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THE DEPENDENCE OF CAPACITIES ON MOVING

BRANCH POINTS

MITSURU NAKAI

Abstract. We are concerned with the question how the capacity of the ideal

boundary of a subsurface of a covering Riemann surface over a Riemann surface

varies according to the variation of its branch points. In the present paper we

treat the most primitive but fundamental situation that the covering surface is a

two sheeted sphere with two branch points one of which is fixed and the other is

moving and the subsurface is given as the complement of two disjoint continua

each in different sheets of the covering surface whose projections are two disjoint

continua in the base plane given in advance not touching the projections of

branch points. We will derive a variational formula for the capacity and as

one of its many useful consequences expected we will show that the capacity

changes smoothly as one branch point moves in the subsurface.

§1. Introduction

Take a simple arc γ on the complex sphere Ĉ connecting the point at

infinity ∞ with a point w on the complex plane C = Ĉ \ {∞}. Pasting two

copies of Ĉ \ γ crosswise along the arc γ gives rise to a two sheeted sphere

Ĉγ , i.e. the covering Riemann surface Ĉγ , or more precisely (Ĉγ , Ĉ, πγ), over

the base surface Ĉ with the natural projection πγ having two and only two

branch points of multiplicity 2 over ∞ and w, which we denote, as was done

in [10], by

(1.1) Ĉγ := (Ĉ \ γ)
⋃
×

γ
(Ĉ \ γ),

i.e., in general, the Riemann surface R which is obtained by pasting two

Riemann surfaces S and T crosswise along the common simple arc γ in S

and T in a natural sense is denoted by

R := (S \ γ)
⋃
×

γ
(T \ γ).

Conformally Ĉγ is identical with Ĉ no matter how we choose γ. Usually γ

is referred to as the pasting arc in Ĉγ .
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2 M. NAKAI

The essential part of the result in this paper is valid for any pair of two

disjoint compact subsets A and B in C but, only for the sake of simplicity,

we choose and then fix two disjoint nonempty compact subsets A and B in

C such that all of Ĉ \ A, Ĉ \ B, and Ĉ \ (A ∪ B) are regular subregions of

Ĉ and next take admissible arcs γ’s in Ĉ \ (A ∪ B) (i.e. simple arcs γ’s in

Ĉ\(A∪B) starting from ∞ and terminating at some points w in C\(A∪B),

which we will be calling in the sequel pasting arcs for A ∪ B). Embed A

and B in Ĉγ in such a way that A and B are contained in different sheets

of Ĉγ which are copies of Ĉ \ γ so that we understand that

(1.2) Ĉγ \ (A ∪B) = (Ĉ \ (A ∪ γ))
⋃
×

γ
(Ĉ \ (B ∪ γ)).

The arc γ above in Ĉ\ (A∪B) is referred to as the pasting arc for A and B.

Different from the case of Ĉγ the conformal structure of Ĉγ \ (A ∪B) may

vary from one to other by the choice of γ in Ĉ \ (A ∪ B) depending upon

the homotopy class in the surface Ĉ \ (A ∪B) to which γ belongs.

The capacity cap(A, Ĉγ\B), or more precisely the variational 2-capacity

with respect to the conformal structure of Ĉγ \ (A ∪B) is given by

(1.3) cap(A, Ĉγ \ B) := inf
ϕ

∫

bCγ

dϕ ∧ ∗dϕ.

Here the infimum above is taken with respect to the functions ϕ in C(Ĉγ)∩
L1,2(Ĉγ) with ϕ|A = 1 and ϕ|B = 0, where L1,2 is the space of local

Sobolev functions with square integrable gradients. We are interested in

the variation of the capacity cap(A, Ĉγ \B) when the end point w of γ, the

projection of the branch point w̃ over w varies. We may also understand

that the movement of w̃ is described in terms of the projection w. In this

sense the variation of the capacity with respect to w is viewed as that with

respect to the moving branch point w̃. As the central achivement of this

paper we will obtain, what we call, the variational formula for the capacity,

i.e. a formula computing the directional derivative

Dw,θ cap(A, Ĉγ \ B)(1.4)

:= lim
r↓0

cap(A, Ĉγ+[w,w+reiθ] \ B) − cap(A, Ĉγ \ B)

r
,

of the local function w → cap(A, Ĉγ \B) at w ∈ C\ (A∪B) in the direction

of θ, where [w,w + reiθ] is the line segment connecting two points w and
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w+ reiθ (cf. the formula (2.5) in Section 2 below). Here the reason why we

call w → cap(A, Ĉγ \B) a local function is that it depends not only upon w

but also upon the homotopy class of γ in Ĉ\(A∪B) and it is merely a single

valued function only locally, i.e. only in each disc contained in C \ (A ∪B)

centered in each point of C \ (A ∪ B). Since Ĉγ′ only depends upon the

homotopy class [γ ′] in Ĉ \ (A∪B) containing a general pasting arc γ ′ for A

and B, we may assume that γ ∩ [w,w + reiθ] = {w} for all small r > 0 so

that γ+[w,w+reiθ] is eligible to be a pasting arc for A and B by deforming

γ in the homotopy class [γ], if necessary, and thus (1.4) is well defined.

One of our original intention of the derivation of the above variational

formula for the capacity, in addition to the general concern to the variational

question for its own sake, is to apply it to add as many illustrative examples

as possible to the classical and modern type problem (cf. e.g. [12], [17], [15],

[9], [10], [6], [7], [8], etc.). However in the present paper we only state the

following direct consequence of the formula as a byproduct:

Theorem 1.1. The capacity cap(A, Ĉγ \ B) varies smoothly with re-

spect to the movement of the branch point w̃ of the covering surface Ĉγ

over the end point w of γ contained in Ĉ \ (A ∪ B), i.e. the local function

w 7→ cap(A, Ĉγ \B) is of class C1 when w varies in Ĉ \ (A ∪B).

We briefly describe the content of this paper. Finishing Introduction

in this present Section 1 we turn to Section 2: The main result, in which

we state our main result: Theorem 2.1 giving the formula of the directional

derivative Dw,θ cap(A, Ĉγ \B) of the local function w 7→ cap(A, Ĉγ \B) (w

being the end point of γ) at the point w ∈ C \ (A ∪ B) in the direction

θ. In Section 3: Reduction to the case of direction 0, it is shown that

the proof of Theorem 2.1 can be reduced to the case θ = 0. The proof

for Theorem 2.1 reduced to the case θ = 0 will be given in Sections 4–

9. The capacity cap(A, Ĉγ \ B) is given by the Dirichlet integral D(uγ) =

D(uγ ; Ĉγ \ (A ∪ B)) of the capacity function uγ for cap(A, Ĉγ \ B) and on

using the Green formula the computation concermimg D(uγ) is transformed

to certain line integrals. These facts will be stated in Section 4: Prelude

to the proof. We use the so called standard local parameters on Ĉγ and in

particular at the branch points of Ĉγ . We explain in Section 5: Standard

local parameter at the branch point, how these parameters are related to

each other when the end point w of γ varies. These are compiled into, what

we call, a coordinate transformation formula (5.5), an essence of which
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and some related considerations are already found in the pioneering work of

Rauch [13] and also in its important generalization of Yamaguchi [18] except

for our present detailed examination of directional variations of capacities

by the movement of branch points to clarify which is one of our objects

in the present paper. We need to use the Cauchy estimates for harmonic

functions in Sections 7–10 so that just for the sake of convenience we inserted

here the simple and elementary Section 6: The harmonic version of the

Cauchy estimates. The computations with estimates of the average rate of

change (D(uµ) −D(uλ))/(µ − λ) will be done in Section 7: Calculation of

D(uλ − uµ, uλ), and Section 8: Calculation of D(uµ − uλ, uλ). The proof of

the main theorem, Theorem 2.1, will be completed in Section 9: Continuity

of standard partial derivatives. The result in Section 9 is again also used in

the final Section 10: Proof of Theorem 1.1.

