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Transition reversal over a blunt plate at Mach 5
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In this work, the stability and transition to turbulence over blunt flat plates with
different leading-edge radii are investigated computationally. The benchmark experimental
work for comparative studies is conducted by Borovoy et al. (AIAA J., vol. 60,
2022, pp. 497–507). The freestream Mach number is 5, the unit Reynolds number
is 6 × 107 m−1, and the maximum nose-tip radius 3 mm exceeds the experimental
reversal value. High-resolution numerical simulation and stability analysis are performed.
Three-dimensional broadband perturbation is added on the far field boundary to initiate
the transition. The highlight of this work is that the complete physical process is
considered, including the three-dimensional receptivity, linear and nonlinear instabilities,
and transition. The experimental reversal phenomenon is reproduced favourably in the
numerical simulation for the first time. Linear stability analysis shows that unstable first
and second modes are absent in the blunt-plate flows owing to the presence of the entropy
layer, although these modes are evident in the sharp-leading-edge case. Therefore, the
transition on the blunt plate is due to non-modal instabilities. Numerical results for all
the blunt-plate cases reveal the formation of streamwise streaky structures downstream of
the nose (stage I) and then the presence of intermittent turbulent spots in the transitional
region (stage II). In stage I, a preferential spanwise wavelength approximately 0.9 mm is
selected for all the nose-tip radii, and low-frequency components are dominant. In stage
II, high-frequency secondary instabilities appear to grow, which participate in the eventual
breakdown. By contrast, leading-edge streaks are not remarkable in the sharp-leading-edge
case, where transition is induced by oblique first and Mack second modes. The transition
reversal beyond the critical nose-tip radius arises from an increasing magnitude of
the streaky response in the early stage, while the transition mechanism stays similar
qualitatively.
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1. Introduction

Hypersonic boundary-layer stability and transition have drawn extensive attention due to
fundamental and engineering importance. The drag force and the surface heat flux of
hypersonic vehicles can be increased by several times after the transition to turbulence.
Hence it is of great interest to predict or control the hypersonic boundary-layer transition.
Possible transition processes include receptivity to external disturbances, transient growth,
eigenmodal growth, parametric resonance and mode–mode interactions, breakdown to
turbulence, and bypass mechanisms (Morkovin 1994). The detailed transition path depends
on the level of environmental disturbances.

During the design of hypersonic vehicles, the leading edge is usually blunted to
mitigate local heating. In the meantime, approximate nose bluntness also delays the
boundary-layer transition, which favourably reduces aerothermal load. In terms of the
physical mechanism, theoretical and computational studies have demonstrated that the
appearance of the entropy layer near the bow shock has a stabilisation effect on the main
instability modes of boundary layers (Reshotko & Khan 1980; Malik, Spall & Chang
1990; Zhong & Ma 2002, 2006). According to linear stability analysis, first and second
modes are usually the dominant instability modes in supersonic and hypersonic boundary
layers, respectively (Mack 1984). The two modes are of vortical and acoustic nature,
respectively. With increased nose bluntness, these two modes tend to be stabilised near
the nose region due to increasingly favourable pressure gradient, decreased local Reynolds
number and lower Mach number. Furthermore, another inviscid-type instability can be
supported inside the entropy layer, which is called the entropy-layer mode (Dietz & Hein
1999). Some literatures have found that the entropy-layer normal mode is not remarkable
enough to resist the overall stabilisation effect of increasing nose bluntness (Wan, Luo
& Su 2018; Paredes et al. 2019b; Wan, Su & Chen 2020; Chen et al. 2021). Unstable
entropy-layer mode exists in the nose region with low frequencies and small growth rates,
which is a less significant discrete mode in the blunt-body flow (Wan et al. 2020; Chen
et al. 2021). It should be cautioned that the entropy-layer normal mode is not identical to
the entropy-layer instability, where the latter may be of non-modal nature.

With regard to experimental efforts, Stetson (1983) performed a systematic study of the
nose bluntness effect on the transition, which is a continuation of an earlier publication
(Stetson & Rushton 1967). Three facilities, including two wind tunnels and one shock
tunnel, produced the same data trend of the bluntness effect. The slender cone models
were tested at various Mach numbers and unit Reynolds numbers with different nose-tip
radii. The transition locations were obtained from measurements of surface heat transfer.
The informative data from Stetson display two distinct regimes. One is the small-bluntness
regime, where the transition location moves downstream with increasing bluntness. The
other is the large-bluntness regime, where the transition location moves upstream rapidly.
This phenomenon is called transition reversal. The reversal performance is clear in a
ReR–Ret plot, where ReR and Ret are the horizontal and vertical axes, respectively. Here,
Ret is the Reynolds number based on the freestream condition and the transition onset
location x∗

t , ReR is based on the nose-tip radius R∗
n, and the asterisk denotes dimensional

quantities. The critical reversal value for the horizontal axis is referred to as ReR,c.
Owing to the stabilisation effect of the entropy layer, the small-bluntness regime is
conceivable. In the large-bluntness regime (ReR > ReR,c), the transition onset becomes
more sensitive to the roughness effect. Stetson speculated that early frustum transition for
the large-bluntness regime was dominated by disturbances originating near the nose tip,
and that these disturbances were closely related to the roughness effect. Stetson also noted
that model nose tips were polished before each run. However, this operation only removed
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surface material protrusion, while cavities remained after repetitive runs. Therefore, the
roughness effect was not eliminated in a rich dataset.

Although the large-bluntness regime may be sensitive to roughness, there is no solid
evidence that roughness is a necessary condition for transition reversal. In addition to
Stetson’s work, transition measurements on blunt cones (Softley, Graber & Zempel 1969;
Ericsson 1988; Zanchetta 1996; Aleksandrova et al. 2014; Marineau et al. 2014; Paredes
et al. 2019b), ogive cylinders (Hill et al. 2022) and blunt flat plates (Lysenko 1990;
Borovoy et al. 2022) have reported transition reversal in different facilities. Part of them
explicitly claimed that model surfaces had been polished in certain runs (Zanchetta 1996;
Paredes et al. 2019b; Borovoy et al. 2022). The root-mean-square (r.m.s.) roughness
height was within/approximately a micrometre after polishing. Among these studies,
Zanchetta (1996) detected less frequent events of turbulent bursts after surface polishing.
Paredes et al. (2019b) found that polishing led to a laminar flow at large bluntness
(R∗

n = 15.24 mm), whereas the existence of distributed roughness gave rise to early
transition. However, their results did not exclude the possibility that ReR,c might be
shifted to a higher value at runs with polishing. With polished models, Borovoy et al.
(2022) reported continuous occurrence of transition reversal with different leading-edge
shapes. In other words, transition reversal was not eliminated over a relatively smooth
wall. Experimental scientists also pointed out that the transition reversal behaviour can
be affected by multiple factors, such as freestream turbulent intensity, surface roughness,
pressure gradient, wall temperature, flow separation, etc. Nevertheless, the dominant factor
is difficult to determine.

In terms of mechanism-related measurements, Marineau et al. (2014) examined the
boundary-layer instabilities over sharp and blunt cones by PCB sensors at Mach 10.
Beyond the critical nose-tip radius, the transition occurred ahead of the appearance of
second-mode instabilities, and the pressure signature was weak. At large bluntness, both
Stetson (1983) and Marineau et al. (2014) observed the onset of transition that was away
from the entropy swallowing point and close to the nose region. Schlieren images of Jagde
et al. (2019) and Kennedy et al. (2019) revealed that the second-mode rope-like structures
for sharp cones were replaced by wisp-like structures above the boundary-layer edge
for largely blunted cones. Laser-induced-fluorescence-based schlieren measurements by
Grossir et al. (2014) over blunt cones also reported flow structures that were dissimilar to
second-mode ones over sharp cones. More recent work of Kennedy et al. (2022) ascribed
the appearance of elongated structures above the boundary layer at large bluntness to
non-modal instabilities.

Regardless of the confirmed reversal phenomenon, it is difficult to uncover the
physical mechanism by the wind-tunnel experiment only. Challenges include insufficient
resolution of flow field, decreased reproducibility of large-bluntness early transition,
and reliable theoretical tools that correlate the experimental data satisfactorily. Parallel
and non-parallel stability analyses have shown that modal amplification of first-mode,
second-mode and entropy-layer instabilities is not strong enough to account for transition
reversal, including Stetson’s experiment (Malik et al. 1990; Jewell & Kimmel 2017;
Marineau 2017; Paredes et al. 2019b; Paredes, Choudhari & Li 2020). Due to the
non-orthogonality of the linearised Navier–Stokes (N–S) equation, non-modal instabilities
may exist even if the flow is modally stable. Reshotko & Tumin (2000, 2004) used the
optimal transient growth theory to explain wind-tunnel observations such as nose-tip
transition. The transient growth analysis provides the upper bound of the propagating
disturbance kinetic energy, which can be escalated by two to four orders of magnitude
(Reshotko 2001). Following that, Paredes et al. (2019b) attempted to explain transition
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reversal in this framework. Stationary disturbances, originating from the nose tip and
propagating in the entropy layer, were reported to experience significant non-modal
amplification over largely blunted cones at Mach 6. Over various blunt bodies, transient
growth analysis has also shown pronounced non-modal instabilities that may be connected
with experimental early transition (Paredes, Choudhari & Li 2017, 2018; Paredes et al.
2019a; Quintanilha et al. 2022).

Another popular framework is the resolvent analysis (input–output analysis), which
seeks the optimal response of the linear system to external input forcings (Monokrousos
et al. 2010; Bugeat et al. 2019; Bae, Dawson & McKeon 2020; Lugrin et al. 2021;
Guo, Hao & Wen 2023; Hao et al. 2023; Caillaud et al. 2024). By computational fluid
dynamics (CFD) and resolvent analysis, Melander, Dwivedi & Candler (2022) identified
three-dimensional (3-D) low-frequency streamwise streaks near the nose region of the
blunt cone. Furthermore, the streaky response becomes stronger with a larger nose-tip
radius. In spite of the new insights, the transient growth analysis or resolvent analysis
does not provide direct evidence for transition reversal. In real-life situations, the input
forcing or the inflow optimal disturbance that leads to maximal energy amplification may
be ‘not physically realisable’ (Kamal, Lakebrink & Colonius 2023). Recently, Cook &
Nichols (2022, 2024) have included the shock/disturbance interaction in the resolvent
analysis. At Mach 5.8, the improved framework demonstrated that the receptivity of the
blunt-cone flow to freestream disturbances is of a highly 3-D nature. In those cases,
energetic first-mode and entropy-layer instabilities were identified with tens of kilohertz.

