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ABSTRACT. Inverse theory is appl ied to rela tive sea-level data to reconstruct a glacial history that is 
consistent with the emergence data near Glacier Bay, Alaska over the past half century. A comparison be­
tween the predicted glacia l thinning and observed thinning indicates that a combination of elastic uplift 
of the ground and a fall in the geoid defining the ocean surface, causes 25 % to 35 % of the observed emergence 
of the coast line. Because of errors in the sea-level data, inverse theory cannot provide a unique solution 
in terms of glacier response, and, in fac t, the least-squares fir is very inaccurate. However, by considering 
( I) the error of fit to the data, (2) the accuracy of the model, (3) the variation in the model, and (4) the 
model resolution, a physically realistic glacial history can be deduced. The advantage of inverse calcula­
tions is not only in its effi cient means of finding a model that fits the data, but more importantly, it provides 
a means of assessing the reliability of the model by indicating the accuracy of the model and the range of 
other glacial histories that a lso fit the data. This approach a lso a llows an estimate of the extent to which 
each data point constrains the model, independent of the actual data values. From this information, the 
most useful areas for additional data collection may be delimited. 

R EsuME. Un probleme inverse de geologie glaciaire.' la reconstitution du retrait glaciaire dans Glacier Bay, Alaska 
entre 1910 et 1960 a partir de donnees sur le niveall relatif de la mer. La theorie inverse es t appliquee aux donnees 
sur le niveau relatif de la m er pour reconstruire une histoire d e la glaciation qui soit coherente avec les 
donnees sur l'emergence continentale pres de G lacier Bay, Alaska, de puis le dernier demi-siecle. Une 
comparaison entre l'amincissement glaciaire prevu et l'amincissem ent observe indique qu'une combinaison 
de la remontee elas tique du sol et d 'une ba isse du geo'ide definissant la surface de l'Ocean cause de 25 % a 
35% de l'emergence observee le long de la cote. En raison des erreurs sur les donnees concernant le niveau 
de la m er, la theorie inverse ne peut donner une solution un ique pour la reponse du glacier et, en realite, 
l'ajustement par le, moindres carn~, es t la rgement imprecis. Cepend a nt, en considerant ( I ) l'erreur d'ajuste­
ment sur les donnees, (2) la precision du modele, (3) la variation d a ns le modele et (4) la resolution du modele, 
on peut reconstituer physiquement une histoire realiste de la deglacia tion. L 'avantage d es calculs inverses ne 
reside pas seulement dans son efficacite pour trouver un modele qui rende compte d es donnees, mais , e t 
c'est p lus important, ils d o nnent une mesure d e la fia bilite du modele en indiquant la precision de ce modele 
et la ga mme des autres chronologies de deglaciation qu'expliquent a ussi les donnees. eette approche perme t 
aussi d 'estimer jusqu' i quel p oint chaque point donne modi fie le modele, independa mment de la veritable 
valeur d e cette don nee. A partir de cette information, on peut d elimiter la zone la plus interessante pour le 
recueil de nouvelles donnees. 

ZUSAMMENFASSUNG. Ein Umkehrproblem del' Gla zialgeologie .' Die Rekonstruktion der Gletscherabnahme in deT 
Glacier B ay, Alaska, zwischen 19 10 UI,d 1960 ailS M eeresspiegeldaten. Zur Rekonstruktion einer Gletsch er­
geschichte, die mit der Kilstenhebung nahe der Glacier Bay in Alaska wahrend del' letzten 50 Jahre 
iibereinstimmt, wird die Umkehrtheorie auf relative Meeresspiegeldaten angewandt. Ein Vergleich del' 
berechneten Gletscherabnahme mit der beobachteten zeigt, dass eine Kombination von elastischem 
Aufsteigen des Untergrundes und einer Senkung des Geoids, defin iert a ls Meeresoberflache, 25- 35% del' 
beobachteten Kiistenhebung bewirkt. Infolge von Fehlern in den Meeresspiegeldaten ka nn die Umkehr­
theorie keine eindeutige L osung in Abhangigkeit vom Gletsch erverhalten liefern, und tatsachlich ist das 
Ausgleichungsergebnis nach der Methode del' kleinsten Quadrate sehr ungenau. Doch lasst sich unter 
Beach tung ( I ) des Fehlers der Ausgleichung gegen die Daten, (2) d er Genauigkeit d es Modells, (3) del' 
Veranderung im Model! und (4 ) der Auflosung d es M odells eine physikalisch verniinftige G letschergeschichte 
herleiten. Der Vorteil del' Umkehrberechnunge n liegt nicht nul' in ihrer Eignung zum Auffinden eines 
M odells, das zu den Daten passt, sondern no ch mehr in del' Moglichkeit, mit ihnen die Z uverlassigkeit des 
Modells durch Angabe seineI' Genauigkeit und des Bereichs anderer Chronologien, die ebenfalls zu den 
Daten passen, abzuschatzen . Bei diesem Vorgehen lasst sich a uch das Ausmass des Zwanges abschatzen, 
den jeder Beobachtungspunkt, unabhangig vom tatsachlichen Beobachtungswert, auf das Modell ausilbt. 
Diese Aussage kann zur Bestimmung jener Gebiete herangezogen werden, in denen die Beobachtung weiterer 
Daten am wirkungsvollsten ist. 

• Present address: Department of Geological Sciences, Cornell University, Ithaca, New York 14853, U.S.A. 
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INTRODUCTION 

During the past century relative sea-level has fall en rapidly near Glacier Bay, Alaska. 
Although this rapid emergence of the coast line, exceeding 3 cm/year, is occurring in a region 
of tectonic activity, continuous tide-gauge r ecords indicate that the emergence is not related 
to earthquakes (Hicks and Shofnos, 1965). Since the numerous glaciers near Glacier Bay 
have retreated very rapidly during this same time period, Hicks and Shofnos ( 1965) sugges ted 
glacial control. The rate of emergence is comparable to that observed in Hudson Bay, which 
is known to be a consequence of post-glacial isostatic uplift following the retreat of the 
Laurentide ice sheet, so they argued for a viscous relaxation mechanism beneath Glacier Bay 
also. Viscous flow of the mantle undoubtedly contributes to the rapid emergence, but we 
demonstrate here that instanta neous elastic uplift of the ocean floor and changes in the geoid, 
defining the ocean surface, are also important. The elastic properties of the Earth and the 
classical effects of gravity are understood much better tha n the Earth's viscous properties, 
so these instantaneous causes should be considered before time-dependent viscous causes. 

