially transmitted bacteria, kinship, friendship and residence in the same household or camp
are associated with significantly higher bacterial sharing than predicted from randomised networks of the same size and structure.
In contrast, dyads from different camps or non-kin share significantly fewer bacteria than expected by chance; bacterial sharing in
dyads from different households does not differ from randomised networks. For non-socially transmitted bacteria, the only dyadic
categories significantly increasing bacterial sharing were siblings, spouses and dyads from the same household (all of which share
the same close environment). See Supplementary Tables S2 and S3 for values on mean weights for real and randomised networks.
(**** false discovery rate-adjusted p < 0.0001; *** p < 0.001; ** p < 0.01).
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household and camp, an expected consequence of the Agta multilevel social structure. Kinship effects
were also clear, with the highest levels of social microbiome sharing found in mother–offspring pairs,
followed by siblings known to interact daily in households and playgroups. High sharing
between spouses also confirmed the importance of human pair bonding in microbial transmission.
In addition, strong friendship links were also associated with increased bacterial sharing. Social bac-
terial sharing between friends in the same camp is as high as between close kin or within households.
Friends in different camps also share a higher proportion of social bacteria than would be expected by
chance, which is possibly a consequence of high between-camp mobility. In contrast, non-kin or indi-
viduals from different camps share fewer social bacteria than expected, further demonstrating the role
of Agta friendships in the transmission of social bacteria across households and whole camps.

The same analysis performed instead on non-socially transmitted ASVs did not reveal significant
effects on bacterial sharing from most dyadic categories, except for three types: spouses, siblings and
same household. A possible explanation is that some non-socially transmitted bacteria may be shared
not owing to interpersonal transmission but to a common environment and diet in the same household.
For example, we have shown in a parallel study (Dobon et al., 2021) that the proportion of meat vs. rice
in individual diets affects the composition of the Agta oral microbiome. Therefore, similar diets may
explain the presence of the same ASVs within the individuals of a household irrespective of social inter-
action levels. However, the effects of sociality and shared diets seem to be independent. This is shown by
the fact that socially transmitted bacteria are equally likely to be related or not to diet: 13 socially trans-
mitted genera were also associated with diet (41 genera), whereas 23 were not (57 genera) (proportion
test: χ2 = 0.44, p = 0.51). Our parallel study has also shown that host genotype correlates with the pres-
ence of certain ASVs. While high genetic relatedness may play a role in bacterial sharing within house-
holds, none of the ASVs associated with host genotypes were present in the social microbiome.
Therefore, our analyses seem to distinguish between the effects of social contact from shared environ-
ment or genes within dyadic types. Overall, the results demonstrate the roles of mobility and the mul-
tiple interaction channels created by multilevel sociality in social microbiome sharing, similarly to those
observed in cultural transmission (Dyble et al., 2015; Migliano et al., 2017, 2020; Salali et al., 2016).

Frequency of social contact predicts social microbiome sharing

Although previous studies have investigated patterns of bacterial sharing in human groups, they have
often been unable to comprehensively characterise transmission patterns owing to limited information
on social contact (Brito et al., 2019). In order to obtain a full picture of individual contact and expos-
ure levels, we built social networks based on proximity data from four camps and two multi-camp
locations (Figure 3a, b). Overall, Agta social networks reveal a multilevel structure of households
(mostly consisting of strong kin links) connected by a few strong links (mostly among unrelated
friends) in each camp, and in the case of multi-camp groups, camps interconnected mostly owing
to visits among friends. We also observed a close similarity in interactions within and between
sexes and across age groups. This pattern creates multiple channels for social transmission of bacteria
both within and between camps, between close kin and unrelated individuals, and finally across whole
multi-camp structures.

We applied reinforcement analysis (Battiston et al., 2014) (Figure 3b) to further assess whether the
Agta social network predicted (or reinforces) bacterial sharing in each Agta camp. We calculated the
conditional probability of each link between two individuals A and B in the bacterial network, pro-
vided the same weighted link was present in the social network (Supplementary Tables S4 and S5).
For all four camps and two multi-camp structures, the results showed that the weight of a dyadic
link in the social network significantly predicts the probability of the same link occurring in the bac-
terial sharing network (Figure 3c and Supplementary Figure S2). Specifically, a larger dyadic weight in
the social network implies a higher probability that the same individuals also share at least one socially
transmitted ASV. For example, for multi-camp 1, while weak social network links (with weights under
10 recorded social interactions) show a probability below 20% of sharing any socially transmitted
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bacteria, strong links (over 200 recorded contacts) are associated with a probability above 70%. Finally,
we build another bacterial sharing network including all 1980 ASVs (93% of which are not socially
transmitted). In this case, links in the social network cannot predict the presence of a bacterial sharing
link, confirming that reinforcement specifically applies to the social microbiome. Overall, the results
confirm that the Agta social microbiome is shaped by their social interactions.

