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The paper is closely related to [1] and [2]. A skew connection in a vector
bundle E as defined here is a pseudo-connection (in the sense of [1 ]) which can be
changed into a connection by transforming separately the bundle E itself and the
bundle of its differentials, i.e. one-forms on the base with values in E. The proper-
ties of skew connections are thus expected to be only "algebraically" more com-
plicated than those of connections; especially one can follow the pattern of [1 ],
and prolong them to obtain higher order semi-holonomic and non-holonomic
pseudo-connections. It is shown in this paper that under some circumstances the
main theorem of [1 ] or [2] applies also to skew connections.

Let M be a fixed (finite-dimensional, C°°-differentiable) manifold, E a (finite-
dimensional over the reals, C"°-differentiable) vector bundle with base M and
fibre type R". Let the dimension of M be m. We shall always suppose that the
structure group of a vector bundle is the maximal linear group (i.e. GL(n, R) in
the case of E), and neglect the question of its possible reducibility. Let Fbe another
vector bundle over M, p : E -> M and p': F ->• M the corresponding projections. A
C^-map <P : E —<• F (a diffeomorphism), such that p'<P = p and <P is linear on each
fibre, is called a bundle morphism (isomorphism). If T(M) and T(M)* are the
tangent and cotangent bundles respectively to M,denote Ti(E) = E ® E ® T(M)*,
and by Sl(E) the vector bundle over M of all one-jets of local sections of E.
Denoting by R the trivial bundle MxR, we have clearly Sl(R) = T^R). Note
that the fibres of both Sl(E) and Tl(E) have the same dimension, and that
E ® T(M)* can be regarded as a subbundle of both T\E) and S\E), identifying
it with Ker nT and Ker ns respectively, where nT : ̂ (E) -» £"and ns : S1(E) -> E
are the natural bundle projections. In [1 ] we have defined a pseudo-connection in
E as a bundle isomorphism H: Sl(E) -* T1(E), and we have seen that it cor-
responds to a usual connection iff nTH = ns and H is the identity on E ® T(M)*.

Let H = Ht+H2 be a pseudo-connection, where H^ : Sl(E) -» E and
H2 : S

l(E) -> E ® T(M)* are its natural composants. It is called a skew connec-
tion iff it preserves the subbundle E ® T(M)*, i.e. iff ns(X) = 0 => HX{X) = 0.
We have the evident
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344 Juraj Virsik [2]

LEMMA 1. A pseudo-connection H is a skew connection iff any of the two
conditions is satisfied:

(A) There is a bundle morphism A : E ->• E such that Hl = Ans;
(B) There is a bundle morphism Q: E® T(M)* -+E® T(M)* such that ns(X) = 0

^ H(X) = H2(X) = Q(X).

Note that if such A or Q exists for a pseudo-connection H, then both they
exist, are uniquely determined and invertible (i.e. bundle isomorphisms). Call A
the first and Q the second tensor of the skew connection H. A pseudo-connection
is thus a connection iff it is a skew connection with trivial (i.e. identity) first and
second tensors. A skew connection is called a relative connection with respect to
a bundle isomorphism A : E - » E (or briefly an A-connection) if its first and
second tensors are A and A ® idmM, respectively.

REMARK. A pseudo-connection is a skew connection, iff its components
r$(h, k — 1, • • • n; oc, ft = 0, 1, • • • m) in coordinate neighbourhoods (c.f. [1])
satisfy r£f, = 0 (h, k = 1, • • • n; i = 1, • • • m). In this case F™ are the com-
ponents of the first, and T*j the components of the second tensors.

Both the groups Aut Sl(E) or Aut T1(E), of all bundle automorphisms of
Sl(E) or Tl(E) respectively, act freely and transitively (to the right or left respec-
tively) on the set PC(E) of all pseudo-connections in E. Each element B e Aut
Tl(E) is uniquely determined by a 'matrix of tensors' (Bik)itk=1>2, where Bn :
E -» E, B12 : E-> E® T(M)*,B21 : E<g> T{M)* -• E,B22:E® T(M)* -> E®
r(M)* are bundle morphisms subject only to the condition that the morphism
(X+Y) ^ (B11(X) + B2l(Y)) + (B12(X) + B22(Y)) of T\E) onto itself be in-
vertible.