H ere we assume that the entire sea-level response results from these immediate effects, 
and we determine the a mount and distribution of glacial thinning required to cause the 
observed sea-level change. Given a glacia l history, we can calculate the r esulting sea-level 
change everywhere (Farrell and Clark, 1976), but this calculation, termed the " forward 
calculation " , is not our goal. Rather, we want to determine the glacial history from the 
observed sea-level changes. 

A general approach to inverse problems was first proposed by Backus and Gilbert (1967, 
1968, 1970) a nd their method has subsequently been used to study a variety of geophysical 
problems (e.g. Parker, 1970 ; Engdahl and Johnson, 1974 ; Minster and others, 1974; Aki and 
others, 1977 ; Peltier, 1976). Our development closely follows an extension of this procedure 
discussed thoroughly by J ackson (1972), Wiggins (1972), a nd Parker (1977) . To solve the 
inverse problem requires finding a glacial history that fits the relative sea-level data sufficiently 
well. If the physics of the problem is adequately described , with realistic assumptions, then 
it is reasonable to suppose that a glacial history exists for the m odel. We might discover the 
correct history by trial-and-error, that is, by subjectively varying the glacia l history until the 
forward calculation predicts sea-level changes that are sufficiently close to the m easured data. 
Or we might select glacia l histories at random until we accidentally discover one that is 
suitable. H ere we apply a more efficient and systematic a pproach that uses the observed 
emergence to construct a glacial history that is consistent with the data, but the success of this 
construction does not imply that the inverse problem is solved . Because of errors in the emer­
gence da ta, the glacial history that best fits the data is not unique and this non-uniqueness is 
the main problem addressed by inverse theory. Other glacial histories might also predict 
emergences that lie within the errors of the data. Inverse theory provides an estimate of the 
degree of departure from uniqueness, and h ence indicates how much we really know about the 
actual glacial history. Because of these uncertainties, we can only consider models of the glacial 
history. Also errors in the data will propagate to the ice model, and the inverse theory shows 
how to calculate these errors in the model. Finally, all data are not equally important in 
constraining the ice model. The use of inverse theory allows us to determine the relative 
importance of each datum, giving insight into the model and providing a means of deter­
mining the best localities for data collection when designing a field project. 

EMERGENCE DATA 

Hicks and Shofnos (1965) reported the average rate of emergence at 3 I localities surround­
ing Glacier Bay. Five of these emergence rates were obtained from continuous tide-gauge 
records, and the remaining ones were determined by re-occupying, in 1959 and 1960, bench­
marks that were established between 1887 and 1940. All but three of these data are used here. 
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We discard emergence d ata at Yakutat because the continuous sea-level record indicates 
an abrupt rise of sea-level at the time of the 1958 Alaska earthquake (Richter magnitude 8). 
The benchmark in Bartlett Cove, near the G lacier Bay National Park Service headquarters, 
is on Quaternary alluvium and does not have a continuous record. It may have been disturbed 
during the 1958 earthquake and is eliminated from the data set . Ketchikan is far from Glacier 
Bay and we discard its emergence data because it would constrain the ice model very little. 

The 28 emergence rate values were multiplied by 50 years to get the net change in sea­
level be tween the years 1910 and 1960. For some data this means extending the rate beyond 
the range of observation, but for others, it represents a time interval less than the full data 
available. The positions of these 28 data points are illustrated in Figure I. 

140" 138" 1360 1340 1320 

Fig. I . Positions of the 28 data points used ill this study. The numbering differs from that of Hicks and Shofllos (1965 ). 

Errors in the data arise from ( I) meteorological and oceanographic effects, (2) differences 
in length of record (19- 73 years), and (3) time-dependent rates of emergence. For those 
stations that have a continuous record , Hicks and Shofnos report standard errors for the rate of 
emergence. These standard errors, when multiplied by 50 years, give the stand ard deviations 
of the corresponding data . For the majority of the data, which are discontinuous and repre­
sent just two observations, the above method is inapplicable. To partially eliminate the 
meteorological and oceanographic effects, H icks and Shofnos adjusted the discontinuous 
record by the amount that the comparable continuous record at Ketchikan differed from the 
mean value at Ketchikan. This is a standa rd procedure for comparing sea-level observations 
of different lengths and at different times at a single station (Hicks and Shofnos, 1965). 
Changes in the rate of emergence cannot be detected unless the series is continuous. T he 
errors for the discontinuous records must be inferred from the standard deviations of the 
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continuous records. Figure 2 shows an attempt to describe the standard deviation as a function 
of total emergence with a linear regression equation and we hope that this equation will 
provide a useful estimate of the standard deviation of those data that do not have a continuous 
record. The fit 

y = o.066 15X+ O.020 22, 

where y is the standard deviation in meters of the emergence datum and x is the total emer­
gence in meters in 50 years, gives a correlation coefficient of 0.87 (significance level = 90 % 

with a standard error of the estimate of 1.9 cm. We assume Equation (I) also models the 
errors present in the discontinuous record. Because no attempt was made to elimina te the 
meteorological and oceanographic effects from the continuous records, as was done for the 
discontinuous r ':: 2ords, the resulting error estimates determined from the continuous records 
are probably greater than the actual errors . Table I lists the data values and the calculated 
errors. 
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Fig. 2. The relationship between emergence and error. The most rapidly rising data positions also have the greatest error in 
measurement. 

RELATIVE SEA-LEVEL CHANGE ON AN ELASTIC EARTH-THE SOLUTION TO THE FORWARD PROBLEM 

The formulation for the inverse calculation requires that we know how a small change in 
the ice load model effects a corresponding change in relative sea-level. This problem is 
treated in detail by Farrell and Clark (1976) and is briefly reviewed below. 