Hypersocial individuals are supersharers

We also investigated whether more socially interactive individuals exhibited higher social microbiome
diversity. We calculated eigenvector centralities for all individuals in the bacterial sharing network,
resulting in a significant and positive slope in a regression on eigenvector centralities from the same indi-
viduals in the social network (b = 0.32, p = 0.0001, R2 = 0.1, n = 138; Figure 3d). We also identified 16
individuals ranked at the top quartile of eigenvector centralities in both networks as potential microbial
‘superspreaders’ or ‘superacquirers’, that is, ‘supersharers’. They do not stem from a specific age (7–68
years) or sex (six males, 10 females), which is compatible with the egalitarian social structure of hunter–
gatherers where individuals from any age or sex may be central to social networks.

Discussion

We have identified and characterised a socially transmitted fraction of the Agta hunter–gatherer oral
microbiome. This fraction (7%) is surprisingly small, since in principle all 1980 identified ASVs could

Figure 3. Characterisation of the social microbiome. (a) Recording networks of social interactions using radio sensor technology.
(b) Reinforcement analysis predicts the probability of a link occurring in the bacterial sharing network (top layer, purple) from the
weight of the same link in the social contact network (bottom layer, blue). Network nodes (circles) represent the same Agta indi-
viduals in the bacterial sharing and social contact network. Panel displays networks from multi-camp 1 (23 individuals). Map shows
geographical location of four camps interconnected by frequent migration. (c) Probabilities of links in the Agta bacterial sharing
network increase with their weights in the social contact network. Curves estimated by generalised additive modelling (binomial
option). Data from four Agta camps and two multi-camps. (d) Eigenvector centralities in bacterial sharing and social contact net-
works. Linear regression based on pooled data from four Agta camps and two multi-camp structures. Virtually similar results were
obtained by including camp either as a fixed factor in a multiple regression (with or without interactions), or as a random factor (on
intercept and slope) in a mixed effects linear regression.
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be orally transmitted between closely interacting people. Nonetheless, our results demonstrate a sig-
nificant and independent role of social interactions on the transmission of oral microbiome, in add-
ition to other factors such as shared environment (household and diet) and host characteristics (age,
sex and genes) previously investigated in other hunter–gatherer populations (Fragiadakis et al., 2019;
Gomez et al., 2016; Meehan et al., 2018; Moeller, 2017; Nasidze et al., 2011; Schnorr, 2015; Schnorr
et al., 2014; Smits et al., 2017) and in the same Agta population (Dobon et al., 2021). The transmission
of the 137 bacteria classified into the social microbiome seems to be facilitated by the extended soci-
ality of hunter–gatherers and its various transmission channels, ranging from spouses to unrelated
friends often residing in different camps. Together, reinforcement analysis, multiple channels of social
interaction and supersharers show that social microbiome sharing is strongly shaped by hunter–gath-
erer multilevel sociality. From an evolutionary perspective, sociality has considerably changed from
our closest ape relatives to ancestral humans, when adopting a hunter–gathering lifestyle meant exhi-
biting a higher frequency of social contact with unrelated individuals, larger networks of extended kin
across large geographical regions, and more egalitarian interactions between and within sexes and
across ages. Such changes may have affected patterns of pathogen transmission and affected the
human microbiome, as observed in current hunter–gatherers.