THEOREM 1. The subset SC(E) <= PC(E) of skew connections in E is one of
the orbits in PC(E) with respect to the action of the subgroup & c Aut Tl(E)
characterized by the condition B2l = 0 .

The proof is evident. Note that B21 = 0 implies the invertibility of both Bn

and B22.

THEOREM 2. If H is a skew connection in E, its first and second tensors being
A and Q respectively, and B e 38, then the first and second tensors of the skew con-
nection BHare BltA andB22 Q respectively.

The proof is again evident as well as that of the

COROLLARY. Given any pair A : E -• E, Q : E <g> T(M)* -* E ® T(M)* of
bundle isomorphisms, there is a unique orbit CAQ(E) <= PC{E), with respect to the
action of the subgroup &0 c <%t c Aut T1(E), consisting of all the skew connec-
tions in E admitting A and Q as their first and second tensors. The subgroup &0 is
characterized by the condition B21 = 0, BlY = idE, B22 = idmTTM'-
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[3] Skew connections in vector bundles 345

If H is a skew connection, A and Q its tensors as above, let B be defined by the
quadrupole 5 n = A'1, B21 = Bl2 = 0, B22 = Q~K Then H° = BH is a con-
nection in i? called the associated with H connection. Conversely, if H° is a con-
nection in E, A, Q arbitrary bundle automorphisms as above, then H = B~lH°,
where B~l is the inverse of B as above, is a skew connection admitting A and Q
as its first and second tensors respectively. Explicitly

where Tl(E) is represented by the direct sum diagram

(c.f. [1]). There is hence a natural one-to-one-correspondence between SC(E)
and all the triples consisting of connections in E and bundle automorphisms
A :E-*E, Q :E ® T(M)* -» E ( )

REMARK. If Be Aut T 1 ^ ) , B'e880B then ^ I = 5 2 1 , 52 2 = ^22 5 if

moreover i?21 = 0, then also 5 ^ = Blt. Thus the tensors i?21, B22 are in-
variants of the right cosets with respect to 88 0\ i.e. given HePC(E), the tensors
B21 = B2i(H) and B22 = B22(H) corresponding to any automorphism of Ti(E)
taking H into a connection are "invariants of the pseudo-connection H". It is a
skew connection iff B2i(H) = 0; in that case also Bll = Bll(H) is an 'invariant'
and evidently ^ ^ / f ) " 1 and B22(H)~1 coincide with the first and second tensors
of the skew connection H.

Let <P : E -> E be a bundle morphism. We have then also bundle morphisms
S1^) : Sl(E) -> S'iE) and Tl{4>) : Tl(E) -> T 1 ^ ) (c.f. [1]); Sl and T1 are
functors from the category of vector bundles over M into itself. A skew connection
HinEis called (^-invariant ifTl{$)H = HSl(<P). We have again an evident

LEMMA 2. If H e SC(E) is ^-invariant, then so is any skew connection BH,
where B e 880 and Bn commutes with $, B22 with <P ® idT(M)*-

COROLLARY. A skew connection is ^-invariant if the associated connection is
^-invariant and <P commutes with the first tensor, €> ® zY/r(M). with the second tensor.

A skew connection is called regular, if it is ^-invariant, where A is its first
tensor. Thus such H e SC(E) is regular if its associated connection is ^-invariant
and A ® idT(M), commutes with the second tensor; especially an ^4-connection is
regular if its associated connection is ^-invariant.