When a mass is placed on the Earth, it changes the gravitational equipotential surface (the 
geoid) and it deforms the solid surface of the Earth. The observed change in relative sea-level 
is the change in the distance between the ocean surface, defined by the geoid, and the ocean 
floor. Farrell (1973) has calculated the change in the potential at the undeformed Earth's 
surface anywhere on a spherically symmetric, elastic, self-gravitating Earth model due to a 
surficial point load. The potential change is a result of the mass itself perturbing the potential 
field, and the density changes within the Earth, resulting from the distortion of the loaded 
Earth. Farrell has also calculated the radial displacement of the Earth's surface so that the 
change in the potential caused by the change in elevation can be determined. Adding all of 
these effects gives the potential perturbation anywhere on the deformed surface of the Earth 
caused by a point load. This potential perturbation Green function G' is shown in Figure 3 
as a function of angular distance. 
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TABLE 1. RELATIVE SEA-LEVEL DATA FROM THE VICINITY OF 
GLACIER BAY , ALASKA. THE TOTAL EMERGENCE IN 50 YEARS 
WAS CALCULATED FROM EMERGENCE RATES GIVEN BY HIC KS AND 
SHOFNOS (1965) ' EQUATION ( I ) DETERMINED THE STANDARD 

DEVIATIONS 

Data point Emergence in 50 years Standard deviation 
cm cm 

I 90.0 8.0 
2 11 3.0 9·5 
3 175·5 13.6 
4 134.0 10·9 
5 11 3.0 9·5 6 110.0 9·7 
7 97·5 8·5 
8 08.8 6.6 
9 79.0 7.2 

10 79. 0 7.2 
11 70.0 6·7 12 96.0 8·4 
13 65·5 6·4 
14 70.0 6·7 
15 70.0 6·7 
16 13·5 2·9 
17 20.0 3·3 18 2 1.5 3·4 
19 17.0 3. 1 
20 35.0 4 ·3 21 26.0 3·7 22 36.5 4 ·4 
23 42.5 4. 8 
24 35.0 4·3 
25 39·5 4.6 
26 9.0 2.6 
27 7·5 2·5 
28 18·5 3.2 

KILOMETERS 
.111 1.11 11.1 II I 

---------------- ...... ...... 
"-

"-
"-
" "-

"-"- ...... 

10-' 10-' 10-' 

DEGREES 

111 2 

10 

Fig. 3. The normalized potential Green fimction used in this study . The response of an elastic Earth to a one kilogram point load is shown as a fimction oJ distance from the load. We used the Green filllc tion represented b), the solid lille indicating the Earth's response to a load on the ocean .floor. The dashed line is the Green function Jor a Gutenberg- Bullell elastic Earth. If the material under the Glacier Bay glaciers is not oceanic in nature, then the Earth's elastic response to loading is even greater than we have assumed. Our results, therifore, should be conservative. Both Green fimctions have beel! normalized by the fac tor a8 X IOIZ where a is the radius of the Earth in meters (6.37 [ X [06 m), alld 8 is the allgular distance Jrom the point load in radians . Becallse of the rlOnllaliz alion by 8, the Green function varies by over jive orders of magnitude in this jigure. 
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To determine the potential perturbation anywhere on the Earth from a distributed load, 

consider the load to be a collection of point loads and add the effect of each. If L (r' ) is the 

point load on the surface of the Earth at the position represented by the vector r ', so that the 

function L represents a surface density of the load, then the potential perturbation", at r is 

!/J (r ) = J J G' (r - r' ) L (r' ) dD, 

where the notation (r - r ') represents the angle between position vectors r and r ' ; dO is an 

element of area; and the integral is evaluated over the entire areal extent of the load. 

Farrell and Clark ( 1976) show that, for sea-level to remain on an equipotential surface, 

the radial increase in sea-level s' is equal to !/JIg, with g the acceleration due to gravity. The 

change in sea-level shape s' is not constant everywhere and to insure mass is conserved, this 

expression must be corrected by a constant amount Kc. 

For the case where ice melts and the melt water flows into the ocean, the load L is com­

posed of an ice load LI and a water load Lw. We can consider this load as 

L = Lw+ LI = P1l+ pws', 

where PI and pw are the densities of ice and water respectively and I and s' are the changes 

in the thickness of the ice and ocean. 

Therefore, when the constant ocean-wide average rise (eustatic rise) KE is included to 

account for melt water flowing into the ocean, the sea-level change is the solution of an 

integral equation: 

s' (r ) = ~ [J J C' (r - r ') pws' (r ' ) d.Q + J J G' (r - r' ) PII(r ') dD] - KE-Kc. (2) 

ocean ice 

This expression for sea-level change can be greatly simplified because in this study we 

consider only sea-level changes close to the melting glaciers. Ketchikan, which is almost 

450 km from Glacier Bay, has experienced very li ttle change in relative sea-level and the 

Green function (Fig. 3) also suggests that the effect of a point load upon sea-level at such a 

great distance is approximately two orders of magnitude less than the change expected 

only 10 km from the load . To be conservative, we assume that sea-level is affected by the 

water load that is as distant as I 000 km from the data positions. Even then the water load 

is two orders of magnitude less than the ice load in Equation (2), and so we are justified in 

ignoring the first term accounting for the water load . 

The third term, KE, which corrects Equation (2) for melt water increasing the volume of 

the oceans, is less than 1.5 cm for the ice melting considered here. Our experience, from 

numerous forward calculations, is that the last term, Kc, is usually much less than K E , so the 

constant correction terms combined are less than about 3 cm. Table I indicates that this 3 cm 

correction is, in general, less than 10% of the observed values and is less than the standard 

deviation of the measurement. Because the values of these correction terms depend upon the 

ice model, it is convenient to ignore these terms also at this time. This assumption introduces 

a small systematic error which is considered later. 