We are grateful to Professor Hiroshi Yamaguchi for his kind concern,

interest, and advice to our present work, which is closely related to a series

of the important works on variation of the Robin function and so forth by

Yamaguchi himself and with his colleagues (cf. e.g. [18], [19], [3], [4], [5],

among many others).

§2. The main result

The variational problem (1.3) has a unique extremal function uγ in the

class of competing functions ϕ ∈ C(Ĉγ)∩L1,2(Ĉγ) with ϕ|A = 1 and ϕ|B =

0 in (1.3) characterized by the condition that uγ ∈ C(Ĉγ)∩H(Ĉγ \ (A∪B))

and uγ |A = 1 and uγ |B = 0 (cf. e.g. [15], [2], etc.), where in general we

denote by H(X) the class of harmonic functions defined on an open subset

X of some Riemann surface and L1,2 indicates the Dirichlet space (cf. [2],

and also the paragraph following the formula (1.3) below). The function uγ

is referred to as the capacity function ([14]) for A with respect to Ĉγ \ B
and uγ |(Ĉγ \ (A∪B)) is called the harmonic measure of ∂A with respect to

Ĉγ \ (A ∪B). Then the capacity cap(A, Ĉγ \B) is given by

(2.1) cap(A, Ĉγ \ B) =

∫

bCγ

duγ ∧ ∗duγ =

∫

bCγ\(A∪B)
duγ ∧ ∗duγ

in terms of the capacity function. When we wish to stress that the end

point of γ is w, we write Ĉγ = Ĉγ,w and similarly uγ = uγ,w indicating the

point w and moreover when γ is well understood, we simply write Ĉγ = Ĉw

and uγ = uw.
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Let z be the proper plane coordinate in C. Now we introduce the

most primitive and simple local parameters on the two sheeted sphere Ĉγ

determined by the pasting arc γ connecting the point ∞ at infinity and a

finite point w ∈ C. We denote by ∆(a, r) the open disc with radius r > 0

centered at a ∈ C and by ∆(∞, r) the open disc {z ∈ C : |z| > 1/r} ∪ {∞}.
First pick a ordinary point p ∈ Ĉγ \{∞̃, w̃} (πγ(∞̃) = ∞, πγ(w̃) = w) and a

disc ∆(πγ(p), r) ⊂ C\{∞, w} (0 < r < |w−πγ(p)|). We take (∆(πγ(p), r), ζ)

as a parametric disc at p, where the local parameter ζ = ξ+ iη at p is given

by

(2.2) ζ = z − πγ(p).

At the finite branch point w̃ over w ∈ C, we take (∆(w, r), ζ) (r > 0) as a

parametric disc at w̃, where the local parameter ζ = ξ+ iη at w̃ is given by

(2.3) ζ =
√
z −w

(√
1 = 1

)
.

Finally at the other branch point ∞̃ over ∞ ∈ Ĉ we take (∆(∞, r), ζ)

(0 < r < 1/|w|) as a parametric disc at ∞̃, where the local parameter

ζ = ξ + iη at ∞̃ is given by

(2.4) ζ =
√

1/z
(√

1/c > 0
)

for every real number 0 < c < |w|. The local parameter ζ = ξ + iη defined

by (2.2), (2.3), and (2.4) is referred to as the standard local parameters in

Ĉγ .

Let w ∈ C and θ ∈ R. Using the capacity function uγ,w and the

standard local parameter ζ = ξ + iη in (2.3) introduced above we can state

the following variational formula for the capacity, which is the main result

of this paper.

Theorem 2.1. The directional derivative Dw,θ cap(A, Ĉγ,w \B) of the

capacity cap(A, Ĉγ,w \ B) at w in the direction of θ is given by

Dw,θ cap(A, Ĉγ,w \ B) = π

[((
∂

∂ξ
uγ,w(0)

)2

−
(
∂

∂η
uγ,w(0)

)2
)

cos θ(2.5)

+ 2

(
∂

∂ξ
uγ,w(0) · ∂

∂η
uγ,w(0)

)
sin θ

]
.
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In the particular case of the direction θ = 0, the above formula takes

the following simple form:

(2.6) Dw,0 cap(A, Ĉγ,w \B) = π

[(
∂

∂ξ
uγ,w(0)

)2

−
(
∂

∂η
uγ,w(0)

)2
]
.

We will first prove in Section 3 that conversely (2.6) implies (2.5), i.e. the

reduction of (2.5) to (2.6) so that we only have to concentrate ourselves to

the proof of (2.6) in the rest of our paper in Sections 4–9.

We add one more remark to the expression (2.5). We consider the

gradient of uγ,w with respect to the standard local parameter ζ in (2.3)

at w considered for ζ = 0: ∇ζuγ,w(0) = (∂uγ,w(0)/∂ξ, ∂uγ,w(0)/∂η) =

(∂uγ,w(ζ)/∂ξ, ∂uγ,w(ζ)/∂η)|ζ=0. The angle

(2.7) αγ,w := tan−1 2(∂uγ,w(0)/∂ξ) · (∂uγ,w(0)/∂η)

(∂uγ,w(0)/∂ξ)2 − (∂uγ,w(0)/∂η)2
∈ [−π/2, π/2]

is referred to as the direction of maximal growth of cap(A, Ĉγ,w \ B) at w.

Then it can be really easily seen that (2.5) is rewritten as follows:

(2.8) Dw,θ cap(A, Ĉγ,w \ B) = |∇ζuγ,w(0)|2 cos(θ − αγ,w),

which is sometimes very handy to apply to various practical situations.

§3. Reduction to the case of direction zero

We prove that the validity of (2.6) implies that of (2.5). We denote

by (Ĉ, z) the sphere with a proper plane coordinate z on Ĉ. If we obtain

another proper plane coordinate z̃ by applying a translation and rotation

to z, then we also obtain the sphere (Ĉ, z̃) with a proper plane coordinate

z̃. Precisely we consider the new coordinate z̃ obtained from the original

coordinate z by the transformation

(3.1) z̃ − w = (z −w)eiθ .

We denote by γ,w the pasting arc γ indicating and also stressing its terminal

point w. Then, although the pasting arc γ,w itself is unchanged no matter

whether it is in (Ĉ, z) or in (Ĉ, z̃), its coordinate expression in (Ĉ, z̃) is

different from that of the original one in (Ĉ, z) and hence we denote γ,w by

γ̃, w in (Ĉ, z̃). Of course

cap(A, Ĉγ,w \B) = cap(A, Ĉγ̃,w \ B)
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and their capacity functions are identical. That of the former has been

denoted by uγ,w and now we denote the capacity function of the latter

above by ũγ̃,w for the reason similar to the case of γ. Finally we denote by

D̃w,0 cap(A, Ĉγ̃,w \B) the directional derivative of cap(A, Ĉγ̃,w \B) at w in

the direction of the angle 0:

D̃w,0 cap(A, Ĉγ̃,w \B)

= lim
r↓0

cap(A, Ĉγ̃+[w,w+r],w+r \ B) − cap(A, Ĉγ̃,w \B)

r
.

The standard local parameter ζ̃ = ξ̃ + iη̃ at the branch point w of Ĉγ̃,w on

it is given (cf. (2.3)) by

(3.2) ζ̃ = ξ̃ + iη̃ =
√
z̃ −w

(√
1 = 1

)
.

Since we are assuming the validity of (2.6) we have

(3.3) D̃w,0 cap(A, Ĉγ̃,w \ B) = π

[(
∂

∂ξ̃
ũγ̃,w(0)

)2

−
(
∂

∂η̃
ũγ̃,w(0)

)2
]
.