In recent decades, CFD has been an effective tool to throw light on flow mechanisms.
For the concerned high-speed blunt-body flows, numerous direct numerical simulations
(DNS) have been conducted to reveal the receptivity process (Zhong & Ma 2002, 2006;
Kara, Balakumar & Kandil 2011; Balakumar & Kegerise 2015; Balakumar & Chou 2018;
He & Zhong 2021; Ba, Niu & Su 2023) and the breakdown scenario (Paredes et al.
2020; Hartman, Hader & Fasel 2021; Goparaju & Gaitonde 2022; Zhu et al. 2023). The
nonlinear interaction induced by oblique waves, propagating inside the entropy layer,
was found to be significant to the final transition. Hartman et al. (2021) compared
the numerical inclined structure in the entropy layer with the experimental schlieren
image, and reached a qualitative agreement. The lift-up and Orr-like mechanisms were
deduced to be responsible for the amplification of entropy-layer instabilities (Goparaju
& Gaitonde 2022). The mechanisms causing the initiation of entropy-layer instabilities
were not studied. Among the DNS studies on nonlinear stages, the blunt-cone flow by
Zhu et al. (2023) and the ogive-cylinder forebody flow by Aswathy Nair & Unnikrishnan
(2024) included the effect of a varying nose-tip radius. However, with perturbations added
downstream of the shock, they did not capture the transition reversal. The authors suspect
that the failure to reproduce transition reversal is attributed to the absence of upstream
receptivity. Applying two-dimensional (2-D) DNS, Goparaju, Unnikrishnan & Gaitonde
(2021) seeded random pressure noise in front of the detached shock of an experimental
blunt flat plate at Mach 6. Beyond the critical nose-tip radius, the frequency of the
most amplified disturbance deviates from the second-mode semi-empirical value. The
resulting growth rate is increased compared to small-bluntness cases, and the temperature
fluctuation turns to peak outside the boundary layer. By employing tunnel-like noise on
the freestream boundary of 3-D DNS, Liu et al. (2022) reported inclined structures that
resembled experimental schlieren observations over a blunt cone at Mach 8. Inspired by
recent progress, the authors attach importance to the inclusion of upstream receptivity
when studying the transition reversal.

In summary, current studies provide only indirect supports for the reasons for transition
reversal. A more direct connection between the informative CFD/theoretical results and
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Transition reversal over a blunt plate at Mach 5

the experimental transition measurement needs to be established. To the best knowledge
of the authors, no high-fidelity numerical simulation has successfully reproduced and
explained the transition reversal in wind-tunnel experiments, which is the objective of this
paper. To this end, the complete physical process from the shock/disturbance interaction
to the transition to turbulence is explored. The detailed flow physics is envisaged to be
revealed. The paper is organised as follows. The investigated physical problem and flow
conditions are described in § 2. The numerical and theoretical tools are introduced in
§ 3. The simulation strategy and numerical details are shown in § 4. A comparison with
experimental transition data is first depicted in § 5. The flow mechanisms and the related
discussions are displayed in § 6. Concluding remarks are given in § 7. A brief study of
mesh convergence is provided in Appendix A, and additional information is shown in
Appendices B–E.

2. Problem description

An experimental flat-plate model with a cylindrically blunted or sharp leading edge is
investigated. The tests were conducted in a Ludwig-type wind tunnel UT-1M in Russia
by Borovoy et al. (2022). Figure 1 gives a schematic drawing of the simulated problem.
The difference from the blunt-cone flow is that entropy swallowing does not seem to
occur within a practical distance in the considered blunt-flat-plate flow. Therefore, the
impact of the entropy layer is persistent, and the effect of entropy swallowing is excluded.
Furthermore, no surface roughness is placed in the present numerical simulation. Thus the
nose bluntness effect tends to be isolated in the flat-plate configuration, which simplifies
the problem. The angles of attack and sideslip are considered to be zero. A Cartesian
coordinate system (x, y, z) is constructed with the origin at the centre of the cylindrical
nose, corresponding to the streamwise, wall-normal and spanwise velocities (u, v,w).
An orthogonal body-fitted coordinate system (ξ, η, z) is also defined, which is along the
wall-tangent, wall-normal and spanwise directions, respectively. The freestream conditions
of the tunnel are given as follows: Mach number M∞ = 5, total temperature T∗

0 = 468 K,
static temperature T∗∞ = 78 K, and unit Reynolds number Re∗∞ = 6 × 107 m−1. The
subscript ∞ refers to the freestream quantity. The suggested surface temperature is the
room temperature T∗

w = 293 K, which corresponds to T∗
w/T

∗
0 ≈ 0.626. The subscript w

indicates a quantity at the wall.
In this paper, the primitive variables are non-dimensionalised by the corresponding

freestream quantities except that the pressure p is by the freestream ρ∗∞u∗2∞, where ρ
represents density. The reference length scale for non-dimensionalisation is L∗

ref = 1 mm,
which is of the same order of magnitude as the downstream boundary-layer thickness.
Under the current setting of Re∗∞ = 6 × 107 m−1, the critical nose-tip radius for transition
reversal in the experiment is estimated to be approximately R∗

n,critical = 1.19 mm. Different
nose-tip radii R∗

n are considered, namely 0 (sharp leading edge), 1.8, 2, 2.7 and 3 mm. Thus
nose-tip radii that are either smaller or larger than the critical value have been considered.

3. Methodology overview

The 3-D compressible N–S equations in the Cartesian coordinate system can be written in
a dimensionless conservation form

∂Q
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= 1
Re

(
∂F v
∂x

+ ∂Gv

∂y
+ ∂Hv

∂z

)
, (3.1)
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(a) (b)
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Figure 1. Schematic drawings of the simulated flow over (a) a blunt plate and (b) a sharp-leading-edge plate
(not to scale).

where t denotes time, Q = (ρ, ρu, ρv, ρw, ρE)T is the vector of conservative variables,
F , G and H represent the vectors of inviscid fluxes, and F v , Gv and Hv refer to the
vectors of viscous fluxes. Detailed expressions for the fluxes can be found in Anderson
(1995). The symbol E represents the total energy per unit mass, and the superscript T
indicates matrix transpose. A calorically perfect gas (air) model is assumed with a constant
specific heat ratio γ = 1.4. Sutherland’s law is adopted to calculate the dynamic viscosity
μ, then the thermal conductivity κ is computed with a constant Prandtl number Pr = 0.72.
Simulations of the 2-D laminar base flow, the 2-D instability and the full 3-D transitional
flow are performed using an in-house finite-volume-based solver called PHAROS (Hao,
Wang & Lee 2016; Hao & Wen 2020). This solver has been well applied and validated in
relevant physical problems, including the 3-D instability of double-cone flows (Hao et al.
2022) and transitional flat-plate boundary layers (Guo et al. 2023).

3.1. Numerical simulation
In wind-tunnel experiments such as those in Stetson (1983) and Borovoy et al. (2022),
the transition onset Reynolds number at the critical nose-tip radius is generally of the
order of 107. As a result, it is computationally expensive to perform DNS with several
nose-tip radii. In this work, we conduct affordable DNS, and follow the DNS set-up of the
finest resolution of Pirozzoli, Grasso & Gatski (2004) in a supersonic turbulent flat-plate
boundary layer. In detail, a combination of dimensionless grid spacings �x+ = 10–20,
�y+

w < 1 and �z+ < 10, and a seventh-order upwind-biased numerical scheme for
construction of inviscid fluxes, will be applied. Here, during the evaluation of �x+,
�y+

w and �z+, the friction velocity uτ is calculated based on the turbulent skin friction
coefficient Cf via van Driest II correlation, which is taken at a reference downstream
location x = 400. The correlation of Cf is a function of the momentum thickness Reynolds
number Reθ . The detailed evaluation procedures can been found in Franko & Lele (2013)
and Guo et al. (2022).

Note that the pre-transitional and transitional regions rather than the fully developed
turbulent region are the main research concerns of this paper. A mesh convergence
study is conducted, and the results are displayed in Appendix A. In general, the adopted
mesh resolution is sufficient to achieve the research objective. It should be remarked
that the frequency spectra and the amplitude of incoming disturbances were not given
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Transition reversal over a blunt plate at Mach 5

in most experimental studies, including the one considered by Borovoy et al. (2022).
The frequency-dependent spectra are usually difficult to measure accurately in the wind
tunnel. Thus with insufficient physical information, it is demanding and fortuitous to
reproduce the accurate transition locations via numerical simulation. As mentioned by
Stetson (1983), what is useful should be the relative change and trend of data rather
than the transition Reynolds number itself. As a consequence, the present numerical
simulation is expected to reproduce the reversal phenomenon (tendency) rather than the
exact transition locations.

3.2. Linear stability analysis
Compressible linear stability theory (LST) is utilised to identify the normal-mode
instability. The instantaneous flow field can be represented as the sum of mean and
fluctuating quantities. The variable vector φ = (u, v, p,w, T)T can be decomposed into

φ(ξ, η, z, t) = φ̄(ξ, η)+ φ′(ξ, η, z, t), (3.2)

where the overbar represents the time-averaged flow. In the present laminar flow analysis,
the base flow φ̄ is 2-D, i.e. w̄ = 0. With the normal-mode ansatz, the small-amplitude
disturbance can be expressed by

φ′ = φ̂(η) exp [i(αξ + βz − ωt)] + c.c. (3.3)

Here, φ̂ represents the eigenfunction, α is the complex streamwise wavenumber, β is the
spanwise wavenumber, ω is the angular frequency, and c.c. denotes complex conjugate.
The linearised N–S equation can be derived from (3.1). Under the quasi-parallel flow
assumption, the linear stability equation can then be derived and written as (Malik 1990)

Hηη
∂2φ̂

∂η2 + Hη
∂φ̂

∂η
+ H0 φ̂ = 0, (3.4)

where Hηη,Hη,H0 are 5 × 5 matrices. The boundary condition is given by

û = v̂ = ŵ = T̂ = 0, η = 0,

û = v̂ = ŵ = T̂ = 0, η → ∞,

}
(3.5)

while p̂ is solvable from the wall-normal momentum equation on the boundary. The
stability equation is finally transformed to a complex eigenvalue problem with respect
to α. The operators of (3.4) are related to α, β and the local base flow. The local growth
rate σ = −αi is positive if the mode is unstable. The linear stability analysis is performed
by our in-house code, which has been well validated by benchmark cases (Guo et al. 2020,
2021, 2022, 2023; Cao et al. 2023). A global spectral collocation method is utilised to
obtain the global spectrum, and a local algorithm is employed to improve the eigenmodes
(Malik 1990).