When we invoke the above assumptions, which are valid only for regions close to the 

melting glaciers, the predicted emergence caused by a change in glacier thickness is 

s' (r ) = ~ J J G' (r - r' ) P1l (r' ) dD. (3) 

ice 

To find I (r' ), one method is to make a guess of I (r ') and to determine how closely s' fits 

the observed emergence, d'. If the fit is poor, then I(r') is changed so that the fit (hopefully) 

improves. Such methods are inefficient so we now show a systematic way to determine ice 

thickness I (r' ) from sea-level observations, d' (r ). 
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THE FORMULATION OF THE INVERSE PROBLEM 

A consequence of the Green-function m ethod and the a bove assumptions is that the 
forw ard problem is linea r , because G' does not depend upon 1. H ence the inverse problem is 
linear also. M ost geophysical inverse problem s are non-linear, r equiring an initia l guess of a 
m odel that is close to the correct model, but the exact linearity of our problem indicates that 
we need no a priori model. 

For a numerical solution of Equation (3), it is convenient to rewrite this equa tion in 
ma trix notation. If E is the total loaded area, it is assumed there exist m disjoint regions of E, 
Ei (i = I , ... , m) centered at ri respectively, such that I takes a distinct consta nt value I (r t) 
on E i . The sea-level change a t position r j caused by the unifo rm load on elem ent Et is 

This expression is rewritten as 

s' (r j, E i ) = A'ji112i (no summation) 

where mi is the mass of ice th a t melts (negative for accretion) over a rea Et, and 

A'ji = ; ig J J G' (r j - r ' ) dQ, 
E, 

is the effect of a one kilogram m ass, uniform ly distributed over El, upon sea-l evel at position 
r j. T he tota l sea-level cha nge a t r j is 

m m 

S'j ~= ~ s' (r j, E i ) = ~ A'ji172i. 

I = I f = I 

In m a trix notation, Equa tio n (3) now has th e approxima te fOl-m 

s' = A 'm, 

where s ' is a column vector w ith n elements, rn is a column vector with m ele luents, and A' 
is a matrix with 11 rows a nd m columns (n X m). If the data fo rm a vector d ' , then one of our 
goals is to find an ice model rn such that 

d ' = A 'm. (5) 

If In = 12 a nd A' is non-sing ula r, there is a unique model rn , but errors in the da ta may 
cause this m odel to be very dissimilar from the real glacier cha nge. If n > m the problem is 
over-determined , with more equa tions (da ta) than unknowns, a nd a least-squa res solution 
exists. When m > 12, the problem is under-determined with fewer equa tions than unknowns, 
but we can still infer something a bout the unknowns from th e limited data. 

T he positions and sizes of the 15 ice load s used in this study a re shown in Figure 4. All 
loaded a reas are here assumed equal (Ei = E i+1 for i = I , ... , m - I ) but this is no t a necessary 
assumption. They include existing glaciers and, in particula r, r egions where ice changes have 
occurred with in the past century (Bohn, 1967, p. 107). The disc shape is used for convenience, 
but more irregular shapes m ay a lso be cmployed for greater r ealism. The number of data 
poin ts (28) exceeds the number of ice model points (15), m a king this an over-determined 
problem . 

Each d atum, d'i, has a different standard deviation and sho uld be transformed so that the 
variance of every new datum is unity (Wiggins, 1972). This will insure that the model depends 
m ore on accurate data than on inaccura te d a ta and will simplify the interpretation of the 
model at a la ter stage. Let W b e a diagonal matrix (n X 12) where an element of the diagonal, 
Wit , is the standa rd deviation of the datum, d' j, calculated from the linear regression Equation 
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Fig. 4. Positions and sizes of model glacier loads relative to present glacier extent. We assume that each loaded area (radius = 
ID km ) is uniformly loaded. Field (1947) claims that the area covered by glaciers Ilear Muir Inlet was reduced by about 
35% during the approximate time span considered here. The model locations, therefore, reflect the belief that the glaciated 
area was much more extensive at the turn of the century than at present. 

( I ). To standardize the data multiply Equation (5) by the inverse of W , and let A = W - IA' 
and d = W - 1d ', so that in the standardized coordina te system Equation (5) becomes 

Arn = d , 

and every datum has unit variance. 
We want to know the nature of rn, but before proceeding a brief r eview of eigenanalysis 

is worthwhile and a definition of terms is necessary. 

THE DECOMPOSITION THEOREM AND THE NATURAL INVER SE 

Consider the "shifted eigenvalue problem" of Lanczos (1961 , p . 117) for any real (n X m) 
matrix A ; 

Av = '\u , 
Atu = '\v, 

where the superscript t indicates matrix transpose. This system of equations can be solved 
for v, u , and ,\ because substitution yields the uncoupled eigenvalue problems 

A tAv = ,\2V, 
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and 

AAtu = ,Vu, 

which can be solved using w ell-known methods. For any matrix A there will exist p non-zero 
eigenvalues Ai, where p is less tha n or equal to the minimum of n a nd m. Associa ted with each 
non-zer.o eigenvalue Ai there exists a " model eigenvector" V i a nd a " da ta eigenvector" U i . 

The matrix A is defined as the (p x p) diagonal matrix with Aii = Ai and order ed such tha t 
At! ;;" Ajj (i < j ). Define Vas an (mx p) m a trix whose jth column is the model eigenvec tor 
Vj with eigenva lue A jj . The (n Xp) matrix whose jth column is the da ta eigenvector U j, is 
also associated with A jj , and is defined as U . 

It can be shown that UtU = I a nd VtV = I w here I is the identity matrix . Both UUi a nd 
VVt, however, equal the identity m atrix only when n = m = p. 

The " na tural inverse" B of the matrix A is defined by La nczos (1961 , p. 124) as 

B == VA- 'Ut, 

a nd has the property tha t 

AB = UUt, 

a nd 

BA = vvt. 
For the case where m = 11 = p, AB = I and BA = I , and B is the conventiona l inverse of A. 

MODEL CONSTR UCTION 

To find a n ice model m tha l fi ts the da ta in the leas t-squa res sense, minimize 

,, ' '= (s - d J> = (Am - d )'. 

