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We address the problem of shock-induced ignition and transition to detonation in a reactive
medium in the presence of mechanically induced fluctuations by a moving oscillating
piston. For the inert problem prior to ignition, we provide a novel closed-form model
in Lagrangian coordinates for the generation of the train of compression and expansions,
their steepening into a train of N-shock waves and their reflection on the lead shock, as well
as the distribution of the energy dissipation rate in the induction zone. The model is found
to be in excellent agreement with numerics. Reactive calculations were performed for
hydrogen and ethylene fuels using a novel high-fidelity scheme to solve the reactive Euler
equations written in Lagrangian coordinates. Different regimes of ignition and transition
to detonation, controlled by the time scale of the forcing and the two time scales of the
chemistry: the induction and reaction times. Two novel hotspot cascade mechanisms were
identified. The first relies on the coherence between the sequence of hotspot formation
set by the piston forcing and forward-wave interaction with the lead shock, generalising
the classic runaway in fast flames. The second hotspot cascade is triggered by the feedback
between the pressure pulse generated by the first-generation hotspot cascade and the shock.
For slow forcing, the sensitisation is through a modification to the classic runaway process,
while the high-frequency regime leads to very localised subcritical hotspot formation
controlled by the cumulative energy dissipation of the first-generation shocks at a distance
comparable with the shock formation location.
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1. Introduction
The process of deflagration to detonation transition (DDT) is central to both astrophysical
reactive hydrodynamics, as it controls, for example, supernova explosions of white dwarfs,
and terrestrial reactive hydrodynamics, as flames, given sufficient development time and
appropriate boundary conditions, will eventually accelerate their volumetric burning rate
until forming detonations. Detonations in reactive gases propagate at hypersonic speeds,
with Mach numbers ranging from 5 to 8 and over-pressures in the range of 10–20. Clearly,
the transition phenomenon is to be avoided in process industries, but can be beneficial in
propulsion applications utilising the tremendous power of detonation waves, such as pulse
detonation, oblique detonation and rotating detonation engines.

The transition from deflagration to detonation is marked by a continuous switch in
ignition mechanism. While in deflagrations, ignition is controlled mainly by diffusion
of active species and energy, in detonations, diffusion-less auto-ignition relying on gas
compression by waves is the main driving mechanism. The transition from deflagrations to
detonations is a three-dimensional phenomenon, and involves the deformation of the flame
surface area by non-homogeneous flow, and even disruption of the flamelet structures
themselves, when active turbulent time scales are shorter than those of flames. Reviews
of DDT phenomena can be found in the work of Lee & Moen (1980) and Ciccarelli &
Dorofeev (2008), with an entry point in the more modern literature in the more recent
work of Poludnenko et al. (2019), Oran et al. (2020), Saif et al. (2017) and Bychkov et al.
(2012) and their co-workers.

The last stages of DDT generally occur when the volumetric burning rate averaged at
some macroscale associated with the front definition and propagation attains the maximum
value permitting steady propagation, denoted by the Chapman–Jouguet (CJ) condition
(Chue et al. 1993; Dorofeev et al. 2000; Eder & Brehm 2001; Saif et al. 2017; Poludnenko
et al. 2019). In practice, depending on boundary conditions, this CJ deflagration is
invariably headed by a shock wave (Rakotoarison et al. 2024). An example of the last
stages of DDT is shown in figure 1. At this stage, the flame acts like a fast piston, sustaining
the lead shock. Any acceleration in global burning rate at this stage does not permit
quasi-steady propagation and translates into the generation of a train of forward- and rear-
facing shocks. The DDT process is the series of rapid auto-ignition phenomena that
collectively yield a detonation wave. Experiments and numerical simulations of DDT
are usually very difficult to reconstruct and rationalise due to this inherent multi-scale
and multi-dimensional phenomenon. This is usually compounded by the fact that hotspot
ignition is influenced in a non-trivial way by other neighbouring hotspots, and their
interaction is mainly gas dynamic, i.e. via compression and expansion waves that can be
long-ranged.