4. Simulation strategy

4.1. Numerical method
Figure 1 displays the simulation strategy. A shock-capturing method is adopted, following
a recent practice in the cross-flow-dominated hypersonic transition subject to freestream
acoustic noise (Cerminara & Sandham 2020). For cases with blunted leading edges, the
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structured mesh is iteratively designed to be entirely aligned with the shock shape near
the detached shock. The wall-normal distribution of grid points is clustered near the shock
and the wall using a hyperbolic tangent function. In the wall-normal direction, at least 140
points are located in all the fully developed turbulent boundary layers. The grid spacing is
uniform in the spanwise direction and mostly in the streamwise direction. In the vicinity
of the leading edge, the grid is clustered in the streamwise direction.

As a first step, the 2-D laminar base flow is obtained by the same numerical scheme as
3-D simulations, except that the data parallel-line relaxation method is used for efficient
convergence to a steady state (Wright, Candler & Bose 1998; Hao et al. 2016, 2022). For
3-D cases, mixed numerical schemes are employed. The inviscid flux is reconstructed
by the seventh-order upwind scheme in the smooth region away from the shock and
away from the nose-tip region in the range x > 0. The inviscid flux is then calculated
using the Harten–Lax–van Leer–Contact (HLLC) Riemann solver (Toro, Spruce &
Speares 1994). In the remaining spatial domain, i.e. near the discontinuity detected by
a Ducros sensor (Ducros et al. 1999) or near the nose tip (x ≤ 0), the inviscid flux is
reconstructed by the second-order monotonic upstream-centred scheme for conservation
laws (MUSCL) scheme with limiters (van Leer 1979), and then calculated by the modified
Steger–Warming scheme (MacCormack 2014). The modified Steger–Warming scheme
reduces to the original one near a strong shock based on a pressure-gradient sensor
(Scalabrin & Boyd 2005). The above set-up ensures that the complete shock region
is calculated by the second-order MUSCL scheme. The purpose is to obtain a high
resolution in the downstream smooth region in conjunction with a robust solution near
the strong discontinuity and the large-gradient flow near the nose tip. The viscous fluxes
are discretised by the second-order central scheme, which has been applied in previous
hypersonic transition simulations (Guo et al. 2022, 2023). To perform time-accurate
simulations, the three-stage third-order total variation diminishing Runge–Kutta method
is employed for time marching. The boundary conditions are given as follows: freestream
conditions are imposed on the far-field boundary, extrapolation is used on the outflow
boundary, and isothermal, no-slip and no-penetration conditions are enforced on the wall
boundary. The symmetry boundary condition (slip wall condition) is given on the x < 0,
y = 0 plane. The periodic condition is utilised on the spanwise boundary. Next to the
outflow boundary, sponge zones are placed to minimise the reflection of disturbances
(Mani 2012).

4.2. Case description
Case information about the computational domain and mesh resolution is given in table 1.
The symbols Lx and Lz represent the length and width of the computational domain, and
nx, ny and nz refer to the mesh node numbers in the three directions. Cases R0, R1.8,
R2, R2.7 and R3 are simulated to reveal the bluntness effect on the flow transition. In the
early pre-transitional stage of blunt-plate cases, approximately 22 points are used in the
spanwise direction for each spacing of the most amplified streamwise streak. The spanwise
width of the computational domain is able to contain approximately 13 most amplified
streaks. We have also conducted a prior test for case R2 by either reducing the spanwise
width to two-thirds of the baseline value, or increasing ny from 251 to 351. No visible
change was found in the characterisation of steady and unsteady flow fields. The mesh
convergence with respect to nx and ny is also confirmed in the 2-D receptivity study in
Appendix A. In the streamwise direction, approximately 15 points are employed for the
pronounced high-frequency short-wavelength structure contained in the wave packet of
blunt-plate cases. The streamwise length of the computational domain for case R2 was
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Transition reversal over a blunt plate at Mach 5

Case Rn Lx Lz nx ny nz �x+ �y+
w �z+

R0 0 170 12 1769 221 289 19.2 0.58 8.0
R1.8 1.8 400 12 4121 241 289 19.2 0.58 8.0
R2 2 260 12 2737 251 289 19.2 0.58 8.0
R2.7 2.7 260 12 2745 261 289 19.2 0.58 8.0
R3 3 340 12 3549 271 289 19.2 0.58 8.0
R3F 3 140 12 2913 271 289 9.6 0.58 8.0
R2C 2 260 8 2273 291 110 24.0 0.58 14.1

Table 1. Case details for numerical simulations.

found to be insufficient to establish the fully developed turbulence. As a consequence, the
domain of case R3 is further extended.

To examine the mesh resolution effect, a new case R3F is simulated with an evidently
shorter streamwise length and a finer resolution. The grid spacings (�x+,�y+,�z+) of
case R3F approach the DNS set-up for hypersonic wall-bounded flows by Huang & Duan
(2017) and Duan et al. (2019). The results in Appendix A indicate that the current mesh
resolution is sufficient for 3-D transitional studies. Another case R2C is simulated with a
smaller total number of grid points and thus less computational cost. Case R2C presents
the same flow phenomena as the baseline case R2. Data collected from a long-time
simulation of case R2C will be used for spectral proper orthogonal decomposition (SPOD)
analysis.

4.3. Broadband disturbance model
To trigger the transition and mimic a real-life environment, broadband disturbances are
added on the far-field boundary in front of the shock. As a consequence, the receptivity
to freestream disturbances is included in the simulation. The receptivity process has
been investigated extensively for hypersonic flows over flat plates, wedges, cones, etc.
at different flow conditions, e.g. by Balakumar & Kegerise (2015). The instability
waves in boundary layers are found to be approximately 3–5 times more receptive to
slow acoustic waves than fast acoustic, vorticity and entropy waves. Furthermore, the
intensity of acoustic disturbances increases rapidly with the Mach number. The more
pronounced receptivity to slow acoustic waves has also been verified in response to
broadband disturbances (He & Zhong 2022). Acoustic disturbances, radiated mostly
from the nozzle-wall turbulent boundary layer, tend to dominate the overall disturbance
environment of wind tunnels at Mach 2.5 or above (Laufer 1961, 1964; Schneider 2001,
2008). A more recent combined experimental and numerical study confirmed that the slow
acoustic wave is the dominant acoustic mode in noisy hypersonic wind tunnels (Wagner
et al. 2018). Therefore, the slow acoustic wave is adopted as a representative disturbance
model for the freestream boundary condition.

In this paper, the 3-D broadband acoustic-wave model of Cerminara & Sandham (2020)
is employed. The merit of the broadband model is that the flow is able to select the
preferential frequency and wavenumber naturally rather than adopt artificially imposed
ones. The dimensionless pressure perturbation for a Fourier mode (m, n) with respect to
the frequency and the spanwise wavenumber is given by

p′
m,n = Am[cos(βnz + ψm,n)+ cos(−βnz + ψm,n)] cos(αmx − ωmt + ϕm), (4.1)
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for m = 1, 2, . . . ,Mf and n = 0, 1, . . . ,Nβ . Here, Mf and Nβ are the total numbers of
frequencies and non-zero spanwise wavenumbers, respectively. The symbols ψm,n (n /= 0)
and ϕm represent random constant phase angles. In other words, once all the phase angles
are randomly generated at t = 0, the angle values will not change with time. The phase
angles are also unchanged for cases with different nose-tip radii, which excludes the
effect of the initial phase difference. For n = 0, it is enforced that β0 = ψm,0 = 0. The
symbols αm and ωm represent the streamwise wavenumber and the angular frequency for
the mth frequency component, and βn is the spanwise wavenumber for the nth wavenumber
component. The Fourier modes are actually higher-order harmonics, which is indicated by

ωm = mω1, βn = nβ1. (4.2a,b)

Moreover, ωm = 2πfm, where fm is the frequency. In accord with Cerminara & Sandham
(2020), the streamwise wavenumber and the angular frequency are linked through αm =
ωm/(1 ± 1/M∞). Here, 1 ± 1/M∞ is the dimensionless phase speed of the fast/slow
acoustic wave, and the slow-acoustic-wave one is finally chosen. In this paper, the
incidence angle of the acoustic wave on the x–y plane is assumed to be zero, which was
also adopted by Cerminara & Sandham (2020). The oblique wave angle on the x–z plane
is given by θm,n = arctan(βn/αm).

In (4.1), the dimensionless amplitude Am = A∗
m/(ρ

∗∞u∗2∞) is set equally for each
spanwise-wavenumber component. In other words, no preferential spanwise wavenumber
is imposed. The frequency-dependent dimensional amplitude A∗

m is determined by the
relation

A∗
m/p

∗
∞ =

⎧⎪⎨⎪⎩
√

CLf ∗−1
m �f ∗/2, f ∗

m ≤ 40 kHz,√
CUf ∗−3.5

m �f ∗/2, otherwise,
(4.3)

which is fitted from the measured frequency spectra of noise in the Arnold Engineering
Development Complex (AEDC) Hypervelocity Wind Tunnel 9 (Marineau et al. 2015;
Balakumar & Chou 2018). The law of f ∗−3.5

m at high frequencies has been reported by the
measured noise data in various tunnel conditions, with M∞ ranging from 6 to 14, including
the Hypersonic Ludwieg Tube Braunschweig, the Purdue Boeing/AFOSR Mach-6 Quiet
Tunnel, the NASA 20-Inch Mach 6, the Sandia Hypersonic Wind Tunnel at Mach 8, and
the AEDC Tunnel 9 (Duan et al. 2019). The law of f ∗−1

m at low frequencies was also
verified by the DNS data of the tunnel noise at different Mach numbers (Duan et al.
2019). The amplitude constants are CL = 3.953 × 10−4 and CU = 126.5 × 106 in SI units.
In the present model, the dimensional frequency ranges from 10 to 1000 kHz with intervals
�f ∗ = 5 kHz. Harmonics with frequencies less than 10 kHz are not included, because the
tunnel measurement result was not displayed in such a range for a reliable amplitude fitting
in (4.3) (Marineau et al. 2015; Balakumar & Chou 2018). Lower-frequency components
may benefit the generation of relevant responses such as stationary streaks. Meanwhile,
the spanwise wavenumber β∗

n ranges from 600 to 20 600 m−1 with an interval �β∗ =
800 m−1, which is expected to achieve a broadband state. The mode numbers are finally
Mf = 199 and Nβ = 26. The corresponding spanwise wavelength varies from 0.3 to
10.5 mm, and the oblique wave angle θm,n on the x–z plane spans from 4◦ to 89◦.