The least-squa res solution is 

m == (AtA)- 'Atd , 

a nd m provides a n estima te of the real ice-mass change m. Furthermore, this leas t-squares 
solution is iden tical to tha t fo und by using the na tural inverse of A , 

ill = BArn = VVtm = Bd = VA - 'Utd . (6) 

The model estima te found in this ma nner has a bsurdly la rge cha nges in ice thickness. It has 
over 300 km of ice melting very close to a reg ion where ice accumula tion was of the same 
magnitude. If the data were perfectly accura te, this solu tion would be the most likely solution . 
H owever, the d a ta have errors, so we should re lax the least-sq ua res cri teria in the hope of 
finding a physically plausible ice m odel. We d o this by minimizing ,,' subject to the constraint 
tha t the varia tion in the model, m t.m, is equal to some arbitra ry scalar y. As y decreases the 
m odel varia tion decreases, giving a more pla usible model. H ow ever, the error of fit increases, 
but if this error is within the errors of the da ta, then the more pla usible model with reduced 
varia tion is just as likely as the model found from the standard leas t-squares procedure. 

U sing the m ethod of Lagrange multipliers, d efine a functio n F such that 

F == (Am - d )2+ ex (m'-Y) 
= mtA tAm-mtAtd - dtAm + d td + ex mtm -exy 

and ex is the Lagrange multiplier. To find the optimum values of F , differentiate with respect 
to the ice model m and set the result equal to zero: 
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Fig. 5. M odel variation (IRl\ls) and error of fi t (d 'RMs) plotted as func tions of the Lagrange multiplier cx . The standard 
least-squares solution (logro cx = - 37) has a root-mean-square error in fi tting the data of only 4.4 cm, but the model 
variation is 350 km. Neighboring model glacier points therifore have predicted thickness changes on the order of 30o,km 
which is physically impossible. A s log,. ex increases, the model variation dramatically decreases and the error of fit increases. 

T his expression can be solved for rn, the m odel estima te. As the Lagra nge m ultiplier IX is a 
function of y, we are at liberty to vary IX a nd calculate mtm to determine y . As Cl increases, 
the varia tion in the m odel decreases, but the fit to the data becom es worse, as Figure 5 
indicates. T he variation in the model, h ere given as the root-mean-square value of cha nge in 
ice thickness, 

m 

I (I "'" (mt )2)! 
h MS = PI ;; L Et ' 

i= 1 

is plotted against the root-mean-square error in fi tting the non-standardized data 
n 

d' R MS - (; 2: (s'j - d'j )2Y , 
j = r 

for each value of Cl in F igure 6. We would like both the m odel varia tion (IRMS) and the error 
of fi t ( d ' RMS) to be small , but Figure 6 shows that as I RMs is reduced, d 'RMS increases. Figure 6 
is therefore known as a "trade-off curve", because we must sacrifice som e of our ability to 
fi t the d a ta if the model variation is to b e physically pla usible. Such tra d e-off curves a re an 
important a nd useful feature of inverse calcula tions because they indicate how an improve­
ment in knowledge of one aspect of the m odel may, simultaneously, cause increased difficulties 
in the interpreta tion of the model. T hrough careful considera tions a preferred position on the 
trad e-off curve, usually close to the " knee" of the cu rve, is selected . Fortunately, for this 
study the model variation can be reduced considerably w hile the er ror in fitting the d a ta 
barely increases. However , when I RMs is I 200 m , a nd d ' RMS is 9 .6 cm , the error of fit 
increases disproportionately to the cha nge in model variation. The ice model estima te ID 
at this p oint is termed the " best" mod el because it is physically plausible with a reasona ble 

https://doi.org/10.3189/S0022143000021158 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000021158


INVERSE PROBLEM IN GLACIAL GEOLOGY 49 1 

380 r--------------------------------------------, 

340 

300 

260 

18 

220 
E 
-"" 

E ~ 14 -'" a: 
(J) 

180 ::i' a: 
10 

140 

6 

100 -

2 

60 
6 9 10 11 12 

d~(cm) 

20 

0 

Fig. 6. A trade-off curve showing the relations" iJ) between model variation (IRMs) and error oJ fit (d'mIs) . A huge reductioll 
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indicated by the arrow (IR~IS = I. 2km; d 'nMs = 9 .6cm ) . 

error of fit. T his model is not exac tly at the " knee" of the curve because oflater considera tions 
involving the accuracy of m. For the best model the ice thickness cha nge at each ice point 
is given in Table n , and Figure 7 indicates the close agreement between the calculated cha nge 
in relative sea-level and the observations. T here seems to be a systematic error, however, 
because the predicted emergence is too high for p o ints distant from the ice and too low for 
points close to the ice. The initia l assumption to disregard the viscous response of the Earth 
may be the cause of this slight systematic error. 

Useful insight into the effect of varying IX is gained by substituting the decomposed form of 
A into Equation (7) giving 

VA zVtm+ o:m = VAUtd. 

Multiplying by v t and making some rearrangement yields 

V tm = (1\.z+ IXI )- rAUtd . 

From Equation (6) III is VVtm so 

III = V(1\.z+IXI)- rAUtd . 

When 0: = 0 this expression reduces to the standard least-squares solution for the model, but 
when 0: ~ AZji> then the eigenvector associated with that eigenvalue is attenuated . As IX 
increases, it suppresses eigenvectors associated with even larger eigenvalues and, in effect, 
reduces the rank p of the matrix to som e integer q < p. For this study the best model is deter­
m ined when all but eight eigenvalues are suppressed, and q equals eight. 
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M ODEL APPRAISAL 