The onset of DDT is also quite difficult to predict in engineering calculations that only
assess the global flame dynamics and lead shock strength. The DDT is usually a subgrid
phenomenon to be modelled (Dorofeev et al. 2000; Middha & Hansen 2008). For example,
Meyer et al. (1970) have shown that the detailed reconstruction of the global dynamics (i.e.
space- and time-filtered) of the lead shock is insufficient to predict the DDT. More recently,
Saif et al. (2017) showed that the ignition delays calculated for the mean lead shock speed
measured experimentally over-predict the real ignition and DDT time scales observed in
experiments by several orders of magnitude in sensitive mixtures. It is well recognised that
this discrepancy is due to fine-scale events and hotspot formations, that can be formed by
a variety of mechanisms (Oran & Gamezo 2007; Saif et al. 2017). This calls for a multiple
hotspot model for DDT, which is the main motivation of the present study.

The existing theory of DDT is currently restricted to the formation of single reactive
spots in which auto-ignition occurs. The coupling between the gas-dynamic evolution
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Figure 1. The propagation of a CJ deflagration wave headed by a shock and the subsequent detonation
formation in H2–air, φ = 0.65, illustrating the pressure waves emitted by the non-planar flame and DDT ahead
of the flame in the last frame. Adapted from Eder (2001).

and the chemical dynamics controlling the ignition delays is now well understood. It can
explain the vast type of behaviour depending on the sensitivity of the induction kinetics
to temperature release, initial gradients in fluid state and time scales of energy deposition.
Reactive front propagation is conditioned by the local ignition time gradients. Much of
the work focuses on the coupling of so-called fast, or diffusionless, flames and the gas-
dynamics fields, which controls pressure-wave amplification. This is a modern extension
of the Zel’dovich gradient mechanism that exploits the coherence between the speed of fast
flames, controlled by reactivity gradients and acoustic waves. This coherence extends to
shock waves as well, and is sometimes called shock-wave amplification by coherent energy
release (SWACER) (Lee & Moen 1980). An entry point in the vast modern literature on
the subject is the lucid treatment of Sharpe & Short (2003).

The present study aims to extend the previous work on DDT from single hotspots and
consider the influence of nonlinear acoustic forcing of sufficient high frequency such that
multiple hotspots can appear. We thus study the cooperative effect of multiple hotspots on
DDT. We use a one-dimensional approach and consider a non-steady piston, modelling
the flame, that generates mechanical disturbances in the medium ahead of it, in the form
of compression and expansion waves.

These waves not only modify the state of the gas ahead of the piston directly, but also
interact with the lead shock, generating entropy layers. The resulting non-homogeneous
reactive field is then conducive to multiple hotspot formation and transition to detonation.
The control parameters are the strength of the lead shock, controlled by the mean piston
speed, and the amplitude and frequency of the mechanical waves, controlled by the piston’s
speed fluctuations and frequency. In spite of the model’s apparent simplicity, it is shown
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Figure 2. Schematic of the problem solved in the Eulerian and Lagrangian frames of reference, in which the
particle label φ serves as independent variable replacing the space variable x .

numerically and analytically that different ignition and DDT regimes can be observed,
with sometimes profound consequences on the time scales of ignition and DDT and how
they differ from calculations without account of perturbations.

For physical clarity and computational efficiency, the problem is posed in Lagrangian
coordinates, such that particle paths are easily tracked and visualised and numerical
diffusion usually plaguing this type of numerical calculation can be controlled. A novel
numerical scheme is formulated for reactive gas dynamics in Lagrangian coordinates. We
first study the non-steady gas dynamics that arises in a non-reactive medium, treating
the problem numerically and theoretically in the weakly nonlinear acoustic regime. The
temperature field obtained then serves as leading-order solution for investigating and
interpreting the reactive dynamics. The reactive dynamics is determined numerically. We
focus on two fuel mixtures, H2–O2 and C2H4–O2, with realistic chemistry to highlight the
importance of the different ignition and reaction time scales, as well as the sensitivity of
ignition delay to temperature.

The paper is organised as follows. Section 2 provides the statement of the physical model
and governing equations for a reactive diffusionless fluid in Lagrangian coordinates, while
a derivation is given in Appendix A. Section 3 details the formulation of our new numeri-
cal scheme for reactive gas dynamics with multiple species in Lagrangian coordinates and
its validation. Section 4 provides the solution to the inert problem. Section 5 provides the
results of reactive calculations for the two fuels. Section 6 discusses the various regimes
of ignition and DDT in terms of the amplitude and frequency of the forcing.