Following the dispersion relations of slow acoustic waves by Egorov, Sudakov &
Fedorov (2006) and Cerminara & Sandham (2020), we obtain the perturbations of other
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Transition reversal over a blunt plate at Mach 5

primitive variables by

u′
m,n = −p′

m,nM∞ cos θm,n, v′
m,n = w′

m,n = 0, T ′
m,n = (γ − 1)M2

∞p′
m,n. (4.4a–c)

Without an angle of incidence, the wall-normal velocity fluctuation is naturally zero,
which is also consistent with the symmetry boundary condition along y = 0 in figure 1(a).
In terms of the freestream u′, T ′ and p′, the symmetrical slip boundary has no noticeable
impact on them. Finally, the total perturbation of the variable φ = (u, v, p,w, T)T is given
by

φ′(x, z, t) = Brescaled Arescaled

Nβ∑
n=0

Mf∑
m=1

φ′
m,n, (4.5)

while the instantaneous density ρ is calculated directly from the equation of state for ideal
gas. For 2-D receptivity studies (Nβ = 0), the parameters are set to Arescaled = Brescaled =
1 in (4.5). For 3-D transitional simulations, the amplitude rescaling parameter is set to
Arescaled = 0.366, such that the spanwise averaged p∗′∞,rms of the 3-D wave is numerically
equal to the 2-D counterpart determined by (4.3). The detailed intensity of the pressure
fluctuation is p∗′∞,rms/p̄

∗∞ = 2.85 %. Note that the amplitude and spectrum of incoming
disturbances were not given in the experimental study of Borovoy et al. (2022). Another
rescaling parameter is artificially multiplied and given by Brescaled = 0.6. This parameter
can be adjusted to match the experimental transition onset. Finally, the resulting amplitude
of the pressure fluctuation is p∗′∞,rms/p̄

∗∞ = 1.71 %. At each time step of the simulation,
the instantaneous quantity on the far-field boundary is forced to be the superimposition of
the base-flow quantity and the perturbation.

5. Phenomenon of transition reversal

Since the research subject is the transition reversal, we first present the reversal
phenomenon manifested by experimental and computational data. Figure 2 shows the
spanwise- and time-averaged Stanton number for the present cases R0, R1.8, R2, R2.7
and R3. The Stanton number is defined by

St = q∗
w/[ρ

∗
∞u∗

∞c∗
p∞(T

∗
aw−T∗

w)], (5.1)

where q∗
w is the wall heat flux, and T∗

aw is the adiabatic (recovery) wall temperature
for turbulent flows. The legend ‘laminar’ refers to the curve of the 2-D laminar flow,
while the ‘turbulent’ Stanton number is obtained from Reynolds analogy. To determine
the ‘turbulent’ Stanton number, the skin friction coefficient Cf is calculated based on
van Driest II correlation, as described in § 3.1. The Reynolds analogy factor 2 St/Cf was
incipiently recommended to be Pr−2/3 by Colburn (1964), whereas a following high-speed
experiment by Hopkins & Inouye (1971) indicated a lower value. Consistent with Franko
& Lele (2013) and Guo et al. (2022), the Reynolds analogy factor is set to 1.0 in this
paper. As shown by figure 2, the St curves after transition collapse well onto the turbulent
empirical formula as well as the experimental range of Borovoy et al. (2022) in the
turbulent region. An exception is that the length of the computational domain for case R2
is insufficient to see the transition end. A further investigation on the mean velocity profile
and the associated law of the wall is given in Appendix B. A fully developed turbulent
state is indicated for case R3 in an approximate range x > 180.

To directly compare with the experimental result, the determination approach of the
transition onset location is kept unchanged from that in Borovoy et al. (2022). This
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Figure 2. Spanwise- and time-averaged Stanton numbers of (a) R0, (b) R1.8, (c) R2, (d) R2.7 and (e) R3. The
horizontal dash-double-dotted lines represent the upper and lower bounds of the experimental turbulent value
with ReR = 1.975 × 104 (Borovoy et al. 2022). Note that the total temperature rather than the recovery wall
temperature was used in the definition of St in the experiment, and a data transformation has been performed.
The evaluation procedure of the turbulent Stanton number can been found in Franko & Lele (2013) and Guo
et al. (2022).

approach has been applied commonly in hypersonic transition measurements. In detail,
the mean Stanton number result is mapped onto a log10(Rex)–log10(St) plot, where Rex
is the x-based Reynolds number. The transition onset is then defined by the intersection
point of approximate laminar and transitional lines. A graphical example is provided in
Appendix C. The transition onset Reynolds number is then given in table 2. Obviously, the
transition onset reverses when the nose-tip radius exceeds 1.8 mm.
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Transition reversal over a blunt plate at Mach 5

Cases R0 R1.8 R2 R2.7 R3

ReR (×105) 0 1.08 1.2 1.62 1.8
Ret (×106) 4.34 8.93 5.80 4.98 4.85
xt 72.3 148.9 96.6 83.0 80.8

Table 2. Transition onset Reynolds numbers and locations determined from numerical simulations.

10

8

R1.8

R2

R0

R2.7
R3

6

4Re
t (

×
1
0

6
)

2

0

ReR (×105)

1 2

Experiment, fitting by Borovoy et al.
Experiment, raw data

CFD, Ret × 0.74

3

Figure 3. Plot of transition onset Reynolds number versus nose-tip radius Reynolds number. The original
experimental Reynolds number based on the leading-edge thickness b = 2Rn is transformed into the
nose-tip-radius-based Reynolds number.

Given that a rescaling parameter Brescaled is employed in (4.4), the transition onset is now
slightly later than the experimental one. As mentioned above, the data trend instead of the
exact transition Reynolds number is of interest. We keep the current computational set-up
unchanged instead of adjusting Brescaled repeatedly to match the experimental result. For
a straightforward comparison, the transition onset Reynolds numbers Ret for all the CFD
cases are multiplied by a factor 0.74. This operation calibrates the Ret of case R0 to match
the experimental data, whereas it does not alter the tendency arising from the bluntness
effect. Figure 3 compares the CFD and experimental data. A fitting curve was given in
conjunction with the raw data by Borovoy et al. (2022). The overall tendency of the nose
bluntness effect is reproduced by the present numerical simulation. In the next section, the
detailed flow mechanism will be analysed by numerical and theoretical tools.

Note that for small-bluntness-regime cases, the dimensional distance between the shock
and the wall is remarkably reduced. This fact gives rise to a very small maximum
time step size for Runge–Kutta time marching. As a consequence, it is computationally
expensive to conduct a series of sensitivity case studies and report the transition for both
small-bluntness and large-bluntness cases, which are left for future studies. The final
displayed states are R0, R1.8, R2, R2.7 and R3, which show good agreement with the
trend of the experimental transition onset.
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Figure 4. Mach number contour of the steady laminar flow for cases (a) R0, (b) R1.8, (c) R2, (d) R2.7 and
(e) R3. Pink solid lines in the right-hand column represent the sonic lines near the nose.

6. Flow mechanism

6.1. The 2-D response
The Mach number contour of the 2-D steady base flow is shown in figure 4 for the four
cases with different nose-tip radii. Following the criterion of Paredes et al. (2019b), the
edge of the boundary layer is defined as the location where the local total enthalpy is
0.995 times the freestream value. Furthermore, the edge of the entropy layer is defined
as the location where the local entropy increment is 0.25 times the value at the wall.
Here, the total enthalpy and the entropy increment are defined by H∗ = c∗

pT∗ + (u∗2 +
v∗2)/2 and �S∗ = c∗

p ln(T∗/T∗∞)− R∗ ln( p∗/p∗∞), respectively. The symbols c∗
p and R∗

represent the specific heat at constant pressure and the gas constant for air, respectively.
The thicknesses of the boundary layer and the entropy layer are plotted against x in figure 5.
In addition to the total enthalpy criterion, the nominal thickness δ0.99 of the boundary layer
is also shown in figure 5(a) for case R0. Clearly, the presence of a blunted leading edge
thickens the boundary layer. Away from the nose tip, the value of the nose-tip radius has
no visible impact on the boundary-layer thickness. Moreover, an increasing nose-tip radius
makes the entropy layer thicker. Different from the cone geometry, entropy swallowing is
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Transition reversal over a blunt plate at Mach 5
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Figure 5. Thickness of (a) the boundary layer and (b) the entropy layer of the steady laminar flow.

not seen in a distance of interest. In other words, the boundary layer is entirely covered by
the entropy layer. This feature may enable a long-distance stabilisation effect of the entropy
layer on the normal-mode instability. Furthermore, the Mach number on the boundary
layer edge evolves to be approximately M = 2.7 downstream for cases R1.8, R2, R2.7 and
R3. Therefore, the unstable Mack second mode, which usually appears above Mach 4, is
probably not supported in the considered blunt-plate flow.

Figure 6 shows the instantaneous pressure fluctuation at t∗ = 0.5 ms when the 2-D
unsteady flow is fully established. The pressure fluctuation is obtained by subtracting the
laminar state from the instantaneous pressure field. The displayed solution is linear, since
the isoline of the 2-D time-averaged pressure field visibly accords with the steady-flow
counterpart (not shown). For case R0, the broadband planar acoustic waves interact
with the weak leading-edge shock first, and the boundary layer subsequently. A clear
double-cell signature of the pressure fluctuation for Mack second mode is captured in the
downstream boundary layer. For blunt-plate cases, the planar acoustic waves interact with
first the detached shock and then the weak expansion wave forming in the vicinity of the
junction point (x, y) = (0,Rn). As shown in figure 4, the junction is located downstream
of the sonic line, and the expansion wave forms downstream of the sonic line on the
nose. No Mack-second-mode-like structure is captured throughout the computational
domain. This is because no typical double-cell structure is observed in the contour of
pressure fluctuations, and no pronounced high-frequency signals are amplified during the
simulation. With varying nose-tip radius, the structure of p′ is not altered substantially.
This might suggest some similarities in the instability evolution for the considered
blunt-plate cases, which will be examined further in 3-D studies.