T he ice model constructed above is not the only model that fi ts the data. In fac t, since the 
da ta have errors, there are an infinite number of m odel estimates tha t fit the data sufficiently 
well (see, for example, Figure 6) . F urthermore, Backus and Gilber t ( 1970) show tha t even 
for a fixed value of d' RMS there are a n infinite number of sui table mod els. We assume tha t the 
real ice model is a mong this infinite set of models a nd, a lthough we cannot hope to single out 
this r eal model, we can, a t least, determine something a bou t the na ture of the entire infinite 
set. From Equa tion (6) lit = Rm w here R == v v t a nd we refer to R as the resolu tion 
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Fig. 7. Comparison of the observed data with the values predicted by the best model. The fit is quite good with a root-mean-square 
error of onlY 9.6 cm. 
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matrix. The vec tor rn represents a ll of the suitable models, including the real ice model, 
and m is only an estima te of these models. Backus and Gilbert (1970) show that every suitable 
m has the same resolution matrix a nd model estimate, m. We can, therefore, calculate 
quantities (R and m) that a re common to all suitable models, including the real model. 
Through inspection of R , we can d ecide how useful m is in estimating each of the rn . If m 
is a good estimate, then we know som ething about m and, in particular, the real ice model. 
Ifm is a poor estima te, then we can say very little about rn or the real ice model, but at least 
we can learn som ething about how the data limit our knowledge. This result a lso warns us 
that we should not have great faith in ID just because ID fits the data, a nd it assures us that 
we will recognize such a situation when it arises. 

IfR is the identity matrix, then n = m = p, m = rn, and the real ice model is de termined 
uniquely (for an error-free problem ) . The extent that R departs from I is an indication of 
how useful ID is in estimating rn. If Rii is unity and all other elem ents in the ith row of R 
are zero, then 1'h i = m i, and our estimate of 1I!i is extremely good. But if all members of the 
ith row are equal , then the calcula ted value is only an estima te, that is shared by a ll rn, 
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Fig. 8. l ee-model resolution lIlatrixJor the best model (q = 8). Each connected bar graph represents a row in the resolution 
matrix. A /Jeak along the diagonal indicating good resolutioll everywhere is desired. The degree oJ departureJ rom this ideal 
situation indicates the usifullless oJ the corresponding model estimate in determining the real ice change. The sequence oJ ice 
points does not necessarily reflect their relative spatial positions. For example, ice load 2 does not lie between loads I and 3 . 
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where rn, is averaged over all ice loads (i.e. rn, = -.: .f mJ) and rn, is a poor estimate of 
m) = , 

mt. Although such an averaged estimate contains some information about the real ice load, 
there is no specific information about the suitable models at position r i . 

The resolution matrix for the best model (q = 8) is illustrated in Figure 8. Each series 
of connected bar graphs represents a row in the resolution matrix. A peak approaching unity 
along the diagonal is ideal , but this is not the case here. Only ice loads 2,5,6,1 I, 12, 14, and 
15 are well resolved. Loads I and 3 are averaged predominantly over each other. For 
example, rni for ice point 3 is actually an estimate obtained from averaging the load that was 
on both points I and 3. The remaining ice loads are very poorly resolved and do not yield 
useful information about specific ice changes. 

ESTIMATE OF MODEL VARIANCE 

We have calculated a model estimate and have indicated how well that model estimate 
approximates the real ice changes. One remaining question to ask is, "How much variance is 
expected in the model estimate due to errors in the data ?" This is an important and necessary 
question to ask because lit may be plausible and well-resolved but with a standard error of the 
estimate that is enormous. 

If x = a,y, + azyz then the variance of x is 

Var (x) = aZ , Var (y,) +azz Var (yz). 

From Equation (6) the model estimate is 

lit = V1\.- 'U td , 

so the variance of this estimate, caused by random errors in the data, is 

Var (lit) = V1\.- 'ut [Var (d )] U1\.-'v t, 

and we consider only the diagonal terms of the matrix on the right. Because the standardized 
data have unit variance, Var (d ) = I and the variance of the estimates are the diagonal 
terms of 

or 

(8) 

j = I 

We give the standard deviations for each estimated parameter of the best ice model in 
Figure 9 as error bars around mic. W e also include the values of the diagonal terms in the 
resolution matrix. Only ice models with high resolution should be considered when inter­
pre ting the results . 

In general, the ice thinned by about I 200 m with a standard deviation of 300 m and so 
the error does not overwhelm m. Ice load 12 , however, has good resolution but a model 
estimate slightly smaller than the standard deviation (350 m ± 380 m ) indicating that we 
should not attach great significance to this estimate. 

TRADE- OFF BETWEEN RESOLUTION AND VARIANCE 

We can reduce the model variance by eliminating small eigenvalues in Equation (8) 
(reducing q), but this also affects the model construction, the error of fit, and the resolution 
matrix, because we are also obliged to reduce the number of eigenvalues and eigenvectors 
when calculating each of these. 
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Fig. 9. Glacier thickness change, standard deviation, and resolution Jor the best model (q = 8). The bars around each circle 
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We have a lready shown how the variation in the model and the error of fit a re linked. 
Now we will consider the trad e-off between m odel resolution a nd model vari a nce. 

A useful indication of the total resolution of a model is the root-mean-squa re value of the 
diagonals of R , 

t = 1 

When RRMS = 1 there is perfect resolution a nd as RR MS decreases, the resolution becomes 
poorer . For a general estimate of the variance, consider the root-mean-square value of the 
model standa rd deviations of ice thickness, 

11 

aRMS == [~ " {a (11I i ) }2]!, 
nL EjPI 

r = I 
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Figure JO indicates that as we reduce the number ofnon-zero-eigenvalues (q), the stand ard 
deviation of the estimate decreases but the resolution becomes poorer. The least-squares 
solution retaining a ll eigenvalues (q = 15) has excellent resolution, but III has a standard 
deviation in ice thickness of about 360 km. The model is known specifically at a single ice 
point, but it is also highly inaccurate. At the other extreme, when very few eigenvalues are 
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Fig. 10. The effect of reduction in the number of eigenvectors (reduction in q) upon the model standard deviation (aRMS) and the 

model resolution (RRMS) . For the standard least-squares solution (q = I5 ) the resolution is excel/ell! (RRMS = I. o) 
but the standard deviation of change in ice thickness is huge (aRMS = 360 km). As we reduce the number of eigenvectors, 
the standard deviations become smaller but the resolution becomes poorer. 

retained , the model is very accurate but reveals very little about ice changes a t anyone 
position. Either extreme gives results that are difficult to interpret, so we seek a compromise 
and again consider a trade-off curve. This trade-off curve (Fig. I I), determined from Figure 
10, illustrates how resolution and accuracy are related . The best model is near the knee of 
the curve and therefore has a useful balance of resolution and accuracy (RRMS = 0 .68; 
aRMS = 280 m ) . 