As with our study of the Agta, future research should collect data on both social networks and social
microbiomes from the same populations of non-human apes; such a dataset would provide a compara-
tive basis for analysing of the role of social evolution on the human social microbiome. Hunter–gatherer
social networks are efficient systems of cultural transmission, and specific channels organised around
kinship, friendship and camp interconnectivity are central for the organisation of between-household
cooperation, food sharing and social learning (Dyble et al., 2016; Salali et al., 2016; Smith et al.,
2016). Agta mothers with higher social network centrality enjoy increased access to help and reproduct-
ive success (Page et al., 2017), but our results have shown that efficient networks may also facilitate the
spread of infectious diseases, and hence significantly affect the structure and composition of the Agta
microbiome. Crucially the frequency of pathogenic bacteria is much higher in the socially than in the
non-socially transmitted fraction of the Agta oral microbiome. Together with the association between
hypersocial individuals and increased bacterial sharing, this suggests a tradeoff between potential fitness
benefits and costs of increased pathogen transmission. We conclude that the predominantly pathogenic
oral social microbiome we identified in Agta hunter–gatherers may be at least partially the outcome of a
tradeoff between the advantages of multilevel sociality and the cost of infectious disease.

Methods

Ethnographic data collection

Agta demography
Ethnographic data collection took place over two seasons in April–June 2013 and February–October
2014. We censused 915 Agta individuals (54.7% male) across 20 camps. The four selected camps and
two multi-camps in the current study were the ones providing social interaction data and saliva sam-
ples from almost all camp members. Accurate ages were estimated following relative aging protocols
(Diekmann et al., 2017). Relatedness (biological and affinal) was based on household genealogies. To
resolve inconsistencies, we took either the genealogy from the most knowledgeable individual (i.e.
mother over aunt) or the genealogy that reduced other inconsistencies (i.e. discarding 6 month inter-
birth intervals). Genealogies contained 2953 living and dead Agta. We used the R packages pedigree,
kinship2 and igraph to measure consanguineous relatedness (r) (Dyble et al., 2015; Page et al., 2019).
For comparative purposes, we obtained 14 saliva samples from neighbouring Palanan farmers, making
sure that individuals were unrelated by directly asking.

BaYaka demography
Ethnographic data collection took place over two seasons in April–June 2013 and February–October
2014. We collected saliva samples from 21 individuals for microbiome analyses.
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Ethics
This study was approved by UCL Ethics Committee (UCL Ethics code 3086/003) and carried out with
permission from local government and community members. Informed consent was obtained from all
participants, after group and individual explanation of research objectives in the indigenous language.
A small compensation (usually a thermal bottle or cooking utensils) was given to each participant. The
National Commission for Indigenous Peoples (NCIP) advised us that the process of Free Prior
Informed Consent should be obtained from the community leaders, youth and elders under the super-
vision and validation of NCIP. This was done in 2017 with the presence of all community leaders,
elders and youth representatives at the NCIP regional office, with the mediation of the regional officer
and the NCIP Attorney. The validation process was approved unanimously by the community leaders
and the NCIP, and validated the full 5 years of data collection.

Oral microbiome analysis

Microbial DNA extraction and 16S rRNA gene sequencing.
A total of 190 saliva samples were selected from Agta hunter–gatherers (n = 155) and Palanan farmers in
the Philippines (n = 14), and BaYaka hunter–gatherers from the Congo (n = 21). Microbial DNA was
extracted following the protocol for manual purification of DNA for Oragene⋅DNA/saliva samples. The
16S rRNA gene V3–V4 region was amplified by PCR with primers containing Illumina adapter overhang
nucleotide sequences. All PCR products were validated through an agarose gel and purified with magnetic
beads. Index PCR was then performed to create the final library also validated through an agarose gel. All
samples were pooled together at equimolar proportions and the final pool was qPCR-quantified before
MiSeq loading. Raw Illumina pair-end sequence data were demultiplexed and quality-filtered with
QIIME 2 2019.1 (Bolyen et al., 2019) and DADA2 (Callahan et al., 2016), which generates single nucleotide
exact amplicon sequence variants (ASV or ESV). ASVs are biologically meaningful as they identify a spe-
cific sequence and allow for higher resolution than operational taxonomic units (OTUs) (Callahan et al.,
2017) or clusters of sequences above a similarity threshold, and thus an ASV is equivalent to a 100% simi-
lar OTU. Taxonomic information was assigned to ASVs using a naive Bayes taxonomy classifier against
the SILVA database release 132 with a 99% identity sequence (Quast et al., 2013).

Reads outside the kingdom Bacteria or assigned to mitochondria or chloroplasts were removed.
Phylogenetic analyses aligned sequences with MAFFT (Katoh et al., 2002) and generated a rooted
phylogenetic tree with FastTree2 (Price et al., 2010) using default settings via QIIME 2. We generated
an Alpha rarefaction curve with R package vegan to confirm that sample richness had been fully
observed (Supplementary Figure S3).