From the coordinate transformation (3.1) we see that

(3.4) Dw,θ cap(A, Ĉγ,w \B) = D̃w,0 cap(A, Ĉγ̃,w \B).

By using (2.3), (3.2), and (3.1) in this order we have

ζ =
√
z − w =

√
eiθ(z̃ − w) = eiθ/2

√
z̃ − w = eiθ/2ζ̃

so that (
ξ
η

)
=

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)(
ξ̃
η̃

)
.

In view of

∂

∂ξ̃
ũγ̃,w(0) =

∂

∂ξ
uγ,w(0)

∂ξ

∂ξ̃
+

∂

∂η
uγ,w(0)

∂η

∂ξ̃

=
∂

∂ξ
uγ,w(0) cos

θ

2
+

∂

∂η
uγ,w(0) sin

θ

2

and the similar formula for ∂ũγ̃,w(0)/∂η̃, we have

(
∂ũγ̃,w(0)/∂ξ̃
∂ũγ̃,w(0)/∂η̃

)
=

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)(
∂uγ,w(0)/∂ξ
∂uγ,w(0)/∂η

)
.
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If we substitute ∂uγ,w(0)/∂ξ and ∂uγ,w(0)/∂η in (3.3) by the above trans-

formation formula, then we have

D̃w,0 cap(A, Ĉγ̃,w \B) = π

[(
∂

∂ξ
uγ,w(0) cos

θ

2
+

∂

∂η
uγ,w(0) sin

θ

2

)2

−
(
∂

∂ξ
uγ,w(0) cos

θ

2
+

∂

∂η
uγ,w(0) sin

θ

2

)2
]

= π

[((
∂

∂ξ
uγ,w(0)

)2

−
(
∂

∂η
uγ,w(0)

)2
)

cos θ

+ 2

(
∂

∂ξ
uγ,w(0) · ∂

∂η
uγ,w(0)

)
sin θ

]
.

This with (3.4) implies (2.5).

§4. Prelude to the proof

We now start the proof of (2.6). By applying a suitable translation of

the original plane coordinate z in (Ĉ, z), if necessary, we may assume that

the end point w of γ in (2.6) is real, i.e. w ∈ R, the real axis in C. Changing

the notation we write w = λ ∈ R so that we are going to prove

(4.1) Dλ,0 cap(A, Ĉγ,λ \B) = π

[(
∂

∂ξ
uγ,λ(0)

)2

−
(
∂

∂η
uγ,λ(0)

)2
]
,

where ζ = ξ + iη =
√
z − λ (

√
1 = 1), the standard local parameter of Ĉγ,λ

at the branch point λ̃ over λ.

At this point it is convenient to introduce the following notations. For

ϕ and ψ in L1,2(X), X being a measurable subset of a Riemann surface and

L1,2(X) being the Dirichlet space (cf. [2]) on X consisting of real valued

functions f ∈W 1,2
loc

(X), the local Sobolev space onX, with square integrable

gradients, the quantity

D(ϕ,ψ;X) :=

∫

X
dϕ ∧ ∗dψ =

∫

X
∇ϕ(ζ) · ∇ψ(ζ) dξdη (ζ = ξ + iη)

is referred to as the mutual Dirichlet integral of ϕ and ψ over X, where

ζ = ξ+iη is any local parameter on the Riemann surface and ∇ϕ = gradϕ =

(∂ϕ/∂ξ, ∂ϕ/∂η). In particular

D(ϕ;X) :=

∫

X
dϕ ∧ ∗dϕ =

∫

X
|∇ϕ(ζ)|2 dξdη (ζ = ξ + iη)
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is called the Dirichlet integral of ϕ over X. The mutual Dirichlet integral,

viewed as a mapping (ϕ,ψ) 7→ D(ϕ,ψ;X) : L1,2(X) → R is a bilinear form

and the square root of the Dirichlet integral
√
D(ϕ;X) is a seminorm on

L1,2(X).

With respect to the fixed pasting arc γ, λ with λ ∈ R in (4.1), we can

choose a closed interval [σ, τ ] := {t ∈ R : σ ≤ t ≤ τ} (σ < λ < τ) such that

we may assume the following three conditions:

(a) the straight line segment [σ, τ ] is contained in C \ (A ∪B);

(b) the straight line segment [σ, λ] is an end part of γ, i.e. the subarc

of γ starting from the point σ in γ and terminating at λ;

(c) γ ∩ [λ, τ ] = {λ} so that the arc γ + [λ, τ ] is a pasting arc for A and

B.

In fact, if we choose σ < λ and τ > λ in R close enough to λ, then we can find

a pasting arc γ ′, λ for A and B homotopic to γ in Ĉ\(A∪B) satisfying three

conditions (a), (b), and (c) simultaneously. By the homotopical invariance

of the conformal structure of Ĉγ,λ \ (A ∪ B) for γ ⊂ Ĉ \ (A ∪ B), we can

replace γ by γ ′ in (4.1) so that we may assume that γ satisfies (a), (b), and

(c) in advance.

Now we choose a real positive number 0 < r < 1 so small that

σ < λ− 4r2 < λ+ 8r2 < τ

and, that if we denote by γσ the subarc of γ starting from ∞ and terminating

at σ, then

dis([λ− 4r2, λ+ 8r2], A ∪B ∪ γσ) > 4r2,

where dis(X,Y ) for subsets X and Y in C is the distance between X and

Y measured by the Euclidean plane metric on C. After we have fixed the

interval [σ, τ ] and the positive number r > 0 as above we take a variable

number µ ∈ R satisfying

λ ≤ µ < λ+ r2

and we consider the pasting arc γ(µ) for A and B given by

γ(µ) := γ + [λ, µ]

so that γ(µ) = γ(µ), µ and γ(λ) = γ = γ, λ in the former notation. Let Ĉj

(j = 1, 2) be two copies of Ĉ and we set

Ĉµ := (Ĉ \ γ(µ))
⋃
×

γ(µ) (Ĉ \ γ(µ)) = (Ĉ1 \ γ(µ))
⋃
×

γ(µ) (Ĉ2 \ γ(µ))
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so that Ĉµ = Ĉγ(µ) = Ĉγ(µ),µ in the former notation. Recall that A ⊂ Ĉ1

and B ⊂ Ĉ2, i.e. A and B are embeded in the different sheets of Ĉµ.

Finally let uµ := uγ(µ),µ be the capacity function for cap(A, Ĉµ \ B) =

cap(A, Ĉγ(µ),µ \B) so that

cap(A, Ĉµ \ B) =

∫

bCµ

duµ ∧ ∗duµ = D(uµ; Ĉµ).

Hence we are going to compute

(4.2) Dλ,0 cap(A, Ĉλ \B) = lim
µ↓λ

D(uµ; Ĉµ) −D(uλ; Ĉλ)

µ− λ

in order to derive (4.1). Here a serious difficulty arises. The domains Ĉµ

and Ĉλ of uµ and uλ are entirely different surfaces and hence D(uµ, Ĉµ) −
D(uλ; Ĉλ) cannot be computed any further. To overcome this difficulty we

recall that Ĉµ is a covering surface (Ĉµ, Ĉ, πµ) of the base surface Ĉ with

πµ its natural projection having two branch points ∞̃ over ∞ and µ̃ over

µ each of which is of multiplicity two. Observe that Ĉµ \ π−1
µ ([λ, µ]) and

Ĉλ \ π−1
λ ([λ, µ]) may be viewed as identical simply connected region so that

we denote by W = Wµ the common Riemann surface:

W = Wµ := Ĉµ \ π−1
µ ([λ, µ]) = Ĉλ \ π−1

λ ([λ, µ]),

and moreover

πµ|W = πλ|W
so that (W, Ĉ \ [λ, µ], πµ) = (W, Ĉ \ [λ, µ], πλ) as covering surfaces over

Ĉ\ [λ, µ]. In particular we see that D(uµ; Ĉµ) = D(uµ;W ) and D(uλ; Ĉλ) =

D(uλ;W ). Hereafter as far as the relation λ < µ < λ+r2 is retained we sim-

ply write D( · , · ;W ) = D( · , · ) so that D(uµ;W ) = D(uµ) andD(uλ;W ) =

D(uλ). Then we can compute D(uµ; Ĉµ) −D(uλ; Ĉλ) = D(uµ) −D(uλ) as

follows:

(4.3) D(uµ) −D(uλ) = −D(uλ − uµ, uλ) +D(uµ − uλ, uµ).

