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TOPOLOGICAL RELATIONSHIPS
IN SPATIAL TESSELLATIONS

VIOLA WEISS,∗ Fachhochschule Jena
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Abstract

Tessellations of R
3 that use convex polyhedral cells to fill the space can be extremely

complicated. This is especially so for tessellations which are not ‘facet-to-facet’, that is,
for those where the facets of a cell do not necessarily coincide with the facets of that cell’s
neighbours. Adjacency concepts between neighbouring cells (or between neighbouring
cell elements) are not easily formulated when facets do not coincide. In this paper we
make the first systematic study of these topological relationships when a tessellation of
R

3 is not facet-to-facet. The results derived can also be applied to the simpler facet-to-
facet case. Our study deals with both random tessellations and deterministic ‘tilings’.
Some new theory for planar tessellations is also given.
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topology
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1. Introduction

In this paper we study random stationary spatial tessellations, that is, random tessellations of
the three-dimensional space R

3 having statistical properties that are invariant under translation.
We develop new mean-value formulae for various topological parameters in cases where the
cells of the tessellation are convex polyhedra. The formulae generalize one of the identities for
stationary planar tessellations presented by the second author [2], [3] in 1978. These identities,
using notation based on his later papers (see [6] and [7]), are

µ = 2θ

θ − 2
, (1)

ν = 2(θ − φ)

θ − 2
. (2)

Hereµ indicates, for a typical cell, the expected number of edges (or vertices) of the tessellation
on the cell’s boundary. The entity ν is the expected number of sides (or corners) that the typical
cell has. For a typical tessellation vertex, θ is the mean number of emanating edges. If a vertex
has j emanating edges, there are j angles subtended by these edges at the vertex; if one of these
angles is equal to π , the vertex is called a π -vertex. The parameter φ is defined as the proportion
of vertices which are π -vertices. The words ‘vertex’ and ‘edge’ refer to the tessellation, whilst
‘corner’ and ‘side’ are words used for the 0-faces and 1-faces of the convex polygonal cells.
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(a) (b)

z

Figure 1: (a) The planar tessellation formed as the superposition of a Poisson–Voronoi tessellation and
its Poisson–Delaunay ‘dual’. The tessellation is side-to-side—every edge is a ‘side’ of the two polygonal
cells that it separates. Side-to-side tessellations have no π -vertices. (b) A Voronoi tessellation with each
cell split by a random chord through the point used to generate that cell. These generating points are not
shown; the original Voronoi vertices are shown with dots. Note that half of all vertices of the tessellation,
those without dots, are π -vertices. The cell marked ‘z’ has five sides and seven edges on its boundary.

The two entities µ and ν are equal for a side-to-side tessellation (see Figure 1(a) for a
definition of this terminology and an example), but differ if there exist π -vertices as in the
example of Figure 1(b).

We illustrate (1) and (2) with four examples. In Figure 1(a), suppose that the Poisson
point process that generates the tessellation has intensity ρ. Then the vertex intensities of
the Delaunay and Voronoi components of the tessellation are ρ and 2ρ, respectively. It is
known (see [21]) that the intensity of the edge crossings of these two components is 4ρ. So
θ = (6 × ρ + 3 × 2ρ + 4 × 4ρ)/7ρ = 4. Since φ = 0, we can write µ = ν = 4.

In Figure 1(b), both the Voronoi vertices and the new vertices created by the random chords
have intensity 2ρ. So φ = 1

2 . Each type is always of order three, so θ = 3. Therefore, µ = 6
and ν = 5.

The other two examples are based on Figure 2. In Figure 2(a), a realisation of the so-
called stable with respect to iteration (STIT) model of Nagel and Weiss (see [14] and [22]) is
shown. Here the tessellation within the window is constructed by the successive division of
cells (in a particular manner) with independent random chords. This is one of a wide class of
tessellations (recently systemised in [5]) which can be constructed in an iterative way. Many
such constructions have similar characteristics to this picture, with all vertices being π -vertices
and having order 3. Thus, φ = 1 and θ = 3; so µ = 6 and ν = 4. Although not constructed
by an iterative division of cells, we note that one of the Arak class of models (see [1] and [17])
has similar parameters and so a similar calculation.

The tessellation in Figure 2(b) also comes from the iterative division of cells, but it starts
with a triangular window and all random chords are constrained to create only triangular cells
(see the caption of Figure 2, and [4] and [5]). Here, too, all vertices are π -vertices and all cells
have three sides (so φ = 1 and ν = 3). Therefore, from (2), 3 = 2(θ − 1)/(θ − 2), which
implies that θ = 4. From (1), µ = 4.

These examples illustrate that (2) is an essential adjunct to (1). In all the examples, we note
that the fundamental parameters θ and φ satisfy the general constraints:

0 ≤ φ ≤ 1, 3 ≤ θ ≤ 6 − 2φ. (3)
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(a) (b)

Figure 2: (a) A realisation of the STIT model within a rectangular viewing window. (b) This tessellation
is constructed by the successive division of cells with independent random chords, commencing with a
bounded triangular window which is the first cell in the process (the ancestor). The division chord is drawn
from a randomly selected corner of the triangle to a random point on the opposite side, thereby creating
two triangular daughter cells. This rule is applied iteratively, with dilation to keep the line intensity
and mean cell size constant, to yield a tessellation comprising only triangular cells. If this construction
converges to a stationary locally finite tessellation of R

2 (an issue still under consideration in our studies),
its realisation will look like the figure.

These constraints, which improve those derived by Kendall and Mecke [9], who made no use
of φ, apply to (1) and (2). The upper bound on θ , which has not been reported before, follows
from (2) and ν ≥ 3.

Strangely, few authors have paid any attention to the difference between edges and sides.
Mecke [11], [13] developed (1), but not (2), and the standard text of Stoyan et al. [28, Sections
10.3 and 10.4] includes only (1) in a list of identities for stationary planar tessellations. In R

3,
there has been no discussion of the analogues of (2), although there have been generalisations of
(1) (see [12], [25], and [28], together with the d-dimensional study of Møller [18]). Likewise,
in the influential book of Schneider and Weil [26, Chapter 10] which discusses tessellations of
R
d , d ≥ 2, only the facet-to-facet case is treated (though they use the equivalent face-to-face

concept). These books and papers do not discuss the rather complicated issues that arise in
three-dimensional tessellations which are not facet-to-facet.