REMARK. The (P-invariancy of a connection H, i.e. the condition HS\^) =
Tl(<P)H, is equivalent with the condition Vx(<l>f) = <PVxffor any local section
X of T(M) and any local section/of E, where Vxf= (X, H2{jif)y is the co-
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variant derivative induced by the connection H (c.f. [1], p. 144). In other words
H is ^-invariant iff the absolute differential of <P is zero. This gives also the local
conditions for the regularity of a skew connection in terms of its components
T\ and rh

ki as

for each i = 1, • • • m; s, k = 1, • • • n.
If E and F are two vector bundles over M, HE and HF connections in E and

F respectively, then they induce natural connections HE(®)HF in E® F and
HE (®) HF in E ® F; there is also a connection HE, in the dual bundle E* in-
duced by the connection HE (see e.g. again [1 ] including the notations). Trying
to generalize this to arbitrary skew connections HE and HF with the first tensors
AE and AF, the second tensors QE and QF respectively, we first pass to the associated
connections H^, Hp", form //£ (©) HF or HE (®) H° or HE, as above, and in-
troduce HE(@) HF or HE (®) HF or / / £ , as the skew connections with these as-
sociated connections and the tensors 'naturally' connected with those of HE and
HF. In the case of the direct sum this means that we put AES)F = AE © AF,
QEBF — QE® QF f ° r t n e tensors of HE (©) / / F , but in the case of the tensor
product, to obtain the second tensor reasonably linked with QE and QF, one has
to suppose that QE = PE® R, QF = PF ® R, where PE: E-* E, PF:F^F,
R : T(M)* -* T(M)* are some bundle automorphisms. We shall refer to this situ-
ation by saying that HE and HF are R-linked. Now if the skew connections HE

and HF are i?-linked, we define the tensors of HE (®) HF and HE by AE®F =
AE® AF, QE%F = PE®PF® R and AE, = {AE)*, QE, = (PE)* ® R. Note that
if HE is an ^-connection, HF an ^-connection, then they are linked by the
identity and HE(®) HF is an (AE ® ^4F)-connection.

An easy consequence of Lemma 3.1 and 3.2 in [1 ] is

LEMMA 3. If <P : E -> E, ¥ : F' ->• F are bundle morphisms, HE and HF con-

nections in E and F respectively, then

= (HE (®) HpJS1^ ® !P)
and

T\<P)HE (®) Tl(T)HF = Tl(4> ® f )(HE (®) 7/f).

LEMMA 4. Ler <P : E ^ E, V : F -* F be bundle morphisms. Let HE be a

invariant connection in E, HF a ^-invariant connection in F. Then

(a) HE (©) HF is (<P © W)-invariant,

(b) HE(®) HF is (0 ® >P)-invariant,

(c) / / £ , w <P*-invariant.

PROOF, (a) If E © F is represented by
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"E IF

E E® F F

JE JF

then HE(®)HF= Tl(jE)HESl(nE) + Tl(jF)HFS'(nh) (c.f. (3.23) in [1]) and
hence HESl(<P) = Tl(<P)HE, HpS1^) = Tl(V)HF implies

= T'(<P ©

(b) follows directly from Lemma 3.3 in [1].

(c) Denoting by c : £ ® E* -* R the natural contraction, we have c(idE ®
<P*) = c(<£ ® ;W£.) and thus applying this, Lemma 3 and (b) to the relation Tl(c)
(HE (®) #£ .) = Sl(c), (c.f. (3.49) in [1]), we get

Tl(c)(HE(®) [HE.Sl(<P*)]) = Tl(c)(HE(®)HE.)(Sl(idE) ® S1^*))

= Tl(c)(F'(<P)HE] (®) //£.) = T\c)T\idE

Now according to the uniqueness property in Lemma 3.5 in [1], the proof is
completed.

COROLLARY. Let HE and HF be regular skew connections in E and F res-
pectively, their tensors being AE or QE = P£ ® Jt, and AF or QF = PF ® R.
Let AE commute with PE and AF with PF. Then the skew connections HE(®) HF,
HE (®) HF and HE, are regular.