DATA IMPORTANCE 

In calculating the model estimate, the least-squares procedure does not give equal weight 
to a ll of the data because of redundancies, errors, or insensitivity to ice changes because of 
great d istances from the ice. An estimate of the relative importance of each datum is usefu l 
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in determining how the data constrain the model. Furthermore, if the importa nce is not a 
function of the actua l value of the d atum, the impor tance can be used in estimating priorities 
for data collection in the field because we then know which data will be of greatest benefit. 

T he model estimate gives only an estimate of the data cl, where 

Am = d, (9) 

but ill is defined (Equation (6)) as the product of the natural inverse and the standardized 
observations, 

m = Bd. 

Substitution into Equation (9) gIves 

Dd = d , 
where D is an (n X n) matrix defined equal to UU t , so the data estimate is actually an averaged 
value of the observations. Minster and others ( 1974) suggest that the diagonal terms of D 
be termed the " importance values" of the data. They show that the importance value is 
low if the accuracy of the corresponding datum is poor, if the datum is redundant, or if it is 
not particularly sensitive to changes in the model. One final benefit is that D does not depend 
upon the values of the data, only their accuracy and positions relative to the model points 
(in this linear problem). The sum of the importance values always equals 11l, the number of 
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model points (Minster and others, 1974). Because the column vectors in D are orthogonal, a 
rotation of D exists such that D becomes a diagonal matrix with ones as the first m diagonal 
terms and zeros elsewhere indicating that the total information contained in the data is also m. 
For our problem m = 15 so the percentage of information for datum i is (Didm) 100. Table 
III lists the importance values and cumulative percentage of the information contained in the 
data. We see that over 50% of this information is contained in only 8 of the 28 data points. 
These are all points that are near an ice load. 

TABLE Ill. RELATIVE IMPORTANCE AMONG THE DATA. THE MOST USEFUL DATA FOR CON­

STRAINING OUR MODEL ARE THOSE WITH IMPORTANCE VALUES NEAR UNITY. THE CUMULATIVE 

PERCENTAGE OF INFORMATION CONTAINED IN THE DATA SHOWS THAT OVER 50% OF THE USEFUL 

INFORMATION IS FROM ONLY EIGHT OF THE DATA POINTS 

Data point Importance value Cumulative % of iliformation Emergence in 50 years 
cm 

I 1.000 6·7 90.0 
2 1.000 13.0 113.0 
3 1.000 20.0 175·5 
4 0·999 26·7 134.0 
5 0·994 33·3 113.0 
6 0.962 39·7 116.0 
7 0.905 45·7 97.0 

25 0.820 51.2 39·5 
8 0.786 56 .4 68·5 

27 0.556 60.1 7·5 
18 0.517 63.6 21.5 
23 0.488 66.8 42.5 
9 0-476 70 .0 79.0 

19 0.452 73.0 17.0 
12 0.382 75.6 96.0 
26 0.380 78 . 1 9.0 
14 0·375 80.6 70.0 
16 0.363 83.0 13·5 
11 0. 362 85·4 70.0 
28 0.327 87.6 18·5 
13 0.313 89·7 65·5 
IQ 0. 309 91.8 79.0 
15 0.284 93·7 70.0 
22 0.280 95·5 36.5 
17 0.228 97. 1 20.0 
20 0.173 98 .2 35.0 
24 0.137 99. 1 35.0 
21 0.1 31 100.0 26.0 

Only 8 of the original 15 model eigenvectors are used to construct the best model, so we 
use only 8 data eigenvectors in calculating c:1 (U is an n X q matrix). This modified D matrix is 
illustrated in Figure 12 showing that individual data points near ice loads constrain the model 
estimate much more than distant points, whose data estimates are actually an average of all 
observations. Fewer data points at great distances would be adequate, and more data near 
the ice loads would improve the information contained in the data considerably. 

DISCUSSION 

In selecting the best ice model we considered ( I) error of fit to the data, (2) model resolu­
tion, (3) model accuracy, and (4) root-mean-square variation in the model. The standard 
least-squares model has excellent resolution but very poor accuracy and so is difficult to 
interpret physically. Errors in the data allow the relaxation of the least-squares criteria so 
that the variation of the ice model is reduced at the expense of greater error in fitting the data. 
This reduction of the variation in the ice model also causes the resolution to become poorer but 
improves the accuracy of the model. In selecting the best model, the ice model variation, 
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the error of fit , the resolution, and the model accuracy must a ll be acceptable, because, if any 
one of these is unaccepta ble, then the resulting model is difficult to interpret. Figure I3 
shows the results for the best model (1 RMS = 1 200 m; d ' RM S = 9.6 cm; RRMS = 0 .68; 

crRMS = 280 m) which, we believe, is a good compromise among the above criteria. 
The predicted ice thinning west of Muir Inlet is 1 000 m while ice to the east thins about 

1 500 m with a standard error of 350 m and the Geikie Glacier (ms) has a predicted thinning 
of 1 000 m ( cr = 480 m ) . Although a glacier adva nce is predicted for the g laciers surrounding 
Tarr a nd Hopkins Inle t (m7, ms, m9 , mlo), the resolution for th is region is very poor. The 
Brady G lacier (m6) a nd the Juneau I ce Field (mls ) both have enormous predicted thinning 
( 2 260 m a nd 2 820 m r espectively) but the area over which this thinning was supposedly 
occurring is an underestimate. Increasing the assumed ice area to more realistic values while 
holding the mass of melted ice constant d ecreases the thinning to abou t 1 500 m . 