Formula (2) is shown to be valid, for the planar case with nonconvex cells and curved
edges, in [7], but the issue is not discussed in the studies of planar structures with curved cell
boundaries by either Stoyan [27] or Miles [16]. Nor has there been reference to formulae
like (2) in the studies of more general tessellations, those where the structure is a cell complex
in R

d constructed with various systems of nonconvex cells (see [10], [30], and [31]). This is
perhaps understandable as those cell-complex papers deal with purely topological structures
not tainted by the geometric concepts of ‘angles equal to π ’.

So there is a gap in the literature; our current paper fills this gap. It provides the first
systematic study of the complications in R

3 when a tessellation is not facet-to-facet, whilst also
giving some new theory for the planar case.

2. Notational style

With some exceptions that we have cited, the studies mentioned above deal only with the
primitive elements of the tessellation: in the planar case, the vertices, edges, and cells of the
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planar graph that the structure creates. In R
3, the two-dimensional polygonal plates which

separate the three-dimensional cells are also considered, along with vertices, edges, and cells.
All of these entities are convex polytopes.

These primitive elements are sometimes referred to as 0-cells, 1-cells, 2-cells, and (in the
spatial case) 3-cells, reflecting the dimension of the element—in keeping with cell-complex
theory. This has led to notation such as µij := the expected number of j -cells adjacent to the
typical i-cell and λi := the intensity of i-cells, by which is meant the intensity of the point
process of centroids of i-cells. For example, µ01 is the expected number of edges ‘adjacent to’
(that is, ‘emanating from’) the typical vertex—Cowan’s θ in the planar case.

We note that, for each class of objects in the realised tessellation, there is a point process
formed from the objects’ centroids. When the class comprises a primitive type of element,
the point process is simple—that is, all centroids are distinct points of the Euclidean space,
so there are no ‘multiple points’ of the point process. Later, when we consider other objects,
the centroids will often coincide, forming a nonsimple point process with multiplicities. For
example, in R

2, the corners of cells will induce a point process with a multiplicity at each vertex
of the tessellation, and the centroid of a cell’s side will often coincide with the centroid of a
neighbouring cell’s side, giving a multiplicity of 2. Indeed, the two sides in such cases will
often coincide—they are the same geometric object, distinguished by the implicit link each has
to a cell.

Because our study looks at many objects which have the same dimension, we are unable to
rely solely on subscripts which convey the object’s dimension. For example, in R

2 the symbol
µ21 would be ambiguous, meaning both the expected number of edges and the expected number
of sides adjacent to a typical cell (because edges and sides are both of dimension 1).

Instead, we use letter subscripts for the primitive elements, namely V , E, P , and Z for the
object classes vertices, edges, plates, and cells (‘Z for Zellen’ is used instead of ‘C for cell’
because one of us has used ‘C for corner’ in earlier work).

For objects which are the faces of primitives, e.g. the sides (1-faces) and corners (0-faces)
of polygonal primitives (such as cells in R

2 or plates in R
3), we retain some use of dimensional

subscripts whilst conveying by letter the type of primitive element which ‘owns’ the face.

Definition 1. LetX be a class of convex polytopes, each member of the class having dimension
i ≤ 3. Define Xj , j < i, as the class of objects which are j -dimensional faces (j -faces) of
some polytope belonging to X. Further nesting is allowed, so (Xj )k, k < j < i, denotes
the class of objects which are k-faces of a j -face of some object belonging to X. An object
belonging to X is often referred to as ‘an X-type object’ or ‘an object of type X’.

In R
2 for example, an object of type Z1 is a side of a cell, Z0 denotes the objects which are

corners of cells, and E0 is the class of termini of edges. In R
3, objects of types P1 and (Z2)1

are respectively a side of a plate and a side of a facet (which is a 2-face of a cell). A 0-face
or 1-face of a three-dimensional polyhedral cell—called an apex or ridge, respectively—is in
the class Z0 or Z1. A terminus of a ridge is type (Z1)0. Because of possible multiplicities,
discussed above, some of these classes are multisets.

Remark 1. For some purposes, it may be necessary to emphasise the ownership of an object
inXj . For example, when considering a cell corner z0 ∈ Z0, we might wish to distinguish this
corner from the other cell corners at the same position. In that circumstance, we must place
an ownership ‘mark’ on each element of Z0, and deal with a product space Z+

0 := Z0 ×M ,
where M is the mark space comprising elements of Z. In this paper we have no need for this
augmentation; Definition 1 is sufficient.
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The notation in Definition 1 appears complicated, but many simpler styles were tried and
found inadequate. We shall assist verbally where appropriate, however, referring to an object’s
face as a facet, ridge, or apex for objects which are polyhedra, as a side or corner for polygons,
and as a terminus for line segments.

Subsets of the class X are denoted by X[·], with the term in the square brackets being a
suitably chosen symbol introduced in an ad hoc manner. For example, in R

2, the subclass of
π -vertices is V [π ].

We now formalize the notation for ‘object intensity’ and the concept of ‘adjacent objects’.

Definition 2. The intensity of objects belonging to class X is denoted by λX.

Definition 3. An object x ∈ X is said to be adjacent to an object y ∈ Y if either x ⊆ y or
y ⊆ x. For any x ∈ X, the number of objects of type Y adjacent to x is denoted by mY (x).
For a random tessellation, we define µXY as the expected value ofmY (x) when x is the typical
member ofX. Formally, we write µXY := EX(mY (x)) = ∫

mY (x)PX(dx), where EX denotes
an expectation for the typical object of typeX (that is, defined with respect to the Palm measure
PX; see [28]). Also, µ(2)XY := EX(mY (x)2).

If B(r) is the ball of radius r centred at the origin, µXY can also be defined formally as

µXY := lim
r→∞

∑
{x∈X : centroid of x is in B(r)}mY (x)

number of objects of type X with centroid in B(r)
, (4)

when the limit shown is a constant. This is so for ergodic tessellations (see [2] and [3]) and for
regular tilings with an infinitely repeated subunit of cells (as in [8]). This latter type can be made
to fit our random stationary framework by locating the origin O uniformly distributed within
one copy of the repeating subunit. The limit in (4) is also a constant for many tessellations
that have a ‘tiling component’, for example, those randomly constructed from a tiling or those
mixed with or superimposed on a tiling.

When X and Y are both primitive-element classes, it has been shown in [10], [11], and [30]
that

λXµXY = λYµYX, (5)

and this identity also holds when either X or Y or both are classes of faces of primitives;
Theorem 5.1 of [18] provides the proof of this extension. For example, when discussing sides
of plates, λP1µP1Z = λZµZP1 .