PROOF. It is sufficient to show that (AE © AF) ® idT(My commutes with
QE © 6F> a nd AE ® AF ® idT(M)t with PE ® PF ® R. as well as (AE)* ® idnu)*
with (P^)* ® R; but this is obvious from the assumptions.

This corollary is useful for the prolongation procedure of skew connections.
First let us recall briefly some basic notions and notations from [1], (c.f. also [2]).

For each integer q ^ 1 denote by Sq, 5" and S" the covariant functors from
the category of veptor bundles over M into itself which are defined by means of
the holonomic, semi-holonomic and non-holonomic jet prolongations respectively
in the sense of Ch. Ehresmann. We put E = S°(E) = S°(£) = S°(£) as well as
E = T°(E) = T°(E) = T°(E) and define for each q ^ 1 recurrently

T"{E) = T*~l{E) © £ ® (6 T(M)*)

(1) T"{E) = Tq-l(E) © E ® (® T(M)*)

T"(E) = T*~l(E) ©
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giving rise to the functors Tq, Tq, T* from the category of vector bundles into
itself. Let n% : S"(E) -> S'-^E), n% : S"(E) -> S"'1^) and ns = nq

s : S"(E) =
S1(Sq~1(E)) -» S9'1^), or correspondingly n\, n% and n\ (c.f. (1)) be the natural
surjections. Let further i% : S"(E) -> S9(E), i | : S"(E) -> Sq(E) denote the natural
injections as well as iq

T and 1% in the other case. It is known (c.f. [1 ]) that i\ can be
splitted into injections

i| : S « ( £ ) - ^ S'ffl-'(£)) sHisq"i 51(^~1(£)) = Sq(E),

and analogously

iq
T : 7 * ( £ ) - ^ T\T9~\E)) THlT""l Tl(Tq-\E)) = Tq{E).

Here the morphism lq
T is determined by

^ a', (gi • • • ® a ' H « ® ^ to*
k=0 k=0

where e e £ , co* 6 T(M)* for / = 1, • • • k; k = 0, • • • q; co° = (1, x)eR and
* e M is the point 'over which' these elements are taken.

One also identifies E ® (O* T(M)*) with both the subbundles Ker n\
S\E) as well as Ker nq

T c Tq(E), and E ®q T(M)*) with both the subbundles
Ker n% c Sq(E) as well as Ker nq

T <= ^(E).
A holonomic or semi-holonomic or non-holonomic pseudo-connection of order

q ^ 1 in E is a bundle isomorphism /ft/« : S«(£") -> r«(£") or S//« : S"(E) -»
or A7f« r S * ^ ) - * ?«(£•) respectively. Given a sequence {HH"}^1 or

™= t or {NHq}™= x of pseudo-connections in £, then it is called a sequence of
holonomic or semi-holonomic or non-holonomic connections if for each q ^ 1,
nq

THHq = HH^17iq
s;HHq\m(oqT)M).) = id, with HH° = idE, or Sj-Stf* =

= W, with SH° = idE, or nTNHq = NHq~lns;
1® idT(M)., with iV#0 = «/a.

REMARK. These definitions are in accordance with the definitions of higher
order connections in vector bundles in [3], [4] or [5]. On the other hand a higher
order connection as introduced by C. Ehresmann corresponds in the case of vector
bundles to a surconnection (and not connection) of P. Libermann (c.f. [3]). See
also [6] for the relation of these two definitions.

As in [1 ], we restrict our interest to the semi-holonomic and non-holonomic
cases. The following sequences of first order pseudo-connections have been also
introduced in [1]:

{iff}, with HI: Sl(S'-1(E))

{Hq
T}, with Hq

T : S'iP'
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{HI}, with fl| : S 1 ^

{Hq
T}, with H% : ^ ( T * - 1 ^ ) ) -• T\Tq-\E)).