Figure 7 shows the streamwise evolution of Chu’s energy and the r.m.s. of the wall
pressure fluctuation p′

rms. Chu’s energy EChu is defined as the wall-normal integral of
Chu’s energy density, which is given by (Chu 1965)

EChu = 1
2

∫ ∞

0

[
ρ̄(u′2 + v′2 + w′2)+ T̄

γM2∞ρ̄
ρ′2 + ρ̄

γ (γ − 1)M2∞T̄
T ′2

]
dη. (6.1)

Different lengths of the statistical window are used, and no visible difference in the
concerned quantity is found in figure 7. Thus statistical convergence is reached. The
sharp-leading-edge case supports the amplification of 2-D Mack second mode, while
an approximately neutral state is reported on the downstream flat plate for all the
blunt-plate cases. The downstream magnitude of p′

rms satisfies p′
rms,R2 < p′

rms,R2.7 <
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Figure 6. Pressure fluctuation contour at t∗ = 0.5 ms of 2-D cases (a) R0, (b) R2, (c) R2.7 and (d) R3.
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Figure 7. (a) Chu’s energy and (b) the r.m.s. of wall pressure fluctuations for 2-D cases. Statistics are
performed in an interval t∗ = 1 ms (at least 3.5 flow-through time units). The ‘longer statistical window’
corresponds to another statistical interval of 2 ms.

p′
rms,R3 < p′

rms,R0. Meanwhile, the final Reynolds number based on the transition onset
satisfies ReR2 > ReR2.7 > ReR3 > ReR0. Note that a higher-amplitude fluctuation usually
corresponds to an earlier transition onset if the other factors are unchanged. Thus the
tendency of the response magnitude of the disturbance, dependent on the nose-tip radius,
is coincidentally consistent with the performance of the transition onset. With regard to
Chu’s energy, the base flow of case R0 does not possess a thick entropy layer compared to
the others. As a result, disturbance energy outside the boundary layer is relatively small for
case R0, and the integrated EChu is considerably lower than in the other cases. However, for
blunt-plate cases, EChu,R2 < EChu,R2.7 < EChu,R3 still holds true. The above observation
may suggest that the bluntness effect has already been reflected, though incompletely, in
the 2-D physical problem.
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Figure 8. Contours of (a) local growth rate σ versus β − ω at x = 50 and (b) σ versus x − ω with β = 0 for
the sharp-leading-edge case R0. No unstable local mode is identified downstream for blunt-plate cases, thus
not shown, e.g. case R2 at x = 50 and x = 150.

6.2. Linear stability analysis
To clarify the mechanism of the linear instability, it is necessary to perform a normal-mode
stability analysis. For the sharp-leading-edge case, the laminar base flow is extracted at a
pre-transitional location x = 50 for stability analysis. Subsequently, the one-dimensional
(1-D) base flow along the wall-normal direction is transformed into another 1-D mesh,
which is implemented by cubic spline interpolation via Intel MKL. Algebraic stretching is
employed for the new 1-D mesh points, which are more robust for spectral difference in the
stability analysis. The algebraic stretching function has been incorporated into the spectral
collocation method by Malik (1990). For the new 1-D mesh, ny,new ≥ 161 is found to be
sufficient to achieve convergence of eigenvalues. The following ‘coarse mesh’ and ‘fine
mesh’ in figure 9 represent the mesh point numbers ny,new = 201 and 221, respectively.

The local growth rate σ = −αi is calculated in the (ω, β) space, where σ > 0 suggests
an unstable mode. Figure 8(a) clearly shows the unstable range of the second mode and
the oblique first mode at x = 50 for case R0. The growth rates of the first and second
modes peak at approximately (ω, β) = (0.9, 2.75) and (ω, β) = (6.4, 0), respectively.
These two states correspond to dimensional frequencies 127 and 902 kHz, respectively.
The wavelength of the most unstable first mode is λ∗z = 2.28 mm. However, for all the
blunt-plate cases, no discrete mode with σ > 0 is identified in the ranges x ∈ [5, 200],
ω ∈ [0, 8] and β ∈ [0, 7]. It is not surprising that the unstable second mode is absent,
since the boundary-layer-edge Mach number is only 2.7 downstream. For case R0,
figure 8(b) displays the streamwise-dependent unstable region with β = 0, which indicates
the presence of the unstable second mode and the absence of the unstable 2-D first mode.

With regard to the most unstable first mode, the eigenspectra of case R0 at x = 50,
as well as case R2 at x = 50 and x = 150, are shown in figure 9. The complex phase
velocity is defined by c = ω/α, where ci > 0 indicates an unstable mode. Clearly, the
discrete mode becomes stable even when the nose-tip radius is only Rn = 2. These findings
are consistent with existing knowledge of the stabilisation effect of the entropy layer.
Note that figures 9(b,c) appear to show marginally unstable eigenvalues in the continuous
branch. However, these eigenvalues cannot achieve convergence with an increasing ny,new,
and they diverge in the iterative local method of Malik (1990). Therefore, these eigenvalues
should correspond to spurious modes. By contrast, the discrete eigenvalue can easily
converge, e.g. c = (0.68,−0.07) in figure 9(c). The nose bluntness effect on the presence
of the most unstable first mode is also examined at x = 50. The critical nose-tip radius
for the disappearance of an unstable first mode is approximately Rn = 0.5, where the most
unstable state is (ω, β) = (0.5, 1). In the simulated cases from R1.8 to R3, the unstable
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Figure 9. Eigenspectrum of the complex phase velocity c = ω/α with ω = 0.9 and β = 2.75 for (a) case R0
at x = 50, (b) case R2 at x = 50, and (c) case R2 at x = 150.

first mode and second mode are not identified. As a result, the normal-mode instability is
not significant even with a small nose-tip radius, which differs from a slender-cone case
with early entropy swallowing. The stabilisation effect of the blunt-flat-plate entropy layer
on the normal modes extends far downstream. The non-swept plane stagnation flow near
the nose tip is also known to be linearly stable to 3-D normal-mode instabilities (Wilson
& Gladwell 1978; Lyell & Huerre 1985). The takeaway information in this case is that the
transition to turbulence subject to freestream broadband disturbances, if possible, should
be probably due to non-modal instability mechanisms. The considered blunt-plate cases
exclude the possibility of normal-mode instabilities.

6.3. The 3-D instability and transition
Prior to the simulation with broadband acoustic-wave forcings, a pre-run without the
forcing is conducted for case R1.8. The numerical noise is found to have an ignorable
impact on the laminar flow; further details are given in Appendix E. Similar to the 2-D
simulation, the detached bow shock first interacts with the incoming perturbation and
amplifies the amplitude. For instance, along the symmetry plane y = 0 where the bow
shock approaches a normal shock, the spanwise-averaged pressure fluctuation r.m.s. is
increased by about eight times for cases R1.8 to R3 across the shock. This degree of
increase is not sensitive to the nose-tip radius, probably due to the dominance of inviscid
properties at the large nose-radius Reynolds number. The rise in the sound pressure level
across the shock is approximately 19 dB, which approaches the inviscid analysis (20 dB
at Mach 5) by Mahesh et al. (1995). Farther downstream, disturbances are excited in the
boundary layer and entropy layer.

The time history of the Stanton number at different streamwise stations of case R2 is
recorded and shown in figure 10. Note that the probe on the symmetry plane z = Lz/2 is
taken for an example, and the freestream forcing is not symmetrical with respect to z due to
the random phase angles. For the probed laminar-flow location x = 50, the perturbations
exert no substantial influence on the mean heat flux compared to the undisturbed laminar
value at t = 0. In the transitional region (x = 100, x = 150, x = 200 and x = 250), a clear
signature of intermittency is observed. Windows with high-amplitude perturbations appear
intermittently when a turbulent spot (shown later) is present. During the intermittent
turbulent window, the mean heat flux is escalated to approximately 4–6 times the laminar
value. Furthermore, the degree of intermittency, i.e. the ratio of the turbulent time to the
total time, is visibly increased from the early stage x = 100 to the late stage x = 250.

1005 A5-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
36

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1236


Transition reversal over a blunt plate at Mach 5

0

0

15

30

St
 (

×
1
0

–
4
)

St
 (

×
1
0

–
4
)

St
 (

×
1
0

–
4
)

St
 (

×
1
0

–
4
)

St
 (

×
1
0

–
4
)

200
–15

0

15

30

–15

0

15

30

–15

0

15

30

–15

0

15

30
x = 50

x = 100

x = 150

x = 200

x = 250

–15

400 600 800 1000 1200 1400 1600

0 200 400 600 800 1000 1200 1400 1600

0 200 400 600 800 1000 1200 1400 1600

0 200 400 600 800 1000 1200 1400 1600

0 200 400 600 800 1000 1200 1400 1600

t

(e)

(b)

(a)

(c)

(d )

Figure 10. Time history of the Stanton number at different streamwise locations on the symmetry plane for
case R2.

The presence of intermittency is observed for all the 3-D cases in this paper. Note that a
flow-through time unit is t = 260 for case R2. After a stationary state is reached, statistical
calculations of mean and r.m.s. quantities are performed during an interval t2 − t1 = 1770
or t2 − t1 = 1010, and no visible difference is found between the two choices.

Figure 11 gives a Q-criterion visualisation of the flow structure for case R3. Figure 12
further shows the streamwise velocity perturbation uperturb. Here, the perturbation is the
difference between the instantaneous field and the laminar flow, i.e. uperturb(x, y, z, t) =
u(x, y, z, t)− ulaminar(x, y). As shown by figure 11, streamwise-vortices-like structures are
formed immediately downstream of the blunt nose. Figure 12 depicts that the development
of streamwise vortices or streamwise streaks is mostly beneath the boundary-layer
edge (dashed line). The outer entropy layer is only marginally disturbed (see figure 31
below). In the approximate range 60 < x < 120 of figure 11(a), turbulent spots are
generated, which are surrounded by streamwise vortices and then convected away towards
downstream. For a spatially fixed probe, an intermittent signal of the physical quantity can
be recorded, as shown in figure 10. Similar to the numerical finding of Marxen & Zaki
(2019), a core region of the turbulent spot can be developed, where the skin friction or
heat flux can be escalated. The increase in heat transfer is also recorded in the turbulent
window in figure 10 and later in figure 13.
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Figure 11. Isosurface of Q-criterion Q = 1 × 10−3 at t = 806 in the ranges (a) x < 160 and (b) x > 160,
coloured by the streamwise velocity for case R3.
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Figure 12. Contour of the streamwise velocity perturbation uperturb compared to the laminar flow of case R3
at t = 806 for (a) x = 40 and (b) x = 80. Dashed lines mark the position of the 2-D laminar boundary layer
edge.