We can express θ and φ, symbols used by Cowan in planar tessellations, using the adjacency
notation; θ = µVE and φ = µ ◦

VZ1
, the expected number of ‘side interiors’ adjacent to a typical

vertex (where the interior of a side, or indeed of any object x of lower dimension than the

space of the tessellation, is defined using the relative topology on x). Also,
◦
X denotes the class

comprising the relative interiors of objects in class X (and ∂X denotes the class comprising
boundaries, defined once more using the appropriate relative topology). Whilst we drop the
usage of θ from this point, preferring µVE , we retain φ.

3. Known results for the primitive elements

For the primitive objects in a planar tessellation, Table 1 gives the known values of λX and
µXY . The table, based on the studies cited above, includes (1).
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Table 1: Results for the primitive elements in tessellations of R
2. (a) λX values forX ∈ {V,E,Z}. Note

that λV − λE + λZ = 0. (b) µXY when both X and Y belong to {V,E,Z}. Note the validity of (5). We
also note that λV [π ] = φλV .

(a) λX values (b) µXY values

Y
X λX/λV X

V E Z

Vertices V 1 V 1 µVE µVE

Edges E 1
2µVE E 2 1 2

Cells Z
µVE − 2

2
Z

2µVE
µVE − 2

2µVE
µVE − 2

1

Table 2: Results in R
3 using the abbreviation f , defined in (6). (a) λX when X ∈ {V,E, P,Z}. Note

that λV − λE + λP − λZ = 0. (b) Values of µXY for primitive-element classes X and Y . Note that
µVE − µVP + µVZ = 2 and µZV − µZE + µZP = 2.

(a) λX values (b) µXY values

Y
X λX/λV X

V E P Z

Vertices V 1 V 1 µVE
1
2µVEµEP

1
2f (2)

Edges E 1
2µVE E 2 1 µEP µEP

Plates P
µVEµEP

2µPV
P µPV µPV 1 2

Cells Z
f (µPV )

2µPV
Z

µPV f (2)

f (µPV )

µVEµEPµPV

f (µPV )

2µVEµEP
f (µPV )

1

Also known are the same entities for the primitive elements of spatial tessellations. In Table 2
we write these in terms of µVE,µEP , and µPV , a trio with cyclic subscripts, and use

f (x) := µVEµEP − x(µVE − 2) (6)

as a useful abbreviation.

4. The faces of primitive elements: planar case

We now calculate some results for faces of the primitive elements, dealing with the planar
case first. To find λZ1 , the intensity of sides, we note that µZ1E − µ ◦

Z1V
= 1. Therefore,

λZ1 = λZ1µZ1E − λZ1µ
◦
Z1V

= λEµEZ1 − λV µ
◦

VZ1

= 2λE − φλV

= (µVE − φ)λV , (7)

using identity (5), φ = µ ◦
VZ1

(each vertex being adjacent to either 0 or 1 side interiors), and
the obvious µEZ1 = 2 (each edge being adjacent to two sides).
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Formula (7) leads on to (2)—with assistance from some new notation which generalizes
Cowan’s entity ν.

Definition 4. Let X be a class of convex polytopes, all members of which have dimension i.
For j < i, we define nj (x) as the number of j -faces of a particular object x ∈ X. Define
νj (X) := EX(nj (x)), the expected number for the typical X-object.

The notation allows nesting; for example, νk(Xj ) is the expected number of k-faces of the
typical object of type Xj (k < j < i, where i = dim x for all x ∈ X). An example with two
levels of nesting occurs in spatial tessellations: ν0((Z2)1) is the expected number of termini of
a typical ‘side of a facet’ of a cell.

Some examples of the definition in the fairly simple planar case are as follows.

• ν1(Z) = the expected number of sides of the typical cell (Cowan’s ν). We can write
λZ1 = λZν1(Z). Therefore, using (7) and Table 1,

ν1(Z) = λZ1

λZ
= 2(µVE − φ)

µVE − 2
, (8)

providing a fresh proof of Cowan’s ν (see (2)). Of course, ν0(Z) = ν1(Z) and this leads
to λZ0 = λZν0(Z) = (µVE − φ)λV .

• ν0(E) = the mean number of edge termini of the typical edge. Trivially, ν0(E) = 2, so
λE0 = λEν0(E) = µVEλV .

• ν0(Z1) = the mean number of side termini of the typical side. Obviously, ν0(Z1) = 2,
so λ(Z1)0 = λZ1ν0(Z1) = 2(µVE − φ)λV .

Table 3 summarizes the planar λ- and ν-results expressed in terms of µVE and φ.
Table 4 gives various planar µ-results, proved in Appendix A. Many of these results use

the second moment, µ(2)VE , and µV [π ]E , the expected number of edges adjacent to the typical
π -vertex. The following function is a useful abbreviation:

g(x)

{:= µ
(2)
VE − xφµV [π ]E, φ > 0,

= µ
(2)
VE, φ = 0.

(9)

We conclude our material on planar tessellations by restating that our results summarised in
Tables 1, 3, and 4 should be read with the constraints of (3) in mind.

Table 3: Results for faces of the primitive elements (and faces of faces) in planar tessellations.

λX values νj (X), j ≤ 1, values

X λX/λV X ν0(X) ν1(X)

Termini E0 µVE Edges E 2 —

Corners Z0 µVE − φ Sides Z1 2 —

Sides Z1 µVE − φ Cells Z
2(µVE − φ)

µVE − 2

2(µVE − φ)

µVE − 2
Side termini (Z1)0 2(µVE − φ)
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Table 4: Further µXY values for the primitive-element classes V,E, and Z in a planar tessellation, and,
for those classes, E0, (Z1)0, Z0, and Z1, whose members are faces of (or faces of faces of) primitives.

These supplement those µXY values in Table 2(b). The function g is defined in (9).