We are thus led to study two mutual Dirichlet integrals D(uλ − uµ, uλ) and

D(uµ − uλ, uµ).

Although Ĉµ \ π−1
µ ([λ, µ]) and Ĉλ \ π−1

λ ([λ, µ]) are the identical simply

connected region W , their Carathéodory boundaries (the set of boundary
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elements in the sense of Carathéodory (cf. e.g. [17])) can be differently de-

scribed as subsurfaces of Ĉµ and Ĉλ. We first examine Ĉλ \π−1
λ ([λ, µ]). The

fiber π−1
λ (λ) is a one point set in Ĉλ, the point in which will be denoted by

λ0, and the point λ0 is the branch point of multiplicity 2 of the covering

surface (Ĉλ, Ĉ, πλ). But the fiber π−1
λ (µ) is a two point set consisting of

a point µ1 in the upper sheet Ĉ1 \ γ(λ) and a point µ2 in the lower sheet

Ĉ2 \γ(λ) of Ĉλ. We denote by a1 = a1(µ) the upper edge and by a2 = a2(µ)

the lower edge of the line segment π−1
λ ([λ, µ])∩(Ĉ1 \ γ(λ)), the closure being

taken in Ĉλ; similarly we denote by a3 = a3(µ) and a4 = a4(µ) the upper

and the lower edge of the line segment π−1
λ ([λ, µ])∩ (Ĉ2 \ γ(λ)), the closure

being taken in Ĉλ. We consider that a1 and a2 are directed line segments

whose initial points are λ0 and whose terminal points are µ1, respectively,

and that a3 and a4 are also directed line segments starting from λ0 and

terminating at µ2, respectively. In general we denote by |ω| the mere point

set consisting points in an arc ω in a certain Riemann surface. The set |ω|
will be referred to as the support of ω. Then

|a1| = |a2|, |a3| = |a4|.

Then the Carathéodory boundary

(4.4) a = a(µ) := a1 − a2 + a3 − a4

of Ĉλ \π−1
λ ([λ, µ]) is a positively directed Jordan curve in the Carathéodory

compactification (i.e. the union of Ĉλ \ π−1
λ ([λ, µ]) and a(µ) topologized

suitably) of Ĉλ \ π−1
λ ([λ, µ]). Observe that a \ {µ1, µ2} is analytic and a

has corners at µ1 and also at µ2 considered in Ĉλ. It is important to note

and to memorize that if we identify |a1| with |a4| and also |a2| with |a3| in

Cλ \ |a|, then the resulting surface is nothing but Ĉµ.

Next we examine another simply connected region Ĉµ \π−1
µ ([λ, µ]). The

fiber π−1
µ (µ) is the one point set in Ĉµ, the point of which is denoted by µ0.

The point µ0 is the branch point of multiplicity 2 of the covering surface

(Ĉµ, Ĉ, πµ). Recall that Ĉµ \ π−1
µ (γ(µ)) consists of two sheets, the upper

sheets Ĉ1 \γ(µ) and the lower sheet Ĉ2 \γ(µ). We denote by [λ, µ]j the part

over [λ, µ] of the slit γ(µ) in Ĉj\γ(µ) (j = 1, 2) and by [λ, µ]+j and [λ, µ]−j the

upper and the lower edge of [λ, µ]j . Then the fiber πµ(λ)−1 is the two points

set consisting of the end point λ1 over λ of [λ, µ]+1 = [λ, µ]−2 and the end point

λ2 over λ of [λ, µ]−1 = [λ, µ]+2 . We then set b1 = b1(µ) := π−1
µ ([λ, µ])∩[λ, µ]+1 ,
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b2 = b2(µ) := π−1
µ ([λ, µ]) ∩ [λ, µ]−1 , b3 = b3(µ) := π−1

µ ([λ, µ]) ∩ [λ, µ]+2 , and

b4 = b4(µ) := π−1
µ ([λ, µ]) ∩ [λ, µ]−2 . As subsets of Ĉµ we have

|b1| = |b4|, |b2| = |b3|.

We consider b1 and b4 as directed line segments starting from λ1 and ter-

minating at µ0 and also b2 and b3 as directed line segments starting from

λ2 and terminating at µ0. Then

(4.5) b = b(µ) := b1 − b2 + b3 − b4

is a Jordan curve which is the Carathéodory boundary of the Carathéodory

compactification of Ĉµ \ π−1
µ ([λ, µ]). The curve b is positively oriented and

b \ {λ1, λ2} is analytic and b has two corner points at λ1 and λ2.

§5. Standard local parameter at the branch point

Recall that λ0 is the branch point of multiplicity 2 of the covering

surface Ĉλ over λ ∈ C. We denote by ∆2(λ0, 4r
2) the two sheeted disc

with radius 4r2 centered at λ0, i.e. the set of points in Ĉλ lying over the

disc ∆(λ, 4r2) := {z ∈ C : |z − λ| < 4r2} ⊂ Ĉ. The local coordinate

(∆(0, 2r), ζλ) at λ0 given by

(5.1) ζλ = ξλ + iηλ :=
√
z − λ

(√
1 = 1

)

is referred to as the standard local parameter at the branch point λ0, where

ζλ ∈ C with |ζλ| < 2r and ξλ = <ζλ and ηλ = =ζλ. Let cj ⊂ ∆(0, 2r)

be the image of aj by the conformal mapping of ∆2(λ0, 4r
2) onto ∆(0, 2r)

given by (5.1) (j = 1, 2, 3, 4). Then c1 and c2 are directed straight line

segments starting from 0 and terminating at
√
µ− λ (the positive square

root of µ−λ > 0) and c3 and c4 are directed straight line segments starting

from 0 and terminating at −
√
µ− λ. Considering c1 and c2 as the upper

and the lower edge of [0,
√
µ− λ ], and also c3 and c4 as the lower and the

upper edge of [0,−√
µ− λ ], the curve

(5.2) c := c1 − c2 + c3 − c4

is the image of a which can be viewed as a Jordan curve in the sense of

Carathéodory. Thus the support |c| of c is given, on setting ε :=
√
µ− λ > 0,

by

|c| = {ζλ = ξλ + iηλ ∈ ∆(0, 2r) : |ζλ| ≤ ε, ηλ = 0}.
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Similarly as above recall that µ0 is the branch point of multiplicity 2

of the covering surface Ĉµ over µ ∈ C. The standard local parameter at µ0

valid on ∆(0, 2r) for ∆2(µ0, 4r
2) is

(5.3) ζµ = ξµ + iηµ :=
√
z − µ

(√
1 = 1

)
,

where ζµ ∈ C with |ζµ| < 2r and ξµ = <ζµ and ηµ = =ζµ. Let dj ⊂ ∆(0, 2r)

be the image of bj by the conformal mapping of ∆2(µ0, 4r
2) onto ∆(0, 2r)

given by (5.3). Then d1 and d4 are the directed straight line segments start-

ing from i
√
µ− λ (i =

√
−1) and terminating at 0 and also d2 and d3 are

the directed straight line segments starting from −i√µ− λ and terminating

at 0. By considering d1 and d4 as the right and the left edge of [i
√
µ− λ, 0]

and d2 and d3 are the right and the left edge of [−i
√
µ− λ, 0], the curve

(5.4) d := d1 − d2 + d3 − d4

is the image of b which can be viewed as a Jordan curve in the sense of

Carathéodory. The support |d| of d is given by

|d| = {ζµ = ξµ + iηµ ∈ ∆(0, 2r) : ξµ = 0, |ηµ| ≤ ε}.