Figure 13 shows the contours of the instantaneous Stanton number. For all blunt-plate
cases, a notable observation is that streamwise streaks appear immediately downstream of
the nose region. Following that, the turbulent spot surrounded by the streaky laminar flow
emerges, which has a finite and gradually increasing spanwise width. In the core region of
turbulent spots, high-frequency components become more evident (see figure 10), which
are associated with secondary instabilities under the streaky laminar flow. Eventually,
the turbulent spot spans the whole spanwise domain and develops to fully established
turbulence. There are other similarities in the turbulent spot for different blunt-plate
cases. The core high-St part of the wave packet is always generated and travelling with a
‘slender-wedge’ wave front. The initial semi-angle of the wedge front is approximately 10◦
on the x–z plane, and is increased slightly by less than 5◦ when the packet grows larger.
Adjacent to both sides of the wave front, corrugated structures always appear with low
or even negative instantaneous St values. In figures 13(b,c), the first and second high-St
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Figure 13. Contour of instantaneous Stanton number at t = 806 for cases (a) R0, (b) R1.8, (c) R2, (d) R2.7
and (e) R3. The circle in (e) marks the early turbulent spots. Arrows represent the transition onset locations.

regions represent the propagating turbulent spot and fully developed turbulent regions,
respectively. Between them, the intermittent laminar-flow region is observed with low
St, which corresponds to the ‘quiet’ low-St window in the time history at x = 200 in
figure 10. Although there exist such instantaneous low-St regions, the time-averaged St
rises monotonically in the streamwise direction due to gradually increasing intermittency
in the transitional region. The downstream propagation of the turbulent spot ensures that
the probes in the transitional region will experience high heat transfer at some time during
long-period statistics.

By contrast, for case R0 under the same environment of freestream disturbances, no
strong signature of the streamwise streak is observed in the vicinity of the leading edge.
Nonetheless, three-dimensionality is still seen in the pre-transitional and transitional
regions of case R0, which might be related to first-mode instabilities. To clarify the
physical cause, spanwise-wavenumber spectral analysis will be performed later, in
conjunction with LST. Since the surface heat transfer is escalated on the nose, the streak is
not visible there under the current contour level. However, an unshown replotted contour
near the nose illustrates that the streak originates from the curved nose, yet not at the
stagnation point. The high-fluctuation region is initially detached from the wall near the
stagnation point, and then appears in the nose boundary layer with the signature of streaks
(see figure 16 below). The streamwise streaks are further visualised by the mean Stanton
number in figure 14. The streaky spanwise spacings of cases R1.8, R2, R2.7 and R3 seem
to be close to each other.
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Figure 14. Leading-edge streaks characterised by time-averaged Stanton number for cases (a) R0, (b) R1.8,
(c) R2, (d) R2.7 and (e) R3.

Figure 15 shows the distribution of spanwise-averaged r.m.s. of the fluctuating velocities
at the laminar-flow location x = 20. The statistical feature |u′| � |v′|, |u′| � |w′| is a clear
signature of streamwise streaks for blunt-plate flows. In comparison, streamwise vortices
are more pronounced in |v′| and |w′|, and the momentum transport of them can generate
streaks (Orlandi & Jiménez 1994). Such energy transfer during the streamwise vortices
to streaks is attributable to the lift-up mechanism (Landahl 1980). More importantly, the
maximum of u′

rms gradually grows with increasing bluntness. The respective peak values
are 0.045, 0.063 and 0.073 for cases R2, R2.7 and R3. The corresponding wall-normal
heights η are 0.135, 0.119 and 0.116, respectively, which are inside the boundary layer.
Therefore, as nose bluntness is increased, the streaks are enhanced, and simultaneously
the peak fluctuation positions move slightly towards the wall. For the unshown case R1.8,
its peak magnitudes of u′

rms, v
′
rms and w′

rms are close to those of case R2 at x = 20.
Nonetheless, the peak v′

rms and w′
rms of case R2 are about 3.1 times the respective

values of case R1.8 at the downstream location x = 90, where transition is soon triggered
for case R2. The finding of the strengthened streaks with nose bluntness is consistent
with the resolvent analysis of blunt-cone flows by Melander et al. (2022). The above
observation also accounts for the preceding enlarged deviation from the 2-D laminar flow
in wall heat transfer with increasing nose bluntness (see figures 2b–d). In comparison, the
difference between 3-D and 2-D laminar flows for case R0 is ignorable in figure 2(a). This
performance indicates that the streamwise streak does not play an important role in wall
heat transfer of the sharp-leading-edge case.
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Figure 15. Wall-normal profiles of spanwise-averaged r.m.s. of velocity fluctuations u′, v′,w′ at the
laminar-flow position x = 20 for cases (a) R2, (b) R2.7 and (c) R3. Arrows represent the locations of local
laminar-boundary-layer thickness.

The augmented streaky response with increasing nose bluntness is attributable to either
the strengthened leading-edge receptivity to freestream disturbances or the non-modal
amplification downstream. By mentioning ‘receptivity’, we consider the process during
which the freestream disturbances enter the boundary layer in the vicinity of the leading
edge. By referring to ‘non-modal growth’, we examine the early evolution of the streaky
strength. The streaky strength is quantified by the maximum of u′

rms of the local
wall-normal profile based on statistical results. The maximum is taken in the smooth
region downstream of the shock. Artificially, the significance of receptivity is defined
and measured by the ratio of the leading-edge maximum u′

rms to the freestream value,
Irecp = u′

rms,max(x = xLE)/u′
rms,∞. Herein, xLE refers to a leading-edge reference location.

Meanwhile, the importance of non-modal growth is measured by Inonmd = u′
rms,max(x =

50)/u′
rms,max(x = xLE), where x = 50 is in the laminar-flow region. As a consequence,

Irecp × Inonmd = u′
rms,max(x = 50)/u′

rms,∞ characterises the downstream streaky strength
under the same freestream disturbance intensity. If the increase of Irecp is more sensitive to
growing bluntness than that of Inonmd, then it is suggested that the receptivity contributes
more to the enhanced streaky response.

The results of the u′
rms contour and the marked maximum location are displayed in

figure 16. The boundary-layer response becomes visibly important starting from the 45◦
position of the cylindrically blunted nose. Subsequently, the rapid non-modal growth of
the streaky response is recorded by the maximum u′

rms. This non-modal growth stage is
significant, and its sensitivity to the nose-tip radius in the large-bluntness regime should be
examined further. Figure 17(a) depicts the streamwise evolution of u′

rms,max for different
blunt-plate cases. The enhancement of the streaky response is clear from cases R2, R2.7
and R3. The response strength between cases R1.8 and R2 starts to deviate at a more
downstream location (approximately x > 70), thus the different upstream evolution is not
evident for the two cases. Figure 17(b) gives the two defined indicators and their multiplier
from cases R2 to R3. The leading-edge reference location is taken as xLE = 0. As the
nose-tip radius is increased, the receptivity indicator Irecp rises from 12.8 to 18.6, whereas
the non-modal growth indicator Inonmd is slightly reduced from 4.66 to 4.58. The final
response Irecp × Inonmd at x = 50 due to the same freestream disturbance intensity is visibly
increased from 59.6 to 85.4, which is contributed by Irecp. Tests are also performed with
different reference locations, e.g. xLE = −0.1 and 5, and the qualitative trend remains
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receptivity or non-modal growth subject to the nose bluntness effect. The leading-edge reference location is
xLE = 0.

aligned with figure 17(b). The downstream probe is also adjusted from x = 50 to x =
20, where the curve slope in figure 17(a) starts to decrease. The leading-edge reference
location remains at xLE = 0. In this case, Inonmd is slightly increased by the nose-tip radius,
whereas the degree of increase is still weaker than that of Irecp. In fact, the different u′

rms,max
for varied nose radii has been largely initiated proceeding from the nose. Based on the
above criterion, it is deduced that the enhanced streamwise streak with increasing nose
bluntness is more attributed to the leading-edge receptivity than the non-modal growth
starting from the leading edge.

Figure 18 presents the contour of the instantaneous spanwise velocity w on the x–y plane,
which is able to characterise the three-dimensionality. Different from the cone geometry
that was frequently reported, e.g. by Hartman et al. (2021), the blunt flat plate displays
relatively weak signature of flow structures in the outer entropy layer. The discrepancy
in the observed structure may be attributed to the different feature of the entropy layer.
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Figure 18. Instantaneous spanwise velocity w on the symmetry plane z = Lz/2 at t = 806 for cases (a) R1.8,
(b) R2, (c) R2.7 and (d) R3. The characterisation of the leading-edge streak is highlighted in the right-hand
column. The contour level ranges from −0.01 to 0.01.

The mean streamline outside the boundary layer is oriented outwards from the wall in
the blunt-flat-plate flow, whereas it is towards the wall before entropy swallowing in the
blunt-cone flow. Thus the perturbations outside the boundary layer appear to have a small
impact on the boundary-layer transition over the blunt flat plate. In the near-wall region
of figure 18, the evolving streamwise streaks downstream of the nose tip (0 < x < 75)
display staggered positive and negative regions of w′ on the plate. As mentioned above,
the plane stagnation flow is linearly stable to normal-mode perturbations. Therefore, the
formation of the strong streamwise streaks in the vicinity of the nose tip is likely to be
due to the non-modal growth. Farther downstream, the presence of packets containing
small-scale structures possibly implies secondary instabilities and intermittent breakdown
to turbulence.