µXY values

Y
X

V E Z E0 (Z1)0 Z0 Z1

V

See Table 2(b)

µVE 2(µVE − φ) µVE − φ 2µVE − φ

E
2µ(2)
VE

µVE

4g(1)

µVE

2g(1)

µVE
2

Z
2µ(2)
VE

µVE − 2

4g(1)

µVE − 2

2g(1)

µVE − 2
—

E0 1
µ
(2)
VE

µVE

µ
(2)
VE

µVE

µ
(2)
VE

µVE

2g(1)

µVE

g(1)

µVE

2g(1/2)

µVE

(Z1)0 1
g(1)

µVE − φ

g(1)

µVE − φ

g(1)

µVE − φ

2(g(2)+ φ)

µVE − φ

g(2)+ φ

µVE − φ

2g(3/2)+ φ

µVE − φ

Z0 1
g(1)

µVE − φ

g(1)

µVE − φ

g(1)

µVE − φ

2(g(2)+ φ)

µVE − φ

g(2)+ φ

µVE − φ

2g(3/2)+ φ

µVE − φ

Z1
2µVE − φ

µVE − φ

µVE

µVE − φ
—

2g(1/2)

µVE − φ

2(2g(3/2)+ φ)

µVE − φ

2g(3/2)+ φ

µVE − φ
—

5. Description of facets in a spatial tessellation

The situation in R
3 has much greater complexity, as seen in Figure 3, which shows a particular

facet z2 of a cell—plus some of the other cells that ‘interact’with it. In Figure 3(a), we note that
z2 comprises eight polygonal plates. The interior of z2 has considerable structure; it contains
three vertices and 10 edge interiors of the tessellation. These numbers agree with the following
Eulerian formula for any facet z2 ∈ Z2:

mV (
◦
z2)−mE(

◦
z2)+mP (z2) = 1. (10)

Formula (10) follows from an application of Euler’s planar-graph formula to yield

mV (z2)−mE(z2)+mP (z2) = 1,

combined with mV (∂z2) = mE(∂z2), for all z2 ∈ Z2.
Along each of the 10 edge interiors mentioned above, the two coplanar plates of z2 which

meet along the edge make a dihedral angle equal to π and, at the three vertices in z2’s interior,
all emanating edges are contained in a closed hemisphere centred on the vertex.

Definition 5. An edge whose interior is contained in the interior of a facet is called a π -edge;
the class of π -edges is E[π ]. A vertex contained in the interior of a facet is called a hemi-
vertex (and the class called V [h]). The proportion of π -edges in the tessellation is denoted by
ξ := µ ◦ ◦

EZ2
and the proportion of hemi-vertices by κ := µ ◦

VZ2
.

There are eight other cells positioned above z2 which share a plate of this facet with the cell
below z2; two of these are shown in Figure 3(b) and we note that their facets extend beyond
the shared plates. The triangular prism seen in Figure 3(c) packs between the two cells of
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(a) (b)

(c) (d)

(e) (f)

Figure 3: A cell facet z2 ∈ Z2 and some neighbouring cells. The cell positioned below z2 has z2 as one
of its facets.

Figure 3(b) and has one of its ridges lying along two collinear edges of our facet (seen in
Figure 3(a)).

Two other ‘above cells’ which share a plate with the cell below are shown in Figure 3(d),
whilst Figure 3(e) shows a cell (the tall dark one) whose only contact with our facet z2 is via one
of its apices; the apex coincides with an interior vertex of z2. Yet another cell packs in behind
the tall dark one in Figure 3(f), and there are other cells (not drawn) which fill the foreground.

From (10), we can derive λZ2 , the intensity of facets. We have

µ ◦
Z2V

− µ ◦ ◦
Z2E

+ µZ2P = 1.
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Therefore,
λZ2 = λZ2µ

◦
Z2V

− λZ2µ
◦ ◦
Z2E

+ λZ2µZ2P

= λV µ
◦

VZ2
− λEµ

◦ ◦
EZ2

+ λPµPZ2 (using (5) and λ ◦
E = λE)

= κλV − ξλE + 2λP (because µPZ2 = 2)

=
(
κ − 1

2
ξµVE + µVEµEP

µPV

)
λV (from Table 2). (11)

Furthermore, since λZ2 can also be written as λZν2(Z), we can derive ν2(Z), the expected
number of faces of the typical cell. We have

ν2(Z) = λZ2

λZ

= 2κµPV − ξµVEµPV + 2µVEµEP
f (µPV )

(from (11) and Table 2)

= µZP − µPV
ξµVE − 2κ

f (µPV )
. (12)

This is our first formula which is analogous to Cowan’s planar formula (8). Other analogous
formulae for ν1(Z) and ν0(Z) follow in the next section.

6. Description of ridges in a spatial tessellation

Figure 4(a) shows two facets of a cell, each containing some edges. These edges create three
vertices on the ridge which are common to the two facets.

There may, however, be other vertices in the ridge interior. For example, another cell may
have an apex on the ridge, or it might have one of its ridges intersecting with the ridge, creating
one or two vertices additional to those shown in the figure.

So we must recognise that a vertex of the tessellation may lie in a ridge interior (or indeed
in many ridge interiors). This is true even for hemi-vertices. The expected number of ridge

(a) (b)

Figure 4: (a) Two facets of a cell and the ridge which is their intersection. (b) Six cells from a tessellation
formed by congruent triangular prisms. The vertical axis is the z-axis, whilst the horizontal axes are the

x-axis (pointing right) and the y-axis (pointing to the back).

https://doi.org/10.1239/aap/1324045694 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1324045694


Topological relationships in spatial tessellations SGSA • 973

interiors adjacent to a typical vertex, ψ := µ ◦
VZ1

, turns out to be an important parameter of
spatial tessellations.

Example 1. Consider Figure 4(b). Both triangular end facets of the prism are equilateral
triangles of side length equal to 1. These facets are parallel to each other and to the xz-plane.
They are orthogonal to the other three facets (which are 1 × L rectangles). The tessellation is
made up of cells of this type. The cells are packed around a central axis which is orthogonal
to the xz-plane (and so parallel to the horizontal y-axis), thereby forming an infinite length
hexagonal rod. The rods pack to fill R

3.
The positioning of cells is such that whenever the xz-plane cuts a cell, the distance between

the cell’s front triangular facet and the xz-plane is uniformly distributed in (0, L), independently
for each cell which is cut. (The origin O is uniformly distributed within one such cell.) So
triangular facets (which always comprise one whole plate) never share an edge. The edges of
the triangles are π -edges; there is one of these π -edges lying against each rectangular facet,
dividing the facet into two rectangular plates. Every vertex is adjacent to five ridge interiors,
so ψ = 5.

In order to find ν1(Z), we note that

µZ1E − µ ◦
Z1V

= 1.