Pick an arbitrary Carathéodory boundary point p of the surface W . We

may view that p ∈ a by understanding that W = Ĉλ \ π−1
λ ([λ, µ]) and at

the same time p ∈ b by understanding W = Ĉµ \ π−1
µ ([λ, µ]). Let ζλ be the

coordinate of p when we consider p ∈ a and ζµ be the coordinate of p when

we consider p ∈ b. It is important to know the relation between ζλ and ζµ.

Suppose p is lying over z ∈ C. Then from
√
z − λ = ζλ and

√
z − µ = ζµ it

follows that

z = λ+ ζ2
λ = µ+ ζ2

µ.

Recall that we have set ε =
√
µ− λ (the positive square root of µ− λ > 0).

Thus we obtain

ζ2
λ = ε2 + ζ2

µ.

Compareing the real and imaginary parts of both sides of the above we see

that {
ξ2λ − η2

λ = ε2 + (ξ2
µ − η2

µ),

ξληλ = ξµηµ.

Since ηλ = 0 on c and ξµ = 0 on d, the coordinate transformation formula

on the Carathéodory boundary of W takes the following form:

(5.5) ξ2
λ = ε2 − η2

µ.
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Observe that c1 ∪ c2 corresponds to d1 ∪d2 and c3 ∪ c4 to d3 ∪d4 and ξλ ≥ 0

on c1∪c2 which occurs when ηµ ∈ d1∪d2 and ξλ ≤ 0 on c3∪c4 which occurs

when ηµ ∈ d3 ∪ d4. Hence on introducing the function δµ(ηµ) of ηµ given by

(5.6) δµ(ηµ) =

{
+1 (ηµ ∈ d1 ∪ d2),

−1 (ηµ ∈ d3 ∪ d4),

we can express ξλ in terms of ηµ:

(5.7) ξλ = δµ(ηµ)
√
ε2 − η2

µ,

where
√
ε2 − η2

µ is the positive square root of ε2 − η2
µ ≥ 0. Similarly as

above observe that d1 ∪ d2 corresponds to c1 ∪ c2 and d3 ∪ d4 to c3 ∪ c4, and

ηµ ≥ 0 on d1 ∪ d4 which occurs when ξλ ∈ c1 ∪ c4 and ηµ ≤ 0 on d2 ∪ d3

which occurs when ξλ ∈ c2 ∪ c3. Thus on introducing the function δλ(ξλ) of

ξλ by

(5.8) δλ(ξλ) =

{
+1 (ξλ ∈ c1 ∪ c4),
−1 (ξλ ∈ c2 ∪ c3),

we can express ηµ in terms of ξλ:

(5.9) ηµ = δλ(ξλ)
√
ε2 − ξ2λ,

where
√
ε2 − ξ2λ is the positive square root of ε2 − ξ2λ ≥ 0. Thus (5.5) gives

rise to two formulas (5.7) and (5.9) but just one relation in the differential

form

(5.10) ξλ dξλ = −ηµ dηµ.

§6. The harmonic version of the Cauchy estimates

In the calculations with estimates performed in the next two succeeding

sections we need to use the Cauchy estimates for harmonic functions (cf.

e.g. [1]). Thus it will be convenient to recall their exact formulations in the

form suitable for our later use, which will be briefly described in this short

section.
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For each couple (m,n) of nonnegative integers m and n, we consider

the finite positive quantity C(m,n) determined only by the couple (m,n)

given by

(6.1) C(m,n) :=
1

2π

∫

|ζ|=1

∣∣∣∣
[
∂m+n

∂xm∂yn
<
(
ζ + z

ζ − z

)]

z=0

∣∣∣∣|dζ|,

where z = x + iy ∈ C, ζ ∈ C with |ζ| = 1, and |dζ| = dθ with ζ = eiθ. If

h ∈ H(∆(α, r)) with |h| ≤ M on ∆(α, r), then we have the basic Cauchy

estimates for harmonic functions:

(6.2)

∣∣∣∣
∂m+n

∂xm∂yn
h(α)

∣∣∣∣ ≤ (C(m,n)/rm+n)M

for each pair (m,n) of nonnegative integers m and n, where α ∈ C and

0 < r < +∞, and H(X) is the class of harmonic functions on an open

subset X of a Riemann surface, and M is a finite positive constant. For a

proof we use the Poisson representation formula of the harmonic function

w 7→ h(α + sw) defined for |w| ≤ 1, where s is an arbitrarily fixed real

number with 0 < s < r:

h(α+ sw) =
1

2π

∫ 2π

0
h(α + sζ)<

(
ζ + w

ζ − w

)
dθ (ζ = eiθ).

Let z = sw with z = x+ iy and w = u+ iv. Then we see that

∂m+n

∂um∂vn
h(α+ sw) = sm+n ∂m+n

∂xm∂yn
h(α+ z),

which implies that

sm+n

∣∣∣∣
∂m+n

∂xm∂yn
h(α)

∣∣∣∣ =

∣∣∣∣
∂m+n

∂um∂vn
h(α)

∣∣∣∣

=
1

2π

∣∣∣∣
∫ 2π

0
h(α+ sζ)

[
∂m+n

∂um∂vn
<
(
ζ + w

ζ − w

)]

w=0

dθ

∣∣∣∣

≤ 1

2π

∫ 2π

0
|h(α+ sζ)|

∣∣∣∣
[
∂m+n

∂xm∂yn
<
(
ζ + z

ζ − z

)]

z=0

∣∣∣∣ dθ

≤ 1

2π

∫ 2π

0
M

∣∣∣∣
[
∂m+n

∂xm∂yn
<
(
ζ + z

ζ − z

)]

z=0

∣∣∣∣ dθ = C(m,n)M,

which implies the desired (6.2) with r replaced by s. Since 0 < s < r is

arbitrary, on letting s ↑ r, we deduce the genuine (6.2). The following form
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of the Cauchy estimates for harmonic functions will be extensively made use

of in the next subsequent two sections: if u ∈ H(∆(0, 2r)) (0 < r < +∞),

then we have

(6.3) sup
z∈∆(0,r)

∣∣∣∣
∂m+n

∂xm∂yn
u(z)

∣∣∣∣ ≤
(
C(m,n)/rm+n

)
sup

z∈∆(0,2r)
|u(z)|

for any pair (m,n) of nonnegative integers m and n. For a proof, let M :=

supz∈∆(0,2r) |u(z)| > 0. IfM = +∞, then (6.3) holds trivially. Thus suppose

that M < +∞ and take an arbitrary z ∈ ∆(0, r). Then, since ∆(z, r) ⊂
∆(0, 2r), we have |u| ≤M on ∆(z, r) and hence by (6.2) we see that

∣∣∣∣
∂m+n

∂xm∂yn
u(z)

∣∣∣∣ ≤
(
C(m,n)/rm+n

)
M

for any z ∈ ∆(0, r), from which (6.3) follows instantly.