6.4. Spatial and temporal spectra
This subsection aims to quantify the spatial and temporal spectra, which point out the
dominant scales in space and time. Figure 19 gives the spanwise Fourier transform
of the Stanton number, which is plotted against the streamwise coordinate and the
spanwise wavelength λz. To reduce the randomness effect, the ensemble average of the
Fourier-transformed St is taken with thousands of snapshots during a long time period.
With regard to the sharp-leading-edge case R0, two pronounced spanwise wavelengths
λz = 2.28 and 1.14 appear successively in the pre-transitional region x < xt, where the
transition onset is xt = 72. The first leading wavelength λz = 2.28 agrees very well with
the most amplified first-mode wavelength by LST in § 6.2. The second leading wavelength
λz = 1.14 emerges later, which has a weaker priority over other wavelengths compared
to λz = 2.28. It is conceivable that λz = 1.14 arises from the nonlinear interaction of the
dominant oblique first mode. Specifically, the mode–mode interaction in the Fourier space
can be expressed by

( f1, β1)− ( f1,−β1) → (0, 2β1), (6.2)
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Figure 19. Common logarithm of modulus of spanwise Fourier transforms of Stanton number log10(|S̃t|)
versus the streamwise coordinate x and the spanwise wavelength λz for cases (a) R0, (b) R2, (c) R2.7 and
(d) R3. The ensemble average of the result is taken during t2 − t1 = 800.

where f1 and β1 denote the first-mode frequency and spanwise wavenumber, respectively.
Mode (0, 2β1) is the generated streamwise vortex mode. One may substitute an arbitrary
frequency from the broadband spectrum into (6.2) to obtain the vortex mode. The most
unstable first-mode frequency is likely to excite the strongest response of the vortex
mode. This stationary mode possesses a spanwise wavenumber twice the first-mode one,
and thus a spanwise spacing half of the first-mode spanwise wavelength. Therefore,
the three-dimensionality in the pre-transitional region of case R0 is partly induced by
the oblique first mode and the resulting streamwise vortex (or stationary streak) mode.
For blunt-plate cases, including the unshown case R1.8, it is interesting to observe
a preferential wavelength λz = 0.91 that does not vary with the nose-tip radius. The
preferential wavelength is formed in and throughout the pre-transitional regions. The
value of this wavelength is visibly consistent with the streak visualisation in figure 14.
In this early stage, incipient spots may be present in the streaky laminar flow. Note that
the intensity of the added freestream disturbance is uniform with respect to the spanwise
wavenumber/wavelength. It is thus inferred that the preferential wavelength is selected by
the leading-edge receptivity process. Furthermore, different blunt-plate cases share similar
spanwise spatial spectra. The main difference appears to be the transition location that
is manifested by the appearance of the filled wavenumber spectra in figure 19. In that
region with full spectra, the energy is concentrated on the large scales of λz rather than the
dissipative small scales, which is consistent with the energy cascade property of turbulent
flows.

In addition to the spatial spectra, a temporal Fourier transform is also conducted
and shown in figure 20. For case R0, the most amplified second-mode frequency is
calculated by LST via the Newton–Raphson method, which maximises the growth rate
σ . The resulting frequency is represented by the dashed line in figure 20(a). A good
agreement in the most pronounced second-mode frequency is reached between CFD and
LST, and the difference is less than 100 kHz. Here, the most pronounced second-mode
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Figure 20. Common logarithm of spanwise-averaged modulus of temporal Fourier transforms of the Stanton
number for cases (a) R0, (b) R2, (c) R2.7 and (d) R3. Vertical dash-dotted lines represent the transition onset
locations in table 2. The dashed line in (a) represents the frequency of the most unstable second mode calculated
by LST. The Nyquist frequency is approximately 1540 kHz.

frequency corresponds to the locally most unstable one rather than the largest x-integrated
growth factor. For the remaining blunt-plate cases, a similar spectral characteristic is
observed again for the frequency spectrum. In the pre-transitional region, low-frequency
components below 20 kHz are dominant for cases R2, R2.7 and R3. Farther downstream,
higher-frequency components grow rapidly and fill the frequency spectrum. The growth
of the high-frequency band is likely to be associated with secondary instabilities.
No preferential frequency of hundreds of kilohertz is found using different contour levels.
The spectral characteristics in figures 20(a–d) also resemble the experimental results of
Marineau et al. (2014), where the signal was measured by PCB sensors over sharp and
blunt cones. Note that the transition onset locations, marked by the vertical lines, appear
slightly later than the spectral filling behaviour in figure 20. This issue probably arises
from the determination approach of the transition onset. The calculated onset location is
more downstream than the location of the minimum Stanton number in figure 30. The
latter location indicates the growing significant role of the high-frequency signal due to
secondary instability, which contributes to spectral filling.

The time history of wall pressure at several probes is further used to calculate power
spectral density (PSD) for cases R0, R2 and R3. To this end, Welch’s method is applied,
and the time sequence is segmented with 50 % overlapping. A Hamming windowing
function is used to reduce spectral leakage. The PSD results in the pre-transitional,
transitional and nearly turbulent regions are shown in figures 21(a–c). The PSD of the
Stanton number is also calculated, and the performance is similar to that of the wall
pressure fluctuation. For case R0 in the laminar region, figure 21(a) illustrates that the
PSD peak at approximately 1000 kHz falls within the unstable second-mode frequency
range. For other blunt-plate cases, no Mack-mode-like high-frequency component emerges
at x = 50. In the transitional region at x = 100, no prominent frequency is identified for
all the cases. The PSD of the large-bluntness case R3 exceeds that of case R2 throughout
the frequency range at x = 100. This noteworthy observation indicates that the energy
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Figure 21. Temporal PSD of the wall pressure fluctuation probed along z = Lz/2 in (a) pre-transitional,
(b) transitional and (c) nearly turbulent regions. (d) Premultiplied PSD normalised by each maximum for case
R3. The grey area in (a) represents the frequency range of the unstable second mode given by LST.

advantage of case R3 over R2 is overall and broadband, rather than characterised by a
particular frequency. The disappearance of a single Mack second mode for case R0 is
possibly related to the fact that x = 100 is already in the late nonlinear stage, as shown
by figure 2(a). At the nearly turbulent position x = 250, the PSD curves of cases R2 and
R3 become close to each other, which indicates proximity to a fully established turbulent
state. Premultiplied spectra PSD × f ∗ normalised by each maximum are also shown for
case R3 in figure 21(d), which highlight the energy-containing scale. In the laminar-flow
region (x = 50), one peak is identified at 37 kHz for case R3 and also for cases R2 and
R2.7, which implies the significance of low-frequency components. During the transition
(x = 100), double peaks emerge at hundreds of kilohertz, which suggests the growth
of high-frequency components. In the fully developed turbulent region (x = 250), one
pronounced peak is observed at approximately 200 kHz.

To conclude, transition to turbulence in the sharp-leading-edge flat-plate flow is
probably induced by Mack second mode and oblique first mode simultaneously.
By contrast, the blunt-plate cases are dominated by low-frequency streamwise streaks with
the same spanwise spacing and the subsequent high-frequency secondary instabilities. The
characteristics of spatial and temporal spectra are found to be similar among cases R2,
R2.7 and R3. The main quantitative difference is that the streaky response is increased
by growing nose bluntness, as illustrated by figures 15 and 17. It is thus deduced that the
transition reversal is caused by enhanced receptivity to freestream disturbances without
changing the transition mechanism essentially.

6.5. Spectral proper orthogonal decomposition
A SPOD analysis is further conducted, which is a data-driven method to extract coherent
structures or modes from flow fields. The data can be collected from experimental or
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Transition reversal over a blunt plate at Mach 5

high-fidelity computational studies. The conventional proper orthogonal decomposition
(POD) seeks a set of deterministic modes that are only spatially coherent. The SPOD
modes are orthogonal in the context of a space–time inner product operation. As a result,
the improved SPOD method captures the dominant modes that are coherent in space
and time (Towne, Schmidt & Colonius 2018). Mathematically, SPOD modes are the
eigenvectors of a cross-spectral density (CSD) tensor at each frequency. In practice, Nt
snapshots of the fluctuating flow field are constructed into a snapshot matrix

Q = [q1, q2, . . . , qNt
]. (6.3)

To estimate the CSD, the data are segmented into Nblk overlapping blocks with NFFT
snapshots in each, as

Q(k) = [q(k)1 , q(k)2 , . . . , q(k)NFFT
], (6.4)

where the jth column in the kth block is

q(k)j = qj+(k−1)(NFFT−Novlp)+1. (6.5)

Here, Novlp is the number of overlapping snapshots for each block. The data segmentation
serves to increase the number of ensemble members. A Hamming windowing function
is applied to each block. Subsequently, a discrete Fourier transform is applied to each
windowed block, and the CSD matrix is constructed for each discrete frequency. The
SPOD modes are then computed as the eigenvectors of the CSD matrix for each frequency,
which are organised in a descending order of its energy. In this paper, Chu’s energy norm
is chosen to evaluate the SPOD mode energy. The SPOD analysis is performed based on
the open-source code provided by Schmidt & Colonius (2020).

To compromise the need to converge the SPOD modes and the limitation of
computational resources, we follow the parametric set-up by Lin & Schmidt (2024), who
carried out SPOD analysis of a transitional boundary layer dataset. To reach statistical
convergence of the spectral density, the number of the flow realisation Nblk ≥ 20 was
considered to be enough. In this paper, we take Nblk = 20, and choose a reasonable
resolution of NFFT = 512 with 75 % overlapping. Based on the relationship

Nblk =
⌊

Nt − Novlp

NFFT − Novlp

⌋
, (6.6)

where �· represents the floor operator, the total snapshot number should be at least
Nt = 2944. The snapshots are collected after the flow field reaches statistical stationarity.
For a low frequency of interest, say 20 kHz, the corresponding period is t∗1 = 5 ×
10−5 s. To obtain good temporal resolution, 8 periods are fitted into one block, which
yields NFFT/8 = 64 snapshots for each period of interest. As a result, the physical
snapshot sampling time is�t∗snap = t∗1/64, and the sampling frequency is f ∗

s = 1/�t∗snap =
1280 kHz. The Nyquist frequency is thus 640 kHz, and the minimum resolved frequency
is f ∗

min = 1/(NFFT�t∗snap) = 2.5 kHz.
Since the general flow characteristics are similar for all the blunt-plate cases, we are

able to provide sufficient physical insights by examining SPOD modes of case R2C
only. Figures 22–24 show the three leading SPOD modes on the x–y plane for three
chosen frequencies, namely low frequency 20 kHz, medium frequency 120 kHz and
high frequency 550 kHz, respectively. In general, the three frequencies display distinct
disturbance patterns. The low-frequency SPOD mode displays a signature of streamwise
streaks immediately downstream of the nose region. The streamwise length of a streak is
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Figure 22. (a,c,e) Streamwise velocity and (b,d, f ) pressure for the first, second and third leading SPOD x–y
modes from top to bottom at f ∗ = 20 kHz for case R2C.
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Figure 23. (a,c,e) Streamwise velocity and (b,d, f ) pressure for the first, second and third leading SPOD x–y
modes from top to bottom at f ∗ = 120 kHz for case R2C.

approximately λx = 30 near the leading edge, which is evidently larger than the boundary
layer thickness. For the medium frequency, the leading-edge SPOD mode structure looks
more complicated. The disturbances are developed in both the entropy layer and the
boundary layer. The pattern in the entropy layer somewhat resembles the wisp-like
structure in the experimental measurement of Kennedy et al. (2019). In general, the
SPOD mode energy is still more concentrated in the boundary layer for the medium
frequency. In terms of the low and medium frequencies, there is a visible signature in
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Figure 24. (a,c,e) Streamwise velocity and (b,d, f ) pressure for the first, second and third leading SPOD x–y
modes from top to bottom at f ∗ = 550 kHz for case R2C.

the relatively upstream region x < 100 for the first leading SPOD mode. This observation
possibly suggests that the receptivity to the upstream disturbance is not ignorable for the
low- and medium-frequency components. In comparison, the high-frequency SPOD mode
disappears in the upstream region and emerges suddenly in the range x > 140. Therefore,
the high-frequency component is more likely to originate from secondary instabilities in
the developed distorted base flow rather than from the freestream receptivity.