Therefore, using
λZ1µZ1E = λE(µEP − ξ), (13)

together with Table 2, (5), and λ ◦
Z1

= λZ1 ,

λZ1 = λZ1µZ1E − λ ◦
Z1
µ ◦
Z1V

= λE(µEP − ξ)− λV µ
◦

VZ1

= 1
2 (µVE(µEP − ξ)− 2ψ)λV . (14)

Because λZ1 also equals λZν1(Z), Table 2 gives

ν1(Z) = λZ1

λZ

= µPV (µVE(µEP − ξ)− 2ψ)

f (µPV )

= µZE − µPV
ξµVE + 2ψ

f (µPV )
. (15)

So, from Euler’s polyhedral formula, supplemented by (12), (15), and the information given in
the caption of Table 2,

ν0(Z) = ν1(Z)− ν2(Z)+ 2

= 2µPV
µVZ − (κ + ψ)

f (µPV )

= µZV − µPV
2(κ + ψ)

f (µPV )
. (16)

Therefore,
λZ0 = λZν0(Z) = (µVZ − κ − ψ)λV . (17)
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Every ridge is the side of two facets. So

λ(Z2)1 = 2λZ1 , (18)

µ(Z2)1E = µZ1E = λE

λZ1

(µEP − ξ) (from (13)). (19)

Identity (18) yields formulae for ν1(Z2) and ν0(Z2), the expected numbers of sides and corners
of the typical facet. Trivially, λZ2ν1(Z2) = λ(Z2)1 . Therefore, using (11) and (14),

ν1(Z2) = 2λZ1

λZ2

= 2µPV (µVE(µEP − ξ)− 2ψ)

2µVEµEP − µPV (ξµVE − 2κ)
. (20)

Obviously, ν0(Z2) = ν1(Z2).

7. Sides and corners of the typical plate

Following the methods employed above, we note that

µP1E − µ ◦
P1V

= 1.

So, using Table 2 and µEP1 = µEP ,

λP1 = λP 1µP1E − λP1µ
◦
P1V

= λEµEP1 − λV µ
◦

VP1

= 1
2λV (µVEµEP − 2µ ◦

VP1
). (21)

Therefore,

ν1(P ) = λP1

λP

= µPV
µVEµEP − 2µ ◦

VP1

µVEµEP

= µPV

(
1 − 2τ

µVEµEP

)
, (22)

where τ := µ ◦
VP1

, the expected number of plate-side interiors adjacent to a typical vertex. In
the prism tessellation, τ = 4. Obviously, ν0(P ) = ν1(P ).

Every plate p ∈ P is contained in two cells, z and z′ say. It lies in a facet of each, say z2 of

z and z′2 of z′. Consider a side p1 of p, and suppose that there exists a vertex v ⊂ ◦
p1. If v is

not a hemi-vertex of the tessellation then

(a)
◦
p1 is contained in a ridge of z and also in a ridge of z′—as is v.

If v is a hemi-vertex then either (a) is true or

(b)
◦
p1 is contained in a ridge of one of the cells, z or z′, and in the interior of a facet of the
other cell—as is v.
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8. λX, νj (X) and µXY in the spatial case

Using the notation f defined in (6), together with

t (x) : = 2µVEµEP − x(ξµVE − 2κ), (23)

in Tables 5 and 6 we express νj (X), and the remaining λX.
We also tabulate, in Table 7, some additional µXY formulae (supplementing Table 2).

Tables 2 and 7 contain all µ-values which can be expressed in terms of our three cyclic mean
adjacency parameters, µVE , µEP , and µPV , and our four Greek parameters, ξ , κ , ψ , and τ .

We refer the reader to Appendix B for proofs of the results in Table 7, and for methods to
deal with nonprimitive objects of dimension 0 (which have in their formulae various second
moments, or subtype first moments such as µXY , where X = E[π ]).

It is impractical to present a full 15 × 15 table comprising all µXY formulae, many of which
are typographically lengthy. We turn instead to examples.

Table 5: Intensities for nonprimitives in spatial tessellations, from (11), (14), (17), (18), (21), and (23).

X λX/λV

Facets Z2
t(µPV )

2µPV
Ridges Z1

1
2 (µVE(µEP − ξ)− 2ψ)

Apices Z0
1
2f (2)− κ − ψ

Facet sides (Z2)1 µVE(µEP − ξ)− 2ψ

Facet corners (Z2)0 µVE(µEP − ξ)− 2ψ
Plate sides P1

1
2 (µVEµEP − 2τ)

Plate corners P0
1
2 (µVEµEP − 2τ)

Edge termini E0 µVE

Ridge termini (Z1)0 µVE(µEP − ξ)− 2ψ

Plate-side termini (P1)0 µVEµEP − 2τ

Facet-side termini ((Z2)1)0 2(µVE(µEP − ξ)− 2ψ)

Table 6: Values of νj (X), j ≤ 2, from (22), (20), (12), (15), (16), and (23).

X ν0(X) ν1(X) ν2(X)

E 2 — —
Z1 2 — —
P1 2 — —
(Z2)1 2 — —

P µPV

(
1 − 2τ

µVEµEP

)
µPV

(
1 − 2τ

µVEµEP

)
—

Z2 2
µVE(µEP − ξ)− 2ψ

t(µPV )(µPV )−1 2
µVE(µEP − ξ)− 2ψ

t(µPV )(µPV )−1 —

Z µZV − µPV
2(κ + ψ)

f (µPV )
µZE − µPV

ξµVE + 2ψ

f (µPV )
µZP − µPV

ξµVE − 2κ

f (µPV )
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Table 7: Other values of µXY , where either (i) x ∈ X ⇒ dim(x) > 0 and Y ∈ {V,E, P,Z} or
(ii) y ∈ Y ⇒ dim(y) > 0 and X ∈ {V,E, P,Z}. A dash is used to signify that an entry cannot be

expressed in terms of the entities defined in this paper.

µXY values

Y
X

V E P Z

Z2 2µPV
κ + µVE(µEP − ξ)

t (µPV )
µPV

µVE(2µEP − ξ)

t (µPV )

2µVEµEP
t (µPV )

—

Z1 2
µVE(µEP − ξ)− ψ

µVE(µEP − ξ)− 2ψ

µVE(µEP − ξ)

µVE(µEP − ξ)− 2ψ
— —

(Z2)1 2
µVE(µEP − ξ)− ψ

µVE(µEP − ξ)− 2ψ

µVE(µEP − ξ)

µVE(µEP − ξ)− 2ψ
— —

P1 2
µVEµEP − τ

µVEµEP − 2τ

µVEµEP

µVEµEP − 2τ
— —

Z2 Z1 (Z2)1 P1

V κ + µVE(µEP − ξ) µVE(µEP − ξ)− ψ 2(µVE(µEP − ξ)− ψ) µVEµEP − τ

E 2µEP − ξ µEP − ξ 2(µEP − ξ) µEP

P 2 — — —

Z — — — —

9. Illustrative examples

We consider three examples: the spatial STIT model, which provides a three-dimensional
version of Figure 2(a); a tetrahedral model; and the prism tessellation illustrated in Figure 4(b).