§7. Calculation of D(uλ − uµ, uλ)

As we saw in Section 3 we only have to prove (4.1) in order to complete

the proof of Theorem 2.1. For the purpose we need to compute

lim
µ↓λ

D(uµ) −D(uλ)

µ− λ
.

By the identity (4.3), the above computation will be achieved if we can

finish the computations of the following two limits:

(7.1) lim
µ↓λ

D(uλ − uµ, uλ)

µ− λ

and

(7.2) lim
µ↓λ

D(uµ − uλ, uµ)

µ− λ
.

In this section we compute D(uλ −uµ, uλ) with estimate for the purpose to

study (7.1) and those for (7.2) will be done in the next section.

By the Green formula we see that

D(uλ − uµ, uλ) =

∫

a
(uλ − uµ) ∗duλ.
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Analyzing the behavior of uλ and ∗duλ on a1 − a2 and a3 − a4 we see that
∫

a
uλ ∗duλ =

∫

a
k ∗duλ = 0

for every constant k ∈ R (the set of real numbers) and therefore we deduce

in particular

(7.3) D(uλ − uµ, uλ) = −
∫

a
(uµ − uµ(µ0)) ∗duλ.

Recall that (∆(0, 2r), ζλ = ξλ + iηλ) is a fixed local coordinate at the two

sheeted disc ∆2(λ0, 4r
2). Since uλ ∈ H(∆2(λ0, 4r

2)), the coordinate expres-

sion of the differential ∗duλ takes the form

∗duλ(ζλ) = −(uλ)ηλ
(ζλ) dξλ + (uλ)ξλ

dηλ,

where, for example, (uλ)ηλ
= ∂uλ/∂ηλ. We have denoted by c ⊂ ∆(0, 2r)

the image of a ⊂ ∆2(λ0, 4r
2). Note that ηλ = 0 on c. Hence

∗duλ(ζλ) = ∗duλ(ξλ) = −(uλ)ηλ
(ξλ) dξλ

on c. Hence from (7.3) it fillows that

(7.4) D(uλ − uµ, uλ) =

∫

c
(uµ(ξλ) − uµ(µ0))(uλ)ηλ

(ξλ) dξλ.

By applying the Taylor expansion theorem (or simply the mean value the-

orem) we obtain

(7.5) (uλ)ηλ
(ξλ) = (uλ)ηλ

(0) + (uλ)ηλξλ
(θ1ξλ)ξλ (0 < θ1 < 1).

In view of uµ ∈ H(∆2(µ0, 4r
2)), again by applying the Taylor expansion

theorem using the local parameter ζµ = iηµ ∈ d corresponding to ζλ = ξλ ∈
c, we deduce

uµ(ξλ) − uµ(µ0) = uµ(iηµ) − uµ(0)

= (uµ)ηµ(0)ηµ +
1

2
(uµ)ηµηµ(iθ2ηµ)η2

µ (0 < θ2 < 1).

By (5.9) we obtain

uµ(ξµ) − uµ(µ0)(7.6)

= (uµ)ηµ(0)δλ(ξλ)
√
ε2 − ξ2λ +

1

2
(uµ)ηµηµ(iε2ηµ)(ε2 − ξ2λ).
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A fortiori we conclude that

D(uλ − uµ, uλ)(7.7)

= (uλ)ηλ
(0)(uµ)ηµ(0)

∫

c
δλ(ξλ)

√
ε2 − ξ2λ dξλ +

∫

c
J(ξλ) dξλ,

where

J(ξλ) := (uµ(ξλ) − uµ(µ0))(uλ)ηλ
(ξλ)

− (uλ)ηλ
(0)(uµ)ηµ(0)δλ(ξλ)

√
ε2 − ξ2λ.

Note that

∫

c
δλ(ξλ)

√
ε2 − ξ2λ dξλ =

4∑

j=1

∫

(−1)j−1cj

δλ(ξλ)
√
ε2 − ξ2λ dξλ

= 4

∫ ε

0

√
ε2 − ξ2λ dξλ = 4ε2

∫ 1

0

√
1 − t2 dt = πε2.

Hence the first term on the right hand side of (7.7) is

π(uλ)ηλ
(0)(uµ)ηµ(0)(µ − λ).

Next we estimate the second term on the right hand side of (7.7). From

(7.5) and (7.6) it follows that J(ξλ) is

1

2
(uλ)ηλ

(0)(uµ)ηµηµ(iθ2ηµ)(ε2 − ξ2λ)

+ (uλ)ηληλ
(θ1ξλ)(uµ)ηµ(0)δλ(ξλ)ξλ

√
ε2 − ξ2λ

+
1

2
(uλ)ηλξλ

(θ1ξλ)(uµ)ηµηµ(iθ2ηµ)ξλ(ε2 − ξ2λ).

Restricting ξλ to 0 ≤ ξλ < 1, we have ε2 − ξ2λ ≤ ε2, |ξλ|
√
ε2 − ξ2λ ≤ ε2, and

|ξλ|(ε2 − ξ2λ) ≤ ε3 < ε2. Since |uλ| ≤ 1 and |uµ| ≤ 1, an application of (6.3)

implies that

|J(ξλ)| ≤
(

1

2
C(0, 2)C(0, 1) + C(0, 1)C(1, 1) +

1

2
C(1, 1)C(0, 2)

)
ε2

r3

=:
C1

4r3
ε2
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so that we obtain
∣∣∣∣
∫

c
J(ξλ) dξλ

∣∣∣∣ =
∣∣∣∣∣

4∑

j=1

∫

(−1)j−1cj

J(ξλ) dξλ

∣∣∣∣∣ ≤
4∑

j=1

∣∣∣∣
∫

cj

|J(ξλ)| dξλ
∣∣∣∣

≤ 4

∫ ε

0

C1

4r3
ε2 dξλ =

C1

r3
ε3 =

C1

r3
(µ− λ)3/2

and finally we come to the estimate

(7.8)
∣∣D(uλ − uµ, uλ) − π(uλ)ηλ

(0)(uµ)ηµ(0)(µ − λ)
∣∣ ≤ C1

r3
(µ− λ)3/2,

where we stress here that C1 is, by its definition above, a universal constant

and in particular does not depend upon µ.

§8. Calculation of D(uµ − uλ, uµ)

The computation of the mutual Dirichlet integral D(uµ − uλ, uµ) is

almost identical with that of D(uλ − uµ, uλ) performed in the preceeding

Section 7. By the Green formula

D(uµ − uλ, uµ) =

∫

b
(uµ − uλ) ∗duµ.

On analyzing the behavior of uµ and ∗duµ on b1 − b2 and also on b3 − b4,

we can deduce that ∫

b
uµ ∗duµ =

∫

b
k ∗duµ = 0

for any constant k ∈ R. Therefore we see that

D(uµ − uλ, uµ) = −
∫

b
(uλ − uλ(λ0)) ∗duµ.

Note that uµ ∈ H(∆2(µ0, 4r
2)). We use the local coordinate (∆(0, 2r), ζµ =

ξµ + iηµ) at ∆(µ0, 4r
2) to have the coordinate expression

∗duµ(ζµ) = −(uµ)ηµ dξµ + (uµ)ξµ
dηµ

of ∗duµ. Since ξµ = 0 on the image d of b, we have

∗duµ(ξµ) = ∗duµ(iηµ) = (uµ)ξµ
(iηµ) dηµ

on d. Thus

(8.1) D(uµ − uλ, uµ) = −
∫

d
(uλ(iηµ) − uλ(λ0))(uµ)ξµ

(iηµ) dηµ.
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By the Taylor expansion theorem (or rather the mean value theorem), we

have

(uµ)ξµ
(iηµ) = (uµ)ξµ

(0) + (uµ)ξµηµ
(iθ1ηµ)ηµ (0 < θ1 < 1).(8.2)

Concerning the other factor uλ(iηµ)−uλ(λ0) of the integrand in (8.1), since

uλ ∈ H(∆2(λ0, 4r
2)), by using ζµ = ξλ ∈ c corresponding to ζµ = iηµ ∈ d

and the Taylor expansion theorem, we obtain

uλ(iηµ) − uλ(λ0) = uλ(ξλ) − uλ(0)

= (uλ)ξλ
(0)ξλ +

1

2
(uλ)ξλξλ

(θ2ξλ)ξ2λ (0 < θ2 < 1).