Such a sequence {5|} (or \H\}) is called reducible to a sequence {HJ} (or
{/??.}) if for each q ^ 1 the relation H f S 1 ^ - 1 ) =» r ^ V 1 ) ^ (orflf-S1^"1) =
T'iiy1)^) holds. A sequence

(a) {SHq}; (b) {fl|}; (c) {H<}

of pseudo-connections is called regular if for each q 2: 1 the following condi-
tion is satisfied:

(a) nq
TSHq = SHq~1Aq~iT?s for some sequence {^*~1} of automorphisms

Aq~l :Sq-\E)^Sq-\E) or, equivalent^, nq
s(SHqyl = (SHq-1)-1(Bq-1yi

n\ for some sequence {Bq~1} of automorphisms fl4"1 : Tq~l{E) -> T«"x(^);

(b) j t r H l i I ^ ^ * - 1 ^ and T1(Aq-1nq
s)HI + 14+V = H$iq

sA
qnq

s
+1 for some

sequence {A"'1} of automorphisms as sub (a);

_ (c) ns(H
q
Tyliq

T = ( i ? ' - 1 ) - 1 ^ and ^ ( ( ^ - T ^ r X ^ T 1 ^ 1 ' =
(H5-)"1i?.'(-^*)~1^r+1 f°r some sequence {Bq~1} of automorphisms as sub (a).

The relations

(2) NHq =

and

(3) NHq = Hq
TSl{NHq-1){ = )> Hq

T =

define a 'one-to-one-to-one' correspondence {H|} ~ {A /̂f*} ~ {Hf-} between the
three sequences dealt with in the non-holonomic case. The main theorem in [1 ]
states that if there is a triple of sequences in such a correspondence, then the fol-
lowing conditions are equivalent:

(I) {NHq} is reducible to a regular sequence {SHq} with the automorphisms
{A"'1} (or {B"'1 = SHq-1Aq-1(SHq-1)-1});

(II) {/?!} is reducible to a regular sequence {H|} with the automorphisms

{A"'1};

(III) {Hj-} is reducible to a regular sequence {HT} vvith the automorphisms
{Bq->}.

In particular it has been shown there that if if is a (first order) connection in
E,hz. (first order) connection in the tangent bindle T(M), then one can get 'by
prolongation' sequences which satisfy (III) and hence all the above conditions.
This can be generalized with some restrictions to the case where if is a skew con-
nection in E, h a skew connection in T(M).

Thus suppose He SC(E) with the tensors A and Q, h e SC(T(M)) with the
tensors a and q are iJ-linked skew connections, i.e. Q = P ® R, q = p ® R for
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some fixed bundle automorphism R : T(M)* -» T(M)*. We have already seen
that one can construct then two canonical sequences {Hq

T} and {H\}, where each
H% (q ^ 1) is a skew connection in Tq'1{E) with the first tensor A% = A ® JJ=0

®k a*, the second tensor Q\ = P% ® R, with P\ = P ® £ £ = 0 ® p*, and each
Hq

T (q ^ 1) is a skew connection in T"~l(E) with the first tensor A% = A ®
(® ? ~ i (idR ® a*)), the second tensor Q"T = Pf. ® /?, with Pq

T = P® (®«~* («/„ ®
/?*)). Denote by {(Hr)0} and {(/f^)0} t n e sequences of the corresponding
associated connections — they are constructed from the associated to H and h
connections H° and h° respectively as in [1].

LEMMA 5. The sequence {Hq
T} is reducible to the sequence {H\}, i.e. for each

H'lS^iy') = Tl{i"T~l)Hq
T.

PROOF. Such a relation certainly holds for the sequences {(H?)0} and
{(H"T)0} (c.f. [1] or [2]). On the other hand the relation between skew connections
and associated connections gives in this case

HI = ./I A\KT{Hqf +j].\P\ ® R)n*Tm)°,
H\ i\A\(H%y +j\\P\ ® R)n%{H\f,

and thus by (2.14-15) and (2.67-68) of [1] we get subsequently

idnM).)(P% ® R)K*(H"Tf

Here we have used the obvious relations

A\ ly' = ,yl A\ and Pq
T iqf' = \\~l Pq

T.