Samples with extremely low number of reads (8000) were removed. This resulted in 6409 ASVs
(later reduced to 1980 ASVs present in at least two individuals and with an abundance of at least
10 counts per individual) and 173 individuals: 138 Agta, 21 BaYaka and 14 Palanan farmers.

Identification of the Agta social microbiome
In our Agta sample, we first selected a set of strong social links (the top 25% of the weight distribution
from each camp and multi-camp). For each ASV, we calculated the proportion of strong links (f sA)
where a given ASV A was present. Next, we calculated the same proportion in the complementary
set of 75% weak social links (f wA ). We then computed for each ASV A the score

ssA = f sA − f wA
f sA + f wA

or normalised difference between the two proportions. This score can be paired with the Z-score
f sA − f wA������������������

fA(1− fA)(
1
ns
+

√
1
nw

)
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which quantifies the deviation from the null hypothesis that the two proportions are equal, with ns and
nw as respectively the numbers of strong and weak links and fA as the proportion of total links that
share ASV A. We then selected as affected by social interaction 137 ASVs with s > 0.5 and p < 0.05.
The p-values were adjusted by false discovery rate.

We performed a sensitivity analysis to investigate the consequences of varying the threshold
defining strong vs. weak social links in the Agta social network. Instead of 137 ASVs resulting
from selecting dyads at top 25% of the weight distribution, we obtained:

top 45% – 166 ASVs;
top 35% – 156 ASVs;
top 25% – 137 ASVs;
top 15% – 138 ASVs;
top 5% – 99 ASVs.

The list shows that whether the strong set consists of a very reduced number of dyads with very strong
weights (top 5%), or instead includes nearly half of the dyads (top 45%), the number of ASVs signifi-
cantly responsive to social contact varies from 99 (5%) to 166 (8%), representing a small fraction of the
total of 1980 ASVs found in the Agta. Therefore, setting the threshold at the top 25% did not affect our
results and conclusions.

Agta social network data, construction and analysis

Portable radio sensor devices
Our wireless sensing devices store all between-device communications within a specified distance
and have been described in detail elsewhere (Migliano et al., 2017, 2020; Page et al., 2017, 2019).
We used the UCMote Mini (with a TinyOS operating system) sealed into wristbands or belts,
labelled with a unique number and identified with coloured string to avoid accidental swaps. The
devices require no grounded infrastructure and collect interactions even when individuals are
away from camps. Individuals arriving at a camp after the start of data collection were given a device
and the entry time was recorded, while those leaving a camp before the end of data collection had
their exit time recorded. To prevent swaps individuals were checked twice daily, and device numbers
were checked upon return. Any swaps were later corrected by reassigning data to the correct
individuals.

Data were later downloaded via a PC side application in Java. Data were limited to 5 a.m. to 8 p.m.
We ran raw data through a stringent data-processing system in Python to prevent data corruption.
Data were matched to ID numbers and start-stop times of each sensor. The result was a matrix
with the number of recorded beacons for all possible dyads and their weights.

For the camp-level experiment, all individuals from four camps wore sensors from 5 to 7 days.
Each device sent a message every 2 minutes that contained its unique ID, a time stamp and the
signal strength. Messages are stored by any other mote within a 3 m radius, a frequently used
threshold (Brent et al., 2011; Isella et al., 2011). Detection of such close-range interactions is
our proxy for social interactions. In previous studies, we have provided evidence that our
sensor data capture interactions resulting from joint activities such as foraging, gathering, child
care and socialising among others, through validation of sensor data by parallel observations
obtained during camp scans (Migliano et al., 2017; Page et al., 2017). For the multi-camp
experiment, adult individuals from two areas (consisting of seven and three camps respectively)
wore sensors for 1 month.

Effect of dyad category on bacterial sharing
The bacterial sharing network was constructed by defining link weights as the number of social bac-
teria shared by two individuals. Dyads in the network were classified into: (i) levels of kinship
(mother–offspring, father–offspring, siblings, r = 0.5; other kin, r = 0.25 or r = 0.125; non-kin, r =
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0.0625; or lower, spouses, friends, defined as non-kin at the top 25% distribution of social dyadic
weights, and other non-kin); and (ii) residence (same or different camp, same or different household).
The mean weights were calculated for each dyadic category (Supplementary Table S2). Next we pro-
duced 1000 network randomisations based on a single-step ID swap between nodes. For example, if
dyad 1 consisted of two spouses in the real network, randomisation preserved dyad 1 and its weight,
but randomly replaced the two nodes (potentially changing the dyadic classification to siblings,
friends, and so on). We calculated the mean weights for each dyadic category in the 1000 randomised
networks, and then calculated one-sample t-tests with the mean weight in the real network as the test
value. We repeated the analysis for non-social bacteria (Supplementary Table S3).