2. Problem definition in Lagrangian coordinates
The one-dimensional problem is illustrated schematically in figure 2 in the laboratory, or
Eulerian, frame as well as in the Lagrangian frame of reference following particle paths.
A piston is set in motion at time t = 0 into a gas at rest and of homogeneous state denoted
by subscript ‘0’. The piston has a non-steady speed given by

u p = u p0 + A sin(2π f t), (2.1)

where u p0, A and f represent the average speed, fluctuation amplitude and fluctuation
frequency, respectively. These are held constant. This means that the piston motion is
modelled as a constant-speed motion to which is superimposed a simple harmonic motion.

1009 A42-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

22
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.229


Journal of Fluid Mechanics

In the current problem, simple harmonic motion is considered as the fluctuation, i.e.
A � u p0.

The piston’s impulsive motion generates a main lead shock, followed by a non-
homogeneous state affected by the piston fluctuations. These fluctuations are controlled
by the compression/expansion waves originating at the piston, interactions of these with
the lead shock, generation of entropy waves along particle paths and of course internal and
rear boundary and lead shock reflections of these waves.

The problem can be posed in Lagrangian coordinates. A general derivation starting from
the more familiar Eulerian formulation is presented in Appendix A. The field equations
are (

∂v

∂t

)
φ

−
(

∂u

∂φ

)
t
= 0, (2.2)(

∂u

∂t

)
φ

+
(

∂p

∂φ

)
t
= 0, (2.3)(

∂etot

∂t

)
φ

+
(

∂pu

∂φ

)
t
= 0, (2.4)(

∂Yi

∂t

)
φ

= vωi , (2.5)

where v = 1/ρ is the specific volume, u the particle speed, p the pressure, etot = e +
(1/2)u2 the total energy, e =

N∑
i=1

Yi ei the specific internal energy of the mixture, Yi the

mass fraction of the i th component and ωi the mass production rate of species i per unit
volume per unit time, obtained from chemical kinetics. The independent variables are time
t and a mass-weighted Lagrangian coordinate φ, defined in terms of the Eulerian space
variable x by

φ =
∫ x

x p(t)
ρ dx, (2.6)

where x p(t) is the trajectory of the piston in the laboratory frame. A line of constant
φ denotes a particle path. Partial derivatives with time keeping φ constant, for example
(∂Yi/∂t)φ , represent the rate change along a particle path, i.e. a material derivative.

These equations are supplemented by the equation of state for an ideal gas linking
the dependent variables to the mixture temperature T and the prescription of ωi , the
mass production rate of species i per unit volume per unit time and ei in terms of
the field variables from a thermo-kinetic database. This formulation is standard and not
reproduced here; see for example Kee et al. (2005). In the present study, the different
chemical components are assumed ideal gases with temperature-dependent specific heats
entering the prescription of ei . The Li et al. (2004) thermochemical database is used for
the calculations involving hydrogen and the reduced San Diego thermochemical database
for the ethylene calculations (Varatharajan & Williams 2002a,b). The use of a reduced
mechanism for ethylene is due to the prohibitive computational price of the full San Diego
mechanism. The reduced mechanism provides an accurate prediction as compared with
the full mechanism, as we show below. A more extensive comparison between the full and
reduced mechanisms can be found in the original publications (Varatharajan & Williams
2002a,b).
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3. Numerical method
Both reactive and inert calculations require the numerical solution of the Lagrangian
conservation laws given by (2.2)–(2.5). We note these are written in conservation form(

∂U

∂t

)
φ

+
(

∂F
∂φ

)
t
= Q (3.1)

with ‘conserved’ variables U = [v, u, etot , Yi ]T , corresponding ‘fluxes’ F =
[−u, p, pu, 0]T and sources Q= [0, 0, 0, vωi ]T . Standard finite-volume methods
for compressible flow apply, here the volume being a mass element. While the equivalent
modern finite-volume methods for hyperbolic system of equations have been demonstrated
for Lagrangian coordinates (e.g Munz 1994), we are not aware of their application to
reactive flows. Our extension of these methods to reactive flows is the well-established
operator splitting method or Strang splitting method of treating sequentially the inert
hydrodynamics and the reactive problems (LeVeque 2002), usually used in solving the
Eulerian system of gas dynamics. This operator-splitting approach is particularly attractive
in the Lagrangian system, as no mass is transferred between the neighbour elements.
Each volume contains the same gas throughout the entire simulation, which minimises
numerical diffusion errors. Each element of gas responds solely to compression/expansion
from neighbouring ones. While the inert hydrodynamic solver, detailed next, follows
current best practices for high-order resolution of gas-dynamic discontinuities, the
reactive step uses the Cantera package to integrate the resulting ordinary differential
equations with their built-in stiff ODE solver (Goodwin et al. 2017).