9.1. The spatial STIT model

The µ-values for primitive elements in the spatial STIT model are known (from [23]) and
are tabulated below in Table 8(a). Using the values in Table 8(a), we evaluate the terms in
Table 6 for the STIT model—see Table 8(b). A list of intensities is compiled in Table 8(c).

It is known that the interior of the typical cell of a spatial STIT model has the same distribution
as the interior of the typical cell in a Poisson plane process. So

ν0(Z) = 8, ν1(Z) = 12, ν2(Z) = 6.

This implies, from the last row of Table 8(b) and the obvious fact from the STIT construction
that all edges are π -edges, that

ψ = 2, κ = 2
3 , and ξ = 1. (24)

These results for ψ and κ are new, arising from the theory of this paper. Also new is the
result ν0(Z2) = ν1(Z2) = 4, proved using Table 8(b) and (24).

A spatial STIT tessellation has two types of vertex, illustrated in Figure 5. The vertex type
in Figure 5(a), which we call a crossing vertex, is adjacent to two plate-side interiors and four
ridge interiors and no facet interior. The vertex type in Figure 5(b) is adjacent to one plate-side
interior, one ridge interior, and one facet interior (which makes it a hemi-vertex). Because

https://doi.org/10.1239/aap/1324045694 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1324045694


Topological relationships in spatial tessellations SGSA • 977

Table 8: Results for the spatial STIT process.

(a) µXY for the primitives (b) ν values

Y
X

V E P Z
X ν0(X) ν1(X) ν2(X)

V 1 4 6 4 P 6
7 (6 − τ) 6

7 (6 − τ) —

E 2 1 3 3 Z2
6(6 − 2ξ − ψ)

3κ + 1

6(6 − 2ξ − ψ)

3κ + 1
—

P 36
7

36
7 1 2 Z 24 − 6(κ + ψ) 36 − 6(2ξ + ψ) 14 − 6(2ξ − κ)

Z 24 36 14 1

(c) Intensities

X V E P Z Z2 Z1 Z0 (Z2)1 (Z2)0 P1 P0 X0, dimX = 1

λX/λV 1 2 7
6

1
6 1 2 4

3 4 4 14
3

14
3 λX0 = 2λX

(a) (b)

Figure 5: (a) A crossing vertex in the STIT tessellation. (b) A hemi-vertex in the STIT tessellation.

Table 9: Various adjacencies for the spatial STIT model.

µXY values

Y Y
X

V E P Z
X

Z2 Z1 (Z2)1 P1

Z2
26
3 10 7

3 — V 26
3 6 12 32

3

Z1 3 2 — — E 5 2 4 3

(Z2)1 3 2 — — P 2 — — —

P1
16
7

9
7 — — Z — — — —

κ = 2
3 , the probability that a typical vertex is hemi-type is 2

3 . So τ = 2 × 1
3 + 1 × 2

3 = 4
3 . We

check that ψ = 4 × 1
3 + 1 × 2

3 = 2, as derived above.
The first row of Table 8(b) now gives ν0(P ) = ν1(P ) = 4. Interestingly, the typical plate

has the same average number of sides as the typical facet. On average, a typical facet comprises
µZ2P = 7

3 plates, as follows from a result of Table 7, which we rewrite as Table 9.

Remark 2. All of the results for this STIT example were unknown prior to this study. Some
of the results, however, have been computed in a study (see [29]) conducted in parallel with
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our paper, using only properties of STIT tessellations. The original content in this section is
shared with [29]; neither paper has priority over the other.

9.2. A tetrahedral model

A spatial tessellation in which all cells are tetrahedra has ν0(Z) = ν2(Z) = 4 and ν1(Z) = 6.
So two independent equations (in the six unknownsµVE ,µEP ,µPV , ξ , κ , andψ) can be found
from the last row of Table 6, allowing us to express two of the variables in terms of the other
four. Choosing κ and ψ , we have

κ = 4 − µVE

(
2 − 1

2
ξ − µEP

µPV

)
, (25)

ψ = µVE

(
3 + 1

2
(µEP − ξ)− 3

µEP

µPV

)
− 6. (26)

Reassuringly, these equations then prove that the expression in Table 6 for ν0(Z2) collapses to
3, as it should; facets of tetrahedra are triangles.

The best known example of a spatial tessellation comprising only tetrahedral cells is the
Poisson–Delaunay tessellation. This is a facet-to-facet tessellation, so κ = ξ = ψ = τ = 0
and µPV = 3. It is also known, from [15], [18], [19], and [20] (see also [24]), that

µVE = 2 + 48π2

35
≈ 15.5355 and µEP = 144π2

24π2 + 35
= 6 − 12

µVE
≈ 5.2276. (27)

Also,

λE =
(

1 + 24π2

35

)
λV , λP = 48π2

35
λV , λZ = 24π2

35
λV .

The equality in (27) of µEP and 6 − 12/µVE is predicted by (25) and (26), one of which
becomes redundant in this particular case.

We now construct a tetrahedral model that is not facet-to-facet. We do this by randomly
and independently dividing each cell of a Poisson–Delaunay tessellation into two tetrahedral
cells. This is achieved by randomly choosing one of the six ridges of the tetrahedral cell (whose
vertices we generically label ABCD for discussion purposes, with AB the randomly chosen
ridge) and a uniformly random point Q on the opposite ridge CD. Construct a dividing plane
containing AB and Q, an exercise repeated for all cells.

Because each cell divides, the new (denoted by a prime) λZ is

λ′
Z = 2λZ.

The new dividing planeABQ in our generic cell creates two lines: AQ on the original plate
ACD and BQ on the original plate BCD. Focusing on the original plate ACD, we note that
it may acquire another line (with one end placed at either A, C, or D) through the division
of the other cell adjacent to ACD, and this line might cross the line AQ forming a vertex of
crossing type (see Figure 5(a)). The original plate ACD will become, post-division, one of the
following structures.

• ACD becomes four plates, three being triangular and one four sided, because of the
creation of a crossing-type vertex. The new lines have also created four π -edges. This
outcome has probability 1

6 .

• It remains untouched by new lines, with probability 1
4 .
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• Just one of its adjacent cells places a line on ACD (probability 1
2 ), creating one π -edge

and dividing the plate ACD into two triangular plates.