The initial assumption to disregard the time-dependent effect of viscous relaxation can 
now be tested by a n independent data set- the historical observations of glacial thinning. 
Only with very good estimates of the actual amount of ice thinning between 1910 and 1960 
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can we make a reliable es timate of the proportion of emergence caused by the instantaneous 
effects . The maximum observed ice thinning in Muir Inlet between 1880 and 1946 is 790 m 
(Field, 1947) with a glacia l retreat of IS km. In general, the amount of glacia l melting was 
about 50 % of this maximum value. Assuming that the melting rates reported by Field (1947) 
for varying time spans are applicable to our entire 50-year period, the Adams Glacier thinned 
by 400 m while the Casement Glacier as well as a stagnant ice stream east of Muir Inlet 
thinned by 370 m. McBride Glacier lowered by only 250 m as did the Plateau and Burroughs 
Glaciers, but Muir Glacier thinned by 630 m, a nd, between 1941 and 1946, extremely rapid 
melting caused the glacier surface to lower at the incredible rate of 30 m /year. The Geikie 
Glacier has retreated about 8 km (Bohn, 1967, p. 107) but we know of no quantitative 
observation of ice thinning during that time. Predicted thinning values range from about 
I 000 to 1 500 m while observed values lie between 250 and 630 m suggesting that between 1 
and 1 of the observed emergence can be explained here. Therefore a significant proportion of 
the observed emergence occurs simultaneously with the melting of the glaciers. 

The early assumption to ignore the constant terms, K E and Kc, in Equation (2) has the 
effect of increasing all observed emergence values by no more than 3 cm. Table III shows 
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that, of the data points containing 50 % of the information used in constructing the model, the 
mean emergence is 110 cm. Ignoring these correction terms, therefore, introduces approxi­
mately a 3% error which increases the predicted ice thinning by 3% . As this is a constant 
correction applied to all data, none of the other analyses is affected, and the standard error 
of the model, which is usually about 30% of the predicted ice thinning, overshadows this 
slight error. 

CONCLUSIONS 

Sea-level near glaciers is certainly quite sensitive to the mass balance of these glaciers and 
the emergence that occurs near the melting ice results, to a large extent, from the instan­
taneous effects of elastic uplift and reduced gravitational attraction of water by the melted ice. 
Viscous relaxation is of lesser importance when alpine glaciers, rather tha n continental ice 
sheets, are considered, perha ps because the lithosphere supports much of the load and because 
the characteristic rapid fluctuations of these g laciers would not permit isosta tic equilibrium to 
be attained. 

These r esults indicate tha t great care must be used when interpreting the viscosity of the 
Earth in this region, because only about two-thirds of the observed emergence is caused by 
viscous relaxation. When the immediate rela tive sea-level effects are not included , estimates 
of the Earth's viscosity (e.g. C rittenden, 1967) , will be too low. The ra pid emergence of 
Greenland shore-lines 9 000 years ago may also be due to these same immediate effects that 
are observed today at Glacier Bay (Clark, J 976) . In this seismically active zone, it is tempting 
to interpre t geodetic movements as possible earthquake precursors (Wyss, J 976), but clearly 
the glacial effec ts upon these measurements must be removed before they can be used to 
predict earthquakes. 

This invet'se calculation is an efficient a nd useful method for reconstructing ice-load 
fluctuations tha t a re consistent with observed sea-level data. For this example, we considered 
only time-independent responses, but potentia l perturba tion Green functions for a visco­
elastic Earth m odel exist (Peltier , 1974), a nd we have already solved the forwa rd problem for 
the time-dependent case (FatTell and Clark, J 976). The inverse calcula tion for the recon­
struction of time-dependent ice loads, including the effect of viscous relaxatio n, is therefore 
possible. For data distant from the ice, the correction terms become important, a nd Equation 
(2) must be used instead of Equation (3). When we have overcome these complications, it will 
be possible to use existing world-wide sea-level d ata for the past 20000 years to reconstruct the 
late-Wisconsin deglacial history. Such an a mbitious inverse calculation requires that we know 
the viscosity profile of the Earth. This is cun'ently in dispute (McConnell , 1968; Walcott, 
1973; Peltie r , 1974; Smith, [974; Cathles, 1975), but Peltie r (1976) is attempting to solve 
this problem with an inverse calculation. 

An inverse calcula tion is cer tainly a useful and effi cient m eans of finding a model tha t 
fits the da ta. The real strength of the inverse calcula tion, however, is that it g ives a means of 
interpreting the constructed model on the basis of the accuracy a nd resolu tion of the model 
and so we know how reliable the model is. With this assura nce we are not worried about 
using inverse calculations for the immense task of reconstructing world-wide g lacial melting, 
because the resu lting model can be appra ised properly. W e a lso emphasize that the ability 
of the model to fit the data is only one criterio n, a nd this criterion should not be relied upon 
alone, because, as we have seen , the model tha t best fits the d a ta is also highly inaccurate. 

We fixed the positions a nd sizes of the mode l ice points subjectively, and changes here will 
slightly a ffect the solution and its interpretation. For this over-determined case the number of 
ice points is limited by the number of data points, but it is possible to solve the under­
determined problem, where there may be more ice points than data points. The 
under-determined problem is solved using a method similar to that used here, and the extent 
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of ice can then be more faithfully represented. For the reconstruction of the late-Wisconsin 
deglaciation, the inverse problem must surely be under-determined because of the paucity of 
complete sea-level curves throughout the world and the huge extent of the late-Wisconsin ice 
sheets. 

Gathering field data of relative sea-level changes is both costly and time consuming. 
When planning field operations, we should use inverse calculations to determine the data 
importance of the proposed study sites and use this estimate to guide our priorities in the field. 

This study only considered glacier thinning from 19IO to 1960, but glacier observations 
have been much more frequent and more accurate since that time. It would therefore be very 
useful to re-occupy the benchmarks and to analyze the emergence during the past 15 years 
with the method outlined above. Such a study would give a better indication of the proportion 
of emergence that is caused by viscous relaxation of the man tIe. Establishing new benchmarks 
in suitable places will improve the resolution of certain ice points and greatly extend our 
knowledge of the processes relating glacier mass balance and sea-level fluctuations. Sea-level 
data from Tarr and Hopkins Inlets will be particularl y useful. 
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