3.1. Hydrodynamics
In the operator splitting, or Strang splitting, approach that we use, the contribution of
hydrodynamics while keeping a frozen composition is to solve the governing equations
(2.2)–(2.5) without the chemical species evolution term. This yields(

∂v

∂t

)
φ

−
(

∂u

∂φ

)
t
= 0, (3.2)(

∂u

∂t

)
φ

+
(

∂p

∂φ

)
t
= 0, (3.3)(

∂etot

∂t

)
φ

+
(

∂pu

∂φ

)
t
= 0, (3.4)(

∂Yi

∂t

)
φ

= 0. (3.5)

The hydrodynamic step uses a second-order HLLE scheme devised for a structured
uniform grid in the φ dimension, as shown schematically in figure 3. The solution
vector U = (v, u, etot , Y1, . . . , YN ) is stored at the cell centres and the ‘fluxes’
F = (−u, p, pu, 0, . . . , 0) are evaluated at the cell interfaces. The solution inside one
of these cells is represented by piecewise limited linear functions. Central differences
are used to reconstruct the slopes and the Van Albada limiter (Van Albada et al. 1997)
has been applied to limit variations in conserved variables. The cell-averaged values of
the conserved quantities Ui are updated by computing the flux at the two numerical
cell interfaces Fi−1/2 and Fi+1/2, where i is the index of cells. The inter-cell flux F is
evaluated through the approximation solver of the Riemann problem using the HLLE flux
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Cell i – 2 Cell i – 1 Cell i Cell i + 1

U
Ui – 2 

Ui – 1

1Ui – 1/2

rUi – 1/2

Ui

Ui + 1

δφ/2

φ

Figure 3. At a given time, the solution in neighbouring cell mass elements is represented by piecewise linear
functions used to achieve second-order accuracy in the solution of the Riemann problem at cell interfaces for
calculating inter-cell fluxes.

functions with the reconstructed left and right state at the cell boundary described by
Einfeldt et al. (1991). The left and right states are interpolated values at the cell on the
left- and right-hand side of the cell interface. The second-order spatial–temporal step is
performed as follows. First, a first-order approximation is obtained:

ˆ̄U n+1
i = Ū n

i + �t

�x

[
Fn

i+1/2 −Fn
i−1/2

]
. (3.6)

This solution ˆ̄U n+1
i together with the initial vector Ū n

i are then used to update the second-
order cell state Ũ n+1

i according to

Ũ n+1
i = Ū n

i + �t

2�x

[
Fn

i+1/2 + F̂n
i+1/2 −Fn

i−1/2 − F̂n
i−1/2

]
. (3.7)

When the reactions are coupled, ˜̄U n+1
i is further updated after the reaction step. During the

hydrodynamic substep, the ideal gas law is used with an isentropic coefficient, γ , provided
by Cantera at the end of the last chemical substep. The local value of γ is assumed constant
during a hydrodynamic step.

The boundary φ = 0 corresponds to the piston face, where the gas speed is that of
the piston. In order to impose a flux into the first cell, the pressure is determined by
solving the exact Riemann problem with the velocity of the piston at the cell boundary.
Once the velocity and the pressure are evaluated in the cell boundary, the flux can be
prescribed. The boundary condition at the right boundary of the computational domain
uses an extrapolation of cubic interpolation; nevertheless, the calculation ends before the
lead shock reaches the right boundary such that this local boundary condition does not
have any role in the calculation.

3.2. Chemical species evolution
In the operator splitting, or Strang splitting, approach that we use, the contribution of the
change of chemical composition of the gas is to solve the governing equations (2.2)–(2.5)
without the flux terms (derivatives with φ). This yields
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∂v

∂t

)
φ

= 0, (3.8)(
∂u

∂t

)
φ

= 0, (3.9)(
∂etot

∂t

)
φ

= 0, (3.10)(
∂Yi

∂t

)
φ

= vωi . (3.11)

During the reactive step, the specific volume, speed and total energy density (for a fixed
mass) are to be kept constant. This substep thus naturally lends itself to using Cantera’s
computational framework already available for this canonical calculation at constant
volume and energy. The composition and temperature of each cell are thus evolved as
a constant-volume and energy reactor in Cantera during the chemical reaction step. The
ordinary differential equations are solved using the SUNDIALS stiff ODE solver used by
Cantera over the global time step �t dictated by the hydrodynamics.