• Two noncrossing lines are created on ACD (probability 1
12 ), dividing ACD into three

triangular plates and adding two π -edges to the tessellation.

Each of the new π -edges mentioned above is adjacent to three plates.
Accounting for these outcomes, we can write (using P [j ] to denote the class of plates with

j sides)

λ′
P = λZ + λP

(
1

6
× 4 + 1

4
× 1 + 1

2
× 2 + 1

12
× 3

)
= 128π2

35
λV ,

λ′
P [4] = 1

6
λP = 8π2

35
λV ,

λ′
P [3] = λ′

P − λ′
P [4] = 120π2

35
λV ,

ν′
0(P ) = ν′

1(P ) = 3λ′
P [3] + 4λ′

P [4]
λ′
P

= 49

16
≈ 3.0625, (28)

λ′
E[π ] = λP

(
1

6
× 4 + 1

4
× 0 + 1

2
× 1 + 1

12
× 2

)
= 64π2

35
λV .

Prior to the division, an edge e was adjacent to mP (e) plates and mZ(e) cells; here mP (e) =
mZ(e) due to the facet-to-facet property of the Poisson–Delaunay tessellation. After division,
e has been split into a random number R of non-π -edges e1, e2, . . . , eR by various generic
Q-points. Edge ei is adjacent post-division to a random number m′

P (ei) of plates. Clearly,
E(R | mZ(e)) = 1+ 1

6mZ(e) because each of themZ(e) cells originally adjacent to ewill place
its Q-point on e with probability 1

6 . Also, E(m′
P (ei) | mZ(e),mP (e)) = mP (e)+ 1

6mZ(e) =
7
6mP (e) for all i; this follows because each of these mZ(e) cells will select e as its AB-ridge
with probability 1

6 . Therefore, using E[π̄ ] to denote the class of non-π -edges, we have

λ′
E[π̄ ] =

(
1 + 1

6
µEZ

)
λE =

(
1 + 1

6
µEP

)
λE =

(
1 + 48π2

35

)
λV ,

λ′
E = λ′

E[π ] + λ′
E[π̄ ] =

(
1 + 16π2

5

)
λV ,

ξ ′ = λ′
E[π ]
λ′
E

= 64π2

7(5 + 16π2)
≈ 0.5539, (29)

µ′
EP = 3ξ ′ + 7

6
µEP (1 − ξ ′) = 72π2(175 + 176π2)

7(5 + 16π2)(35 + 24π2)
≈ 4.3824. (30)

Additionally,

λ′
V = λV + 1

6
λP + 1

6
µEZλE =

(
1 + 32π2

35

)
λV ,

with the three types, original, crossing-type, and Q-point vertices, being in proportions 35 :
8π2 : 24π2. The latter two types have mE(v) = 4, whilst

E(mE(v) | v is original) = µVE + 1
2µVZ.
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Therefore,

µ′
VE = 35 × (µVE + µVZ/2)+ (8 + 24)π2 × 4

35 + 32π2 = 14(5 + 16π2)

35 + 32π2 ≈ 6.5012, (31)

using µVZ = 1
2f (2) = 1

2µVEµEP − µVE + 2 = 96π2/35.
Equations (29)–(31) give us three of the seven fundamental parameters; these, combined

with the obvious result, κ ′ = 0, enable us to solve (25) for µPV , yielding

µ′
PV = 9(175 + 176π2)

16(35 + 24π2)
≈ 3.9560. (32)

Now solving (26) for ψ yields

ψ ′ = 8π2(35 + 528π2)

(35 + 24π2)(35 + 32π2)
≈ 4.3429. (33)

Finally, the seventh and last fundamental parameter, τ ′, is found from Table 6 combined with
(30)–(32) and (28):

τ ′ = 1

2
µ′
VEµ

′
EP

(
1 − ν′

0(P )

µ′
PV

)
= 32π2(102π2 − 35)

(35 + 24π2)(35 + 32π2)
≈ 3.2176. (34)

All seven parameters are now in place, κ ′ = 0 and those displayed as (29)–(34).

9.3. The triangular-prism example (Example 1 continued)

As this fairly regular tessellation can be visualised clearly in Figure 4(b), the following
parameters and entries in Table 10 are presented without further comment:

ξ = 1
2 , κ = 0, ψ = 5, and τ = 4.

Table 10: Various parameters in the triangular-prism tessellation.

µXY values ν values

Y
X

V E P Z Z2 Z1 (Z2)1 P1
X ν0(X) ν1(X) ν2(X)

V 1 4 9 7 16 11 22 14 P 15
4

15
4 —

E 2 1 9
2

9
2

17
2 4 8 9

2 Z2
18
5

18
5 —

P 27
4

27
4 1 2 2 — — — Z 6 9 5

Z 21 27 8 1 — — — —

Z2
48
5

51
5

8
5 —

Z1
11
3

8
3 — —

(Z2)1
11
3

8
3 — —

P1
14
5

9
5 — —

Intensities

X E P Z Z2 Z1 Z0 (Z2)1 (Z2)0 P1 P0 X0, dimX = 1

λX/λV 2 4
3

1
3

5
3 3 2 6 6 5 5 λX0 = 2λX
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10. Concluding remarks

For spatial tessellations, we have introduced seven fundamental parameters. These are the
three mean adjacencies, µVE , µEP , and µPV , which are sufficient to describe the more im-
portant topological relationships in facet-to-facet tessellations, and our four Greek parameters,
ξ , κ , ψ , and τ , which are needed in other cases. The constraints which apply to these seven
parameters are complicated. So we defer the study of the seven-dimensional parameter space
to a later paper.

We note that, even in the simpler facet-to-facet case, no study of the constraints operative
on µVE , µEP , and µPV has yet been published by other authors.

Appendix A. The planar adjacencies in Table 4

Lemma 1. If a vertex v ∈ V is adjacent to mE(v) edges and m ◦
Z1
(v) side interiors, then it is

adjacent to
(mE(v)−m ◦

Z1
(v)) corners,

(2mE(v)−m ◦
Z1
(v)) sides,

mE(v) cells,

mE(v) edge termini,

and 2(mE(v)−m ◦
Z1
(v)) side termini.

Note that m ◦
Z1
(v) equals either 1 or 0, the vertex v respectively being a π -vertex or not.

This obvious lemma immediately gives us µVY for any object class Y in the tessellation,
and this leads to µYV via (5). For example, when Y is the class Z1 of cell sides,

µVZ1 = EVmZ1(v) = EV (2mE(v)−m ◦
Z1
(v)) = 2µVE − µ ◦

VZ1
= 2µVE − φ.