To quantify the instability evolution, figure 25 displays the streamwise dependence
of the maximal streamwise velocity fluctuation |u′

max| for the first leading SPOD mode.
For relatively low-frequency modes, the order of magnitude of the velocity fluctuation
is already in the range 10−3 − 10−2, which is maintained in the transitional region
(downstream of the arrow). For the highlighted high-frequency (545 kHz) mode, the
order of magnitude of |u′

max| undergoes an escalation approximately from 10−6 to 10−3

during the transition. In other words, high-frequency SPOD modes are rather weak in
the pre-transitional region, and grow rapidly in the transitional region. Physical factors
other than the secondary instabilities do not seem convincing to account for such a sudden
growth. The described instability evolution further supports that the high-frequency SPOD
mode emerges from secondary-instability-like mechanisms.

Figure 26 shows the frequency spectra for the 20 leading SPOD modes. The 99 %
confidence level for the first leading mode is estimated based on the assumption that SPOD
eigenvalues follow a chi-squared distribution (see details in Schmidt & Colonius 2020).
For the first leading SPOD mode, the mode energy peaks at discrete frequencies of a
series of harmonics, which resembles the SPOD energy feature in the controlled transition
by Lin & Schmidt (2024). These peak frequencies are integer multiples of the frequency
interval �f ∗ = f ∗

1 /2 = 5 kHz. Here, f ∗
1 is the fundamental (minimal) frequency that is

imposed in the 3-D broadband disturbance model. Since 10, 15, 20 kHz, etc. are added
in the model, the lowest frequency peak 5 kHz in figure 26 should originate from the
nonlinear difference interaction between 15 and 10 kHz. In terms of the second and higher
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Figure 26. Energy spectra for the 20 leading SPOD x–y modes for case R2C. Red lines represent the upper
and lower bounds with a 99 % confidence level for the first leading mode.

SPOD modes, the signature of the tuned frequencies becomes weaker, and the impact of
the initial harmonic behaviour in the freestream disturbance model fades away.

In addition to those of the symmetry plane, the snapshots of the transverse plane
were also stored for SPOD analysis. Figure 27 provides the first leading SPOD mode
on the z–y plane in the streaky laminar flow region. Instantaneous, time-averaged and
SPOD-modal flow fields are listed from top to bottom. The contours of the streamwise
and spanwise velocities are shown in the left- and right-hand columns, respectively.
Based on the time-averaged results, the 3-D laminar flow is visibly distorted and displays
spanwise periodic distributions in umean and wmean. The spanwise spacing manifested in
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Figure 27. (a,b) Instantaneous, (c,d) time-averaged and (e, f ) SPOD-modal quantities of the first leading SPOD
z–y mode with f ∗ = 20 kHz for case R2C, including (a,c,e) streamwise velocity and (b,d, f ) spanwise velocity.
The slice is extracted in the pre-transitional region x = 50. The dashed line represents the location of the 2-D
laminar-boundary-layer thickness.

the contour of wmean is close to the preferential spanwise wavelength λz = 0.91 in § 6.4.
The SPOD mode in figure 27 exhibits staggered high- and low-speed streaks mainly inside
the boundary layer. Unlike the aligned pattern of wmean, the SPOD modes look inclined
and more irregular on the z–y plane. The two-stage transition scenario over the present
blunt flat plates becomes apparent based on the above SPOD analysis.

7. Conclusions

In the present paper, the stability and transition to turbulence of high-speed boundary
layers over sharp and blunt flat plates are investigated. To initiate the boundary-layer
transition, 3-D broadband slow-acoustic-wave disturbances are added on the freestream
boundary. The frequency spectrum obeys the distribution obtained from tunnel
measurements, while no preferential spanwise wavenumber is imposed in the combination
of harmonics. As the nose-tip radius exceeds 2 mm, the delay trend of the transition onset
location reverses. Good agreement is reached between the numerical and experimental
results with respect to the reversal tendency, which is reported for the first time.

A prior 2-D receptivity simulation displays a plateau of energy growth downstream of
the blunt nose region. By contrast, Mack-mode-like structures appear in the sharp-plate
flow, which undergo remarkable energy amplification. Linear stability analysis identifies
an unstable Mack second mode and oblique first mode simultaneously for the sharp-plate
flow, while no significant unstable normal modes are found for the blunt-plate flow. As a
result, the transition to turbulence for the considered blunt-plate flow is due to non-modal
instabilities. Following that, 3-D high-resolution simulations report a two-stage transition
mechanism, including the formation of a 3-D streaky laminar flow and a subsequent
secondary instability stage. In stage I, low-frequency streamwise streaks are formed
immediately downstream of the nose for blunt-plate cases, whereas their signature is not
evident in the sharp-plate flow. A unified preferential spanwise wavelength 0.91 mm is
observed for blunt-plate cases with different nose-tip radii. In comparison, the wavelengths

1005 A5-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
36

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1236


P. Guo, J. Hao and C.-Y. Wen

for the most amplified oblique first mode and the resulting streamwise-vortex mode are
pronounced in the sharp-plate flow. With regard to the frequency spectra, low-frequency
components within 20 kHz are dominant for the blunt-plate cases, while Mack second
mode with approximately 1 MHz emerges in the sharp-plate flow. In stage II, intermittent
turbulent spots appear in the streaky flow, convect downstream and span the spanwise
domain. High-frequency components grow rapidly during this process, which arise from
secondary instabilities. In this stage, the spatial and temporal spectra as well as the
intermittency feature of blunt-plate flows with various nose-tip radii are similar. The
crucial difference is the growing streaky response in stage I as the nose-tip radius is
increased. This initial factor gives rise to the earlier birth of turbulent spots and thus an
advance of the transition onset with large nose bluntness. However, the transition reversal
does not suggest an essentially different transition mechanism beyond the critical nose-tip
radius.

The present computational data do not either contradict or confirm the roughness
explanation by experimental investigators. The possible nose-tip roughness is expected to
increase the streaky response in stage I, which further moves the transition onset forwards
with large nose bluntness. The present work also demonstrates that the employed 3-D
broadband disturbance model is a useful choice for similar transition studies in the future.
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Appendix A. Mesh convergence study

Figure 28(a) shows the mesh resolution effect on the 2-D receptivity study of case R2. The
convergence in the evolutions of Chu’s energy and the wall pressure fluctuation r.m.s. is
confirmed. This observation also implies the convergence of the base flow. For 3-D studies,
the spanwise wavelength of the dominant streak, the breakdown scenario, the transition
location, and other statistical quantities are examined successively. The main results are
not obviously affected by increasing the mesh resolution to that of case R3F, which is
close to the previous hypersonic DNS resolution of Huang & Duan (2017) and Duan et al.
(2019). Figure 28(b) shows the streamwise development of Chu’s energy and the maximal
streamwise velocity fluctuation. The energy growth in the late transitional stage appears
to be slightly affected. Nonetheless, the overall deviation is acceptable. Hence the main
conclusions remain unchanged with increasing mesh resolution.

Appendix B. Law of the wall for mean velocity profiles

To further examine the fully developed turbulent region, the mean velocity profile is
compared with the law of the wall. Case R3 is adopted for analysis, which possesses the
longest fully developed turbulent region among the considered cases. In order to remove
the influence of mean density variation due to the compressibility effect, the van Driest
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Figure 28. Mesh resolution effect on (a) Chu’s energy and r.m.s. of the wall pressure fluctuation for 2-D case
R2, and (b) spanwise-averaged Chu’s energy and maximum of the streamwise velocity fluctuation for 3-D
transitional case R3.
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Figure 29. The van Driest transformed mean velocity profile of case R3.

transformation for the mean velocity is utilised as

U+
VD =

∫ ū+

0

√
ρ̄/ρ̄w dū+( y), (B1)

where ū+ = ū/ūτ . Figure 29 plots the transformed mean velocity profiles at different
streamwise locations. The viscous sublayer law U+

VD = y+ and the log law U+
VD =

2.5 ln( y+)+ 5.8 are also shown. Through the van Driest transformation, the intercept of
the log law is higher than the incompressible counterpart 5.0, which has been encountered
in previous DNS of hypersonic wall-bounded flows (Franko & Lele 2013; Guo et al. 2022;
Zhu et al. 2023). The slope appears to collapse onto that of the standard log law starting
from approximately x = 180. Combining with the Stanton number result in figure 2(d), we
deduce that a fully developed turbulent state has been established since then for case R3.

Appendix C. Determination of transition onset locations

To determine the transition onset location as the experimental investigator did, figure 30
plots log10(St) versus log10(Rex) for different cases. The transition onset Reynolds
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Figure 30. Determination of the transition onset location from the log10(Rex)–log10(St) plot (Borovoy et al.
2022). Cases R0, R1.8 and R3 are shown as an example.
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Figure 31. Contour of the streamwise velocity perturbation uperturb compared to the laminar flow for case
R3 at t = 806. Dashed and dash-dotted lines mark the boundary-layer edge and the entropy-layer edge,
respectively. Transverse slices are extracted and shown with x-coordinates 20, 40, 50, 60, 70, 80, 90, 120
and 140, successively.

numbers Ret correspond to the displayed intersection points. Transition onset locations
of cases R0, R1.8 and R3 are given as an example.

Appendix D. A global view of the streamwise velocity perturbation

A global view of streamwise velocity perturbation is provided in figure 31. The result
illustrates that the outer entropy layer is only marginally disturbed, and the excited
disturbance is concentrated mainly inside the boundary layer.
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Figure 32. Chu’s energy for 3-D case R1.8 with and without the freestream forcing. The vertical dashed line
indicates the junction location x = 0.

Appendix E. Case test without freestream disturbances

Tests are conducted for case R1.8 if there is no disturbance added on the far-field boundary.
The streamwise length of the 3-D computational domain is reduced to approximately
x = 80. Laminar state is then confirmed in the 3-D case without external forcings.
Small-amplitude high-frequency numerical noise is formed near the nose stagnation point,
and decays rapidly on the nearby nose. As shown by figure 32, Chu’s energy without the
freestream forcing is 3–6 orders of magnitude lower than the baseline case with forcing.
This level of background noise should have no evident influence on the transition.
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