THEOREM 3. Let H be a skew connection in E with the tensors A and
Q = p ® R which is regular and such that A commutes with P. Let h be a skew
connection in T(M) with a trivial first tensor (i.e. a = Wr(M)) andtne second tensor
q = p ® R [especially let h be a connection in T(M)). Then the canonical sequence
{Hq

T} of skew connections is reducible to the canonical sequence {Hq
T}, which is

regular.

PROOF. According to Lemma 5, all we have to prove is that {Hq
T} is regular.

By the corollary of Lemma 4 we easily conclude, that each skew connection Hf
is regular, i.e. ^-invariant, i.e. Tl(A9

T
+1)Hq

T
+1 = Hq

T
+lS\Aq

T
+l) => S" (^)

Sl{Ayl)~\H'yl)-liq
T

+v = S\n\){H'ylYlT1{Aq
T

+iyliq
T

+v. Now we have
evidently Sl(nq

T)Sl(Aq
T

+1)~l = S1 (Aq
T)~lSl(nq

T), and from (4) we also derive
= H%S\n\), i.e. S^SS-X^ 1 )" 1 = (Hq

T)-lT\nq
r). Finally by
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(2.64) of [1] we get T^H^T^A9/1)-1!?1' = T1(Aq
T)-liq

Tnq
T

+1 and this com-
pletes the proof, since we have

(5) Tl{A\)-'ii=-?T{A?lyi

because of a = idT(M).
The results just obtained can be summarized in the following way: If the as-

sumptions of Theorem 3 are satisfied — especially if H is a regular relative con-
nection in E and h a connection in T(M) — then the prolongation procedure de-
scribed in [1] and [2] 'works' in essentially the same manner as for connections.
That is, we get a canonical sequence {NHq} of non-holonomic pseudo-connections
in E reducible to a regular sequence {SHq} of semi-holonomic pseudo-connections
in E, and they are uniquely connected also with a sequence {Hq

s} of first order
pseudo-connections in the nonholonomic jet prolongations of E reducible to a
regular sequence {Hq

s} of pseudo-connections in the semi-holonic jet prolongations
of E. Since {SHq} is regular, n%(X) = 0 => nq

TSHq(X) = 0, and we have also

THEOREM 4. Under the assumptions of Theorem 3, all the H% and Hq
s are skew

connections.

PROOF. By (4.8-9) of [1], Hq
s = Tl{NHq-lylNH" = T^NH"' l)~1H^

S^NH"'1), i.e. nTH% = {NHq~1)-1Aq
TNHq-1ns, which proves that H% is a

skew connection. Similarly ns(X) = 0 => nsS\SHq-L){X) = SHq-lns{X) = 0
and thus also nTHq

TS\SHq-1) = 0 which means by (4.44) of [1] that SH"'1

KTHq
s = 0, i.e. Hq

s is a skew connection.
One can define, in an evident manner, the functors Tq, Tq, Sq, Sq from the

category of vector bundles over M into itself. Note that for A : E -* E we have by
our notations now T"(A) = Aq

T
+i, Tq(A) = Aq

T
+\. and Sq(A) = S1(Sq-1(A))

recurrently also satisfies

(6) iqSq(A) = Sq{A)i%.

THEOREM 5. If H is a regular A-connection in E and h a connection in T(M)
then the canonical prolongations are such that each Hq

T is a Tq~i(A)-connection,
each Hq

T is a Tq~1(A)-connection, each H | is a Sq~1(A)-connection, and each
H\ is a Sq~l(A)-connection.

PROOF. The statement is evident for the Hq
T and Hq

T from their construction.
We shall first show that for q ̂  1

(7) NHqSq(A) = Tq(A)NHq.