Reinforcement analysis
In a multilayer network, reinforcement analysis measures the overlap in links between different layers
to quantify the probability of finding a link on a layer conditioned on the weight of the same link on
another (Battiston et al., 2014). Reinforcement between two network layers α and α′, or P(α

′
∨α), is

defined as

P(a′ _ a) =
∑

ij a
[a′]
ij w[a]

ij∑
ij w

[a]
ij

(1)

where a[a
′]

ij is the adjacency matrix of conditioned layer α′, and w[a]
ij is the adjacency matrix of the con-

ditioning layer α. We split the weight of social links into three tertiles, and computed equation (1) for
each. We obtained increasing values of reinforcement from the lower to the higher tertile, providing
evidence of an effect of social contact on bacterial sharing.

ASV classification

ASV diversity metrics
To distinguish between the effects of lifestyle and shared ecology on the microbiome, we compared the
diversity of the oral microbiome of Agta hunter–gatherers with neighbouring Palanan farmers in
the Philippines and BaYaka hunter–gatherers in Congo. Using the 6409 ASVs dataset we calculated
the number of observed ASVs in each population with R package Phyloseq (version 1.30.0) and
Faith’s Phylogenetic Diversity index was calculated with R package picante using the generated rooted
phylogenetic tree. To estimate the number of shared ASVs in the Agta, BaYaka and Palanan farmers,
we sampled a random subset of 10 samples for each population without replacement, calculated the
shared ASVs between the populations and repeated this procedure 100 times. Global differences
between groups and pairwise comparisons were assessed by Kruskal–Wallis and Wilcoxon rank
sum tests respectively and plotted by the R package ggpubr. Pairwise p-values were adjusted by false
discovery rate.

Classification of oral bacteria as pathogens
ASVs were classified as oral pathogens if they have been reported as etiological agents of periodontitis
(Pérez-Chaparro et al., 2014; Socransky et al., 1998) or dental caries (Simón-Soro et al., 2014;
Simón-Soro & Mira, 2015). For gum disease pathogens, these included the classical ‘red’ and ‘orange’
complex of periodontal pathogens and the recent update (Pérez-Chaparro et al., 2014) based on sys-
tematic review and metanalysis. For caries pathogens, the list of active microorganisms detected
through metatranscriptomics of cavities was used. Common oral commensals potentially causing
endocarditis or systemic infections in immunocompromised patients only were not considered patho-
gens. Bacteria reported as etiological agents of lower respiratory infections (e.g. pneumonia, whooping
cough, bronchitis or sinusitis) and biofilm-mediated infections (e.g. lactational mastitis, medical
implant biofilm infections, chronic lung infections, osteomyelitis or chronic wounds) were also
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considered pathogens, including organisms present in healthy carriers (Leung & Hon, 2018; Natsis &
Cohen, 2018). Bacteria causing urinary tract infections or sexually transmitted diseases transiently
found in the oral cavity were also considered pathogens (Jung et al., 2017). Bacteria were classified
as oral if detected in more than 10% of the population in oral samples according to the Human
Oral Microbiome database. If a bacterial species or genus had been isolated from the oral cavity of
another animal species, it was also classified as oral.

For assignment of bacteria as pathogenic or non-pathogenic, we used species-level ASVs, given the
multiple cases where species from the same genus had a different assignment. If taxonomic classifica-
tion of an ASV was only possible at the genus level, it was considered a pathogen if: (i) >90% of named
species within the genus were pathogenic; or (ii) the genus included a major pathogenic species even if
the remaining species were not classified as oral by the Human Oral Microbiome Database (Chen
et al., 2010). ASVs with a top hit to a sequence classified as ‘Oral taxa’ in databases but without a spe-
cies assignment were discarded from the analysis. Cases where taxonomic classification of the ASV
was only possible at the family level or higher were also discarded.
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