In the Strang splitting approach used, the sequentially taken hydrodynamic and reactive
substeps thus provide the entire solution vector (v, u, etot , Y1, . . . , YN ) at the end of
a global time step. We use Cantera’s built-in solvers to determine the pressure and
temperature corresponding to this uniquely defined thermodynamic state by its specific
volume, energy and composition.

3.3. Numerical verification

3.3.1. Verification of the hydrodynamic solver
Two frozen hydrodynamic problems have been chosen to verify the correct implementation
of the hydrodynamic solver and confirm the adequacy of the numerical method proposed.
The first problem is a Riemann problem involving a weak shock and expansion fan in a
perfect gas. An initial discontinuity at x = 1 separates the left state (ul = 0, pl = 2, ρl = 1)

from the right state (ur = 0, pr = 1, ρr = 0.5) with the isentropic coefficient γ = 1.4
constant for both sides. Figure 4 shows the comparison of the calculated density with the
exact solution at time t = 0.3. It is found that the numerical scheme treats satisfactorily the
shock, contact surface and expansion wave typical of the HLLE scheme.

The second test problem is a strong shock case in a real gas, with frozen chemical
composition. A piston with a constant speed of 1500 m s−1 moves into a stoichiometric
mixture of hydrogen and oxygen at pressure pr = 101 325 Pa and temperature Tr = 293 K.
Figure 4 shows the comparison of the calculated density with the exact solution at time
t = 0.03 s, where excellent agreement is observed between the computed and the exact
solution. This confirms the reliability of the numerical solver.

3.3.2. Verification of the reactive solver coupling to hydrodynamics
The coupling between the reactive and hydrodynamic solver was tested in stable detonation
wave propagation. The test is whether the solver can propagate a stable Zel’dovich–von
Neumann–Döring (ZND) detonation wave. We tested an over-driven ZND detonation in
a stoichiometric mixture of hydrogen and oxygen initially at 1.01 × 105 Pa and 300 K.
A piston speed of 2583.6 m s−1 drives an over-driven detonation wave propagating at
3500 m s−1. For reference, the CJ self-sustained detonation wave speed in this gas is
2839 m s−1 and the material speed at the CJ state is 1293 m s−1. The driving piston being
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Figure 4. Density profile for shock-expansion problem (left); strong shock problem (right).
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Figure 5. Temperature profile for the ZND test.

larger than the CJ material speed gives as expected an over-driven detonation propagating
at a speed exceeding the CJ value.

The calculation was initialised with the over-driven ZND detonation profile calculated
separately using the Shock and Detonation Toolbox (EDL 2023) in Cantera. Figure 5
shows the evolved wave structure at t = 4.8 × 10−7 s. The calculation used a Courant–
Friedrichs–Lewy number of 0.7. Excellent agreement is found between the calculated
detonation structure and the expected travelling-wave solution provided by the ZND
solution, verifying the numerical coupling between the reactive and hydrodynamic solvers.

4. The inert problem solution in the induction zone

4.1. Overview
The ignition of the gas induced by the lead shock in the presence of gas-dynamic
fluctuations is controlled by the temperature and pressure variation in the induction zone,
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Figure 6. Temperature evolution in φ−t space induced by the impulsive piston motion (u0 = 1626.35 m s−1,
A = 0.2u p0 and f = 45.4 kHz) into chemically frozen 2H2 + O2 initially at T0 = 300 K and p0 = 5900 Pa;
dark dashed blue lines are C− characteristics while cyan dashed blue lines are C+ characteristics.

prior to the onset of exothermicity. It is thus useful to establish the fluctuations induced by
the piston first, without accounting for exothermicity.

A numerical example of the temperature evolution in the induction zone is illustrated
in the φ−t diagram of figure 6 by freezing the exothermicity. The mixture is
2H2 + O2 initially at T0 = 300 K and p0 = 5.90 × 103 Pa, with a mean piston speed
u p0 = 1.63 × 103 m s−1, fluctuation amplitude A = 0.2u0 and frequency f = 45.4 kHz.
This leads to a non-fluctuated post-shock temperature T1 = 1100 K and post-shock
pressure p1 = 1 atm. The reactive solution to this problem is discussed later.