Hence by using (5.8) we see that

uλ(iηµ) − uλ(λ0) = (uλ)ξλ
(0)δηµ (ηµ)

√
ε2 − η2

µ(8.3)

+
1

2
(uλ)ξλξλ

(θ2ξλ)(ε2 − η2
µ).

Therefore we have

D(uµ − uλ, uµ) = −(uλ)ξλ
(0)(uµ)ξµ

(0)

∫

d
δµ(ηµ)

√
ε2 − η2

µ dηµ(8.4)

−
∫

d
J(ηµ) dηµ,

where

J(ηµ) := (uλ(iηµ) − uλ(λ0))(uµ)ξµ
(iηµ)

− (uλ)ξλ
(0)(uµ)ξµ

(0)δµ(ηµ)
√
ε2 − η2

µ.

Since

∫

d
δµ(ηµ)

√
ε2 − η2

µ dηµ =

4∑

j=1

∫

(−1)j−1dj

δµ(ηµ)
√
ε2 − η2

µ dηµ

= −4

∫ ε

0

√
ε2 − η2

µ dηµ = −4ε2
∫ 1

0

√
1 − t2 dt = −πε2,

the first term of the right hand side of (8.4) is

π(uλ)ξλ
(0)(uµ)ξµ

(0)(µ− λ).
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Next we evaluate the second term of the right hand side of (8.4). By (8.2)

and (8.3) we see that J(ηµ) is

1

2
(uµ)ξµ

(0)(uλ)ξλξλ
(iθ2ξλ)(ε2 − η2

µ)

+ (uµ)ξµηµ
(iθ1ηµ)(uλ)ξλ

(0)δµ(ηµ)ξλ

√
ε2 − ξ2λ

+
1

2
(uµ)ξµηµ

(iθ1ηµ)(uλ)ξλξλ
(θ2ξλ)ηµ(ε2 − η2

µ).

Observe that |uλ| ≤ 1 and |uµ| ≤ 1. If we restrict ηµ to 0 ≤ ηµ ≤ ε < 1,

then ε2 − η2
µ ≤ ε2, |ηµ|

√
ε2 − η2

µ ≤ ε2, and |ηµ|(ε2 − η2
µ) ≤ ε3 ≤ ε2. Hence

the inequality (6.3) implies that

|J(ηµ)| ≤
(

1

2
C(2, 0)C(1, 0) + C(1, 0)C(1, 1) +

1

2
C(1, 1)C(2, 2)

)
ε2

r3

=:
C2

4r3
ε2.

Therefore we deduce
∣∣∣∣
∫

d
J(ηµ) dηµ

∣∣∣∣ =
∣∣∣∣∣

4∑

j=1

∫

(−1)j−1dj

J(ηµ) dηµ

∣∣∣∣∣ ≤
∑

j=1

4

∣∣∣∣
∫

dj

|J(ηµ)| dηµ

∣∣∣∣

≤ 4

∫ ε

0

C2

4r3
ε2 dηµ =

C2

r3
ε3 =

C2

r3
(µ− λ)3/2.

Thus the identity (8.4) implies that

(8.5)
∣∣D(uµ − uλ, uµ) − π(uλ)ξλ

(0)(uµ)ξµ
(0)(µ − λ)

∣∣ ≤ C2

r3
(µ− λ)3/2.

By (4.3), (7.8), and (8.5), we obtain, on setting C := C1 +C2, that
∣∣(D(uµ) −D(uλ)) − π

(
(uλ)ξλ

(0)(uµ)ξµ
(0) − (uλ)ηλ

(0)(uµ)ηµ(0)
)
(µ− λ)

∣∣

≤ C

r3
(µ− λ)3/2.

A fortiori we conclude that

lim
µ↓λ

D(uµ) −D(uλ)

µ− λ
(8.6)

= π lim
µ↓λ

(
(uλ)ξλ

(0)(uµ)ξµ
(0) − (uλ)ηλ

(0)(uµ)ηµ(0)
)
.

The calculation of the term on the right hand side of the above identity is

the final task to complete the proof of (4.1) (i.e. (2.6)).
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§9. Continuity of standard partial derivatives

We denote by ϕλ (ϕµ, resp.) the conformal mapping w = ϕλ(ζλ) (w =

ϕµ(ζµ), resp.) of the coordinate neighborhood (∆(0, 2r), ξλ = ξλ + iηλ)

((∆(0, 2r), ζµ = ξµ + iηµ), resp.) onto the two sheeted disc ∆2(λ0, 4r
2)

(∆2(µ0, 4r
2), resp.) with ϕλ(0) = λ0 (ϕµ(0) = µ0, resp.) so that ϕ−1

λ (ϕ−1
µ ,

resp.) is the local parameter at λ0 (µ0, resp.). Recall that πλ (πµ, resp.) is

the projection of ∆2(λ0, 4r
2) (∆2(µ0, 4r

2), resp.) onto ∆(λ, 4r2) (∆(µ, 4r2),

resp.).

Hereafter we consider only those µ > λ so close to λ as µ − λ =: ε2 <

r2/16. Then we fix ρ ∈ (2r, λ− σ) such that the closure of π−1
λ (∆(λ, ρ2)) =

π−1
µ (∆(λ, ρ2)) is disjoint from A∪B, which is possible by the choice of r in

Section 4 at the very begining. Observe that

S := π−1
λ

(
∆(λ, ρ2) \ ∆(λ, ρ2/4)

)
,

∆(λ, ρ2/4) being the closure of ∆(λ, ρ2/4), is an annulus which is a subregion

of

W = Wµ := Ĉµ \ π−1
µ ([λ, µ]) = Ĉλ \ π−1

λ ([λ, µ]).

Note that we can find an annulus X such that

∂∆2(λ0, r
2) ∪ ∂∆2(µ0, r

2) ⊂ X ⊂ X ⊂ S.

Based upon the way Ĉλ and Ĉµ were constructed we can see the ex-

istence of a mapping T = Tµ of ∂∆2(λ0, r
2) to ∂∆2(µ0, r

2) satisfying the

following three conditions by rotating ϕλ and ϕµ suitably if necessary:

(α) T : ∂∆2(λ0, r
2) → ∂∆2(µ0, r

2) is a homeomorphism;

(β) for any p ∈ ∂∆2(λ0, r
2), πλ(p) − λ = πµ(T (p)) − µ;

(λ) for any p ∈ ∂∆2(λ0, r
2), ϕ−1

λ (p) = ϕµ(T (p)).

Then clearly we have that

(9.1) lim
µ↓λ

Tµ = id.

uniformly on ∂∆2(λ0, r
2), where id. is the identity mapping.

We denote by H1(S) the class of harmonic functions h on S with |h| ≤ 1

on S. For every pair (p, q) of points p and q in S we set

d(p, q;S) = d(p, q) := sup
h∈H1(S)

|h(p) − h(q)|,
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which is clearly a metric on on S. When we view S ⊂ C = (C, z = x+ iy)

and S = {z ∈ C : c < |z| < 1}, then <z and =z are contained in H1(S).