Therefore,

µZ1V = λV

λZ1

µVZ1 = 2µVE − φ

µVE − φ
.

Objects of dimension 0 lie on the vertices of the tessellation. If X is a class of zero-
dimensional objects, that is, X ∈ {V,E0, Z0, (Z1)0}, its point process can be viewed as a
marked point process: a process of points located at the vertices with a mark at a vertex v of
mX(v). So it is easily seen that, for any object class Y in the tessellation,

λXµXY = λVEV (mX(v)mY (v)). (35)

This identity, combined with Lemma 1, provides us with most of the formulae in Table 4. For
example, if X is the class Z0 of corners and Y is the class Z1 of sides,

µZ0Z1 = λV

λZ0

EV (mZ0(v)mZ1(v))

= 1

µVE − φ
EV ((mE(v)−m ◦

Z1
(v))(2mE(v)−m ◦

Z1
(v)))

= 1

µVE − φ
EV (2mE(v)2 − 3mE(v)m

◦
Z1
(v)+ (m ◦

Z1
(v))2)

= 2µ(2)VE − 3φµV [π ]E + φ

µVE − φ
,
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using the fact that (m ◦
Z1
(v))2 = m ◦

Z1
(v) (see Lemma 1) and

EV (m ◦
Z1
(v)) = φEV (m ◦

Z1
(v) | m ◦

Z1
(v) = 1) = φ,

EV (mE(v)m ◦
Z1
(v)) = φEV (mE(v)m ◦

Z1
(v) | m ◦

Z1
(v) = 1)

= φEV (mE(v) | m ◦
Z1
(v) = 1)

= φµV [π ]E.

The remaining formulae in Table 4 follow either from the use of (5) or by very simple
arguments which we leave to the reader.

Appendix B. The spatial adjacencies

B.1. Objects of dimension 0

In the spatial case also, objects of dimension 0 lie on the vertices of the tessellation. So the
mathematical approach to adjacency relationships such as µXY when the objects belong to X
all have dimension 0 follows the same style as in the planar case. In the spatial case, however,
Lemma 2 below replaces Lemma 1.

Lemma 2. If a vertex v is adjacent tomE(v) edges,mE[π ](v) π -edges,mP (v) plates,m ◦
Z2
(v)

facet interiors, m ◦
Z1
(v) ridge interiors, and m ◦

P1
(v) plate-side interiors, then it is adjacent to

(mP (v)−mE(v)+ 2) cells,

(m ◦
Z2
(v)+ 2mP (v)−mE[π ](v)) facets,

(2mP (v)−mE[π ](v)−m ◦
Z1
(v)) ridges,

(2mP (v)−m ◦
P1
(v)) plate sides,

(2mP (v)−mE[π ](v)− 2m ◦
Z1
(v)) ridge termini,

2(2mP (v)−mE[π ](v)− 2m ◦
Z1
(v)) facet-side termini,

mE(v) edge termini,

2(2mP (v)−mE[π ](v)−m ◦
Z1
(v)) facet sides,

2(mP (v)−m ◦
P1
(v)) plate-side termini,

(mP (v)−m ◦
P1
(v)) plate corners,

(2mP (v)−mE[π ](v)− 2m ◦
Z1
(v)) facet corners,

and (mP (v)−mE(v)+ 2 −m ◦
Z2
(v)−m ◦

Z1
(v)) apices.

Note that m ◦
Z2
(v) equals either 1 or 0, the vertex respectively being a hemi-vertex or not.

This lemma gives us µVY for any object Y in the tessellation. For example, when Y is a
facet side (Z2)1,

µV (Z2)1 = EV (m(Z2)1(v))

= 2EV (2mP (v)−mE[π ](v)−m ◦
Z1
(v))

= 2(2µVP − µVE[π ] − ψ)

= 2(µVE(µEP − ξ)− ψ).
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For X ∈ {V,E0, P0, Z0, (Z1)0, (Z2)0, (P1)0, ((Z2)1)0}, we can use (35) to establish µXY .
For example, if X is the class (P1)0 of plate-side termini and Y is the class of Z2 facets, then

µ(P1)0Z2 = λV

λ(P1)0

EV (m(P1)0(v)mZ2(v))

= 1

µVEµEP − 2τ
EV (2(mP (v)−m ◦

P1
(v))(m ◦

Z2
(v)+ 2mP (v)−mE[π ](v)))

= 2

µVEµEP − 2τ
[EV (mP (v)m ◦

Z2
(v))+ 2µ(2)V P − EV (mP (v)mE[π ](v))

− EV (m ◦
P1
(v)m ◦

Z2
(v))− 2EV (m ◦

P1
(v)mP (v))

+ EV (m ◦
P1
(v)mE[π ](v))]

= 2

µVEµEP − 2τ
[ψµV [h]P + 2µ(2)V P − EV (mP (v)mE[π ](v))

− ψµ ◦
V [h]P1

− 2EV (m ◦
P1
(v)mP (v))+ EV (m ◦

P1
(v)mE[π ](v))].

We see that expressions can be quite expansive typographically and involve many second
moments.

Obviously, all examples ofµXY with Y having dimension 0 can be calculated by first finding
µYX and then using (5).

B.2. Objects of dimension 1

The following lemma establishes the adjacencies µXY (and µYX) in Table 7, when Y
comprises objects of dimension greater than or equal to 1 and X = E.

Lemma 3. If an edge e ∈ E is adjacent to mP (e) plates and m ◦
Z2
(e) facet interiors, then it is

adjacent to

(mP (e)−m ◦
Z2
(e)) ridges,

(2mP (e)−m ◦
Z2
(e)) facets,

mP (e) cells,

mP (e) plate sides,

and 2(mP (e)−m ◦
Z2
(e)) facet sides.

Note that m ◦
Z2
(e) equals either 1 or 0, the edge respectively being a π -edge or not.

For example, µEZ2 = EE(mZ2(e)) = EE(2mP (e)−m ◦
Z2
(e)) = 2µEP − ξ . Then, by us-

ing (5),

µZ2E = λE

λZ2

µEZ2 = µVEµPV

t (µPV )
(2µEP − ξ) = µPV

t (µPV )
µVE(2µEP − ξ).

B.3. Higher-dimensional objects

Formulae for µXY when dim(Y ) ≥ dim(X) ≥ 2 are more difficult to address. They cannot
be expressed in terms of the parameters we have introduced, so they lie outside the scope of
this paper.
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