While the impulsive piston motion generates instantly a lead shock, the subsequent
compressive parts of the piston motion generate a waveform that steepens to form internal
shocks. These internal shocks can be readily identified as right-facing fronts. This forward-
facing waveform then reflects on the lead shock, generating reflected disturbances along
the C− characteristics and along (vertical) particle paths. One of these evident entropy
waves can be identified as originating at the lead shock when an internal shock wave
overtook the lead shock at approximately t = 3.8 × 10−5 s. The particle path evolution can
thus be seen to be modulated by the initial temperature obtained at the shock and the
subsequent isentropic expansion or compression in regions sufficiently close to the piston
before inner shock formation, or further wave by inner-shock heating.

The magnitude and wave shape of the fluctuations can also be observed in figure 7,
which shows the temperature distributions at four different times. The last profile
corresponds to an instant just prior of the lead shock arrival at the right boundary of the
computational domain in this case. Inner shocks and contact surfaces discussed above can
be clearly identified. Note, however, that it would have been very difficult to rationalise
these features without the space–time diagram illustrating the wave dynamics.

Given the propensity to form inner shocks and their role in shock heating the gas in the
induction zone, it is desirable to construct an approximate analytical model for the process
to predict the timing of the various events and the temperature amplitude. The problem
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Figure 7. Temperature profiles at several times; same conditions as figure 6.

can be conceptualised as follows. The state generated by an impulsively started steadily
moving piston (state 1) behind a constant-speed shock can be taken as the leading-order
constant solution. Perturbations to this state are brought about by the harmonic piston
motion. Denoting the over-pressure of the lead shock as z1 = (p1 − p0)/p0, the Riemann
variable J− across the shock varies as O(z3

1) while pressure, density and speed vary as
O(z1) (the acoustic solution) (Chandrasekhar 1943; Whitham 1974). A weakly nonlinear
description of the state evolution behind the lead shock can thus be sought assuming
J− = const. to O(z2

1). This constitutes a ‘simple wave’ solution first suggested by
Chandrasekhar (1943) and further exploited by Whitham (1974) in different shock-
formation problems. This is the first inert problem to which we seek a simple solution,
labelled problem A. Its weak nonlinearity permits one to account for the dynamics of
inner shock waves.

The problem B we wish to solve is the interaction of right-facing waves described in
problem A with the lead shock, which leads to reflected waves along particle paths and
C− characteristics. This reflection problem is solved in the linear regime and serves to
correct the lead shock strength and the interior states provided by problem A.

We thus seek solutions of the form

u = u1 + u A + u B · · · , (4.1)

p = p1 + pA + pB · · · , (4.2)

T = T1 + TA + TB · · · . (4.3)

4.2. Problem 0: the constant-speed shock driven by the steady piston
The leading-order solution is the shock driven by the impulsively started piston at steady
speed u p0 into quiescent gas at state 0. This generates a constant state between the piston
and the lead shock labelled with subscript 1, which obeys the usual Rankine–Hugoniot
shock jump conditions.
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4.3. Problem A: right-facing wave train and inner-shock formation
The piston speed departure from the steady state u A(φ = 0) = u p − u p0 = A sin(2π f t)
generates a train of waves propagating into the gas at state 1. The weakly nonlinear
waveform generated by an oscillating piston behind the lead shock can be obtained by
neglecting O(z3) variations in entropy and J− Riemann variable across the lead shock
and all internal shocks. This simple wave problem is solved in closed form in Lagrangian
coordinates for a perfect gas. We are not aware of its solution elsewhere, although
similar arguments were presented by Chandrasekhar (1943) and Whitham (1974) in other
problems in Eulerian coordinates, which makes the analysis more complicated.

As detailed in Appendix A, the characteristic equations for isentropic flow of a perfect
gas are (

∂ J±

∂t

)
φ

± ρc

(
∂ J±

∂φ

)
t
= 0, (4.4)

where the Riemann variables are J± = 2c/(γ − 1) ± u. Since all C− characteristics
originate from the upstream state 0, J− = J−

1 = J−
0 is constant everywhere to the level

of the current approximation and we have immediately the simple wave relation between
flow and sound speed perturbations:

c = c1 + (u − u1)
γ − 1

2
. (4.5)

Given the flow is isentropic in the current approximation, all variables can be related to
the sound speed variation:

ρ

ρ1
=
(

p

p1

)1/γ

=
(

T

T1

)1/(γ−1)