Hence d(p, q) ≥ |<p−<q| and |=p−=q| and hence d(p, q) ≥ (1/
√

2)|p− q|.
By the equicontinuity of the class H1(S) (cf. e.g. [16]) as a consequence of

the uniform boundedness of ∇H1(S) (cf. (6.3)), we see that d(p, q)/|p − q|
is bounded on the product K1 ×K2 of two arbitrary compact subsets K1

and K2 of S. Therefore

1√
2
≤ inf

(p,q)∈K1×K2

d(p, q)

|p− q| ≤ sup
(p,q)∈K1×K2

d(p, q)

|p− q| < +∞.

This proves that the topology on S induced by d (i.e. the metric space (S, d))

is identical with the relative plane topology of S. In particular we have

(9.2) lim
µ↓λ

sup
p∈∂∆2(λ0,r)

d(p, Tµ(p)) = 0.

Next we maintain that

(9.3) lim
µ↓λ

sup
K

|uµ − uλ| = 0, and lim
ν↑λ

sup
K

|uν − uλ| = 0

for any compact subsetK of Ĉλ\{λ0}. Since the proof for the former relation

of the above can be almost verbatimely applied to that for the latter relation

of the above, we only prove the first part of the above. Since the family {uµ :

µ ↓ λ} forms a normal family (cf. e.g. [16]), for any countable subsequence

of the net (µ : µ ↓ λ) contains a subsequence (µn : 1 ≤ n < +∞) such that

(uµn)n≥1 converges to a continuous function u uniformly on each compact

subset of Ĉλ \{λ0}. It is easily seen that u ∈ C(Ĉλ \{λ0})∩H(Ĉλ0
\ ({λ0}∪

A∪B)) with 0 ≤ u ≤ 1 on Ĉλ \{λ0} and u|A = 1 and u|B = 0. Then u can

be harmonically continued to {λ0} so that u ∈ C(Ĉλ) ∩H(Ĉλ \ (A ∪ B)).

Since u− uλ ∈ C(Ĉλ)∩H(Ĉλ \ (A∪B)) and u−uλ = 0 on A∪B, we must

conclude that u− uλ ≡ 0. This proves (the first part of) (9.2).

Viewing uλ and uµ as functions on (∆(0, 2r), ζλ) and on (∆(0, 2r), ζµ),

respectively, and applying the Poisson representation formula to uλ and uµ

on ∆(0, r) (or more precisely on (∆(0, r), ζλ) and (∆(0, r), ζµ), respectively),

we obtain




uλ(ζλ) =
1

2π

∫

|ζ|=r
uλ(ζ)<

(
ζ + ζλ
ζ − ζλ

)
1

iζ
dζ (ζλ ∈ ∆(0, r)),

uµ(ζµ) =
1

2π

∫

|ζ|=r
uµ(ζ)<

(
ζ + ζµ
ζ − ζµ

)
1

iζ
dζ (ζµ ∈ ∆(0, r)).
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Differentiating both sides of the first and the second identities of the above

with respect to ξλ and ηλ and ξµ and ηµ and then setting ζλ = 0 and ζµ = 0,

respectively, we obtain





(uλ)ξλ
(0) =

1

πr

∫ 2π

0
uλ(reiθ) cos θ dθ,

(uµ)ξµ
(0) =

1

πr

∫ 2π

0
uµ(reiθ) cos θ dθ,

(uλ)ηλ
(0) =

1

πr

∫ 2π

0
uλ(reiθ) sin θ dθ,

(uµ)ηµ(0) =
1

πr

∫ 2π

0
uµ(reiθ) sin θ dθ.

Therefore

|(uµ)ξµ
(0) − (uλ)ξλ

(0)| =

∣∣∣∣
1

πr

∫ 2π

0

[
uµ(reiθ) − uλ(reiθ)

]
cos θ dθ

∣∣∣∣

≤ 1

πr

∫ 2π

0

∣∣∣uµ(reiθ) − uλ(reiθ)
∣∣∣ dθ ≤ 2

r
sup

θ∈[0,2π]

∣∣∣uµ(reiθ) − uλ(reiθ)
∣∣∣.

Then the correspondence reiθ ↔ p by the mapping reiθ = ϕλ(p) :

∂∆2(λ0, r
2) → ∂∆(0, r) is bijective and thus

∣∣∣uµ(reiθ) − uλ(reiθ)
∣∣∣ = |uµ(T (p)) − uλ(p)|

≤ |uµ(T (p)) − uλ(T (p))| + |uλ(T (p)) − uλ(p)|
≤ sup

X
|uµ − uλ| + sup

p∈∂∆2(λ0,r2)

d(p, T (p);S).

The two terms on the right most hand side of the above tend to 0 as µ ↓ λ by

(9.3) and (9.1). By repeating the same argument to |(uµ)ηµ(0)− (uλ)ηλ
(0)|,

we deduce that

(9.4)





lim
µ↓λ

(uµ)ξµ
(0) = (uλ)ξλ

(0),

lim
µ↓λ

(uµ)ηµ(0) = (uλ)ηλ
(0).

Only for the purpose to complete the proof of our main result, Theorem 2.1,

it is sufficient to have the above (9.4). Nevertheless we need the following

stronger version of the above (9.4) for the proof of Theorem 1.1 given in the
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next section. However, fixing µ instead of λ and making λ ↑ µ we can repeat

the similar argument as in this section to derive (9.4). Then we obtain (9.4)

with µ ↓ λ replaced by µ ↑ λ. Hence we deduce the following generalization

of (9.4):

(9.5)





lim
µ→λ

(uµ)ξµ
(0) = (uλ)ξλ

(0),

lim
µ→λ

(uµ)ηµ(0) = (uλ)ηλ
(0).

Then the above (9.4) (and of course (9.5)) with (8.6) finally yields that

(9.6) Dλ,0D(uλ) = π
[
((uλ)ξλ

(0))2 − ((uλ)ηλ
(0))2

]
.

This with (4.2) assures the validity of (4.1), which completes the proof of

our main result in this paper: Theorem 2.1.

§10. Proof of Theorem 1.1

By the formula (2.5) in our main theorem 2.1, we see that

(10.1) Dz,θ+π cap(A, Ĉγ,z \ B) = −Dz,θ cap(A, Ĉγ,z \B)

since cos(θ+ π) = − cos θ and sin(θ+ π) = − sin θ. Hence, in particular, on

setting θ = 0 in the above identity we have

Dz,π cap(A, Ĉγ,z \ B) = −Dz,0 cap(A, Ĉγ,z \ B).

This shows that (∂/∂x) cap(A, Ĉγ,z \B) (z = x+ iy) exists and

(10.2)
∂

∂x
cap(A, Ĉγ,z \ B) = π

[(
∂

∂ξ
uγ,z(0)

)2

−
(
∂

∂η
uγ,z(0)

)2
]
,

where ζ = ξ + iη is the standard local parameter at the branch point z̃ in

Ĉγ,z \ (A∪B) lying over z. Moreover (9.5) assures that the right hand side

of (10.2) is continuous in z. Similarly by setting θ = π/2 in (10.1) implies

that

Dz,π/2+π cap(A, Ĉγ,z \ B) = −Dz,π/2 cap(A, Ĉγ,z \B),

which shows that (∂/∂y) cap(A, Ĉγ,z \ B) (z = x+ iy) exists and

(10.3)
∂

∂y
cap(A, Ĉγ,z \B) = 2π

(
∂

∂ξ
uγ,z(0) ·

∂

∂η
uγ,z(0)

)
.
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Again by (9.5) we see that the right hand side of (10.3) is continuous in z. In

short, we have seen that the first order partial derivatives of cap(A, Ĉγ,z \
B) exist and are continuous with respect to z so that the function z 7→
cap(A, Ĉγ,z \ B) considered only locally on C is of class C1.
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