This being evident for q = 1, we proceed by induction using (2) and get NH9S"(A)
= Hq

TSl(NHq-lSq-\A)) = B'rS^f-^AyjS^NH*-1) = T"(A)Hq
TS1(NHq-1)

= tq(A )NHq, because by the Corollary of Lemma 4 the skew connection Hq
T is

regular. Using this relation we have as in the proof of the preceding theorem
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. Also if s

T>-\E) ® T(M)* <= S'ip-^E)) then #«•(*) = {Tq~x{A) ® idnUi.)(X) and
thus by (2), T*"1^) ® idT(M). = i\W|Ker,J<=s,(Si-,(E))[(iV/n-1)-1 ® Wr(M).],
i.e. by (7), NHq\Kerns = NHq~1Sq~l(A) ® idT(M).. But then for JTeKer7rs

c S 1 ^ " 1 ^ ) ) w e h a v e a g a i n by (2)> Rqs{X) = Tl(NHq-lYlNHq(X) =
[(NH"'1)'1 ®idnM)t][NHq~1S''~1(A)^)idT(M),](X), from where we con-
clude that Us is a S11"1 (^-connection, As for the //£, consider (6) together
with the reducibility condition of {Hf} to {H$}. From the just proved result
about Hq

s we get fflnTH% = nTTl{iqfx)Hq
s = Sq~1(A)jisS

l(iq
s'

1) = Sq~1{A)
' l ^ s = iqs~lS9~i(A)ns, and hence nTHq

s = Sq~i{A)ns, because lq
s~

l is injective.
Also if A-eKer ns c Sl{Sq-\E)), then Sl(i%-l){X) e Ker TIS «= S^S^^E))
and thus by the already proved result about H% we have Tl(iqfl)Hq

s(X)

= (if-1 ® idT(M).){s
q'l{A) ®

and this proves the last relation because of the injectivity of Tl(i% ! ) .

THEOREM 6. £/«cfer the assumptions of Theorem 5, all the relative connections
Hq

T,Hq
T,Hq

s, Hq
s are regular.

PROOF. It is again evident from the Corollary of Lemma 4 that this is true
for H"T and Hq

T. Thus we have only to prove T1(Sq'1(A))Hq
s = Hq

sS"(A), and
Tl(Sq-x(A))Hq

i = Hq
sS

l(Sq-1(A)). The first relation follows by (2) and (3)
from (7) as R%Sq(A) = Tl(NHq~xYlNHqSq{A) = ^ ( ( J W 1 ) - 1 ? * - 1 ^ ) )
NHq = T\Sq-1{A))T1(NHq-1Y1NH'1 = r 1 ^ " 1 ^ ) ) ^ . The second relation
is obtained from this, the reducibility of {Hq

s} to {Hq
s} and (6) as T1(iq

s-
1)Hq

s

sl(5*-1(A)) = Hqsl(iq
s-

1sq-1(A)) = flis'CS*-1^))^1^!"1) = r^S*-1^))^!
S'OS"1) = ^ ( S ' - ^ ^ ^ ^ O r 1 ) ^ ! = ^( i r^r^S^ '^^H^Q.E.D. , since
r1^"!"1) is injective.

REMARK. Restricting ourselves to the most important case of a skew con-
nection, namely to that of a relative connection, we have seen here that 'the pro-
longation procedure works' only if the initial (regular) relative connection in E
is 'pushed' by a (strict) connection in T(M). This is due to our definition of the
regularity of the sequence {H\}. If H and h were both arbitrary regular relative
connections, we would still get the prolonged sequence {H9

T} reducible to {Hq
T},

however not necessarily regular, the obstacle being essentially only with the rela-
tion (5). It seems likely that one could generalize the notion of a relative connec-
tion (most probably by developing the formalism in the category of 'all' vector
bundles rather than only of those over a fixed M), and get a deeper condition for
the 'initial' correlation (of the relative connection in T(M) to the relative connec-
tion in E) in order to 'let the prolongation procedure work".
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