=
(

c

c1

)2/(γ−1)

(4.6)

and using (4.5), the propagation speed of forward-facing characteristics in φ−t space can
be expressed in terms of u only:

dφ

dt
= ρc = ρ1c1

(
1 + u − u1

c1

γ − 1
2

)(γ+1)/(γ−1)

. (4.7)

Similarly, using (4.5), the Riemann variable J+ can also be expressed in terms of u only.
Given J+ remains constant along C+ characteristics, it implies that u remains constant
along C+ characteristics (and all other variables by virtue of (4.5) and (4.6)) and C+
characteristics are straight lines. These characteristics hence communicate the values of u,
c, ρ, ρc, T , p, etc., from the face-forward piston. In short, all variables hence satisfy the
simple advection equation for α = u, c, ρ, ρc, T, p . . .:(

∂α

∂t

)
φ

+ ρ1c1

(
1 + u − u1

c1

γ − 1
2

)(γ+1)/(γ−1) (
∂α

∂φ

)
t
= 0. (4.8)

The trajectory of any C+ characteristic can be obtained by integrating (4.7) from the piston
φ = 0 and reference time t∗, yielding

φ = ρ1c1

(
1 + u(t∗) − u1

c1

γ − 1
2

) γ+1
γ−1

(t − t∗) (4.9)

Since u(t∗) is the piston speed, this expression provides implicitly the dependence t∗(φ, t).
Given t∗, u(t∗) is known and remains constant along that characteristic. The other
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Figure 8. Sketch illustrating the shock formation process along the characteristic passing through the point
where ρc had the steepest rate of increase on the piston face (point X); shock forms at point ∗ from
characteristics merging.

variables are obtained from (4.5) and isentropic relations (4.6). Using the harmonic piston
speed perturbation, (4.9) can be written as

φ = ρ1c1

(
1 + A sin(2π f t∗)

c1

γ − 1
2

)(γ+1)/(γ−1)

(t − t∗), (4.10)

which can be further simplified for small-Mach-number harmonic motion or in the
Newtonian limit γ → 1 to

φ = ρ1c1

(
1 + γ + 1

2
A sin(2π f t∗)

c1

)
(t − t∗). (4.11)

The solution is complete but breaks down when characteristics intersect and the solution
becomes multi-valued. When this happens, shocks need to be fitted. The shock formation
time and location, as well as the fitted inner-shock trajectories can be obtained in closed
form.

Figure 8 illustrates the shock formation and the fitted shock trajectory, which approxi-
mately bisects the angle formed by the characteristics originating from either side of the
shock. Shocks will form along the characteristics where the front was initially steepest at
the piston face, i.e. d(ρc)/dt was initially maximum, since these steepest points on the
waveform will be maintained on the same characteristic. At the piston face, we have

ρc = ρ1c1

(
1 + γ + 1

2
A sin(2π f t∗)

c1

)
(4.12)

and the steepest points are located at t = tX = n/ f with n = 0, 1, 2, 3 . . . .. Shocks will
thus form along these characteristics, which are given by

(ρc)X = ρ1c1 = φ

t − tX
. (4.13)

These characteristics will intersect with a neighbouring characteristic originating at point
φ = 0 and t = tX + δt and having a propagation speed (ρc)X + (dρc/dt)δt at the shock
formation time
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Figure 9. Temperature evolution in chemically frozen 2H2 + O2 initially at T1 = 1100 K generated by a piston
speed with fluctuation amplitude A = 325.27 m s−1; numerical result (top) and analytical prediction (bottom).

t∗ = n

f
+ 1

(γ + 1)π f A/c1
(4.14)

and shock formation particle label

φ∗ = ρ1c1

(γ + 1)π f A/c1
(4.15)

in the limit of δt → 0. For the example considered, the shock is predicted to form at
particle label φ∗ = 1.26 × 10−3kg m−2, in very good agreement with the simulations
shown in figure 9.

The fitted shock trajectory can be approximated to be the continuation of the
characteristic along which the shock has first formed. This approximation is the
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Figure 10. Temperature profiles at select times corresponding to the profiles of figure 9.

leading-order solution for weak shocks (Whitham 1974), since the speed of weak shocks is
the average of the speed of the characteristics on either side. It can be shown that the error
in shock position location in this case is given by the square of the characteristic speed
perturbation, i.e. ((ρc − ρ1c1)/ρ1c1)

2. This is a higher-order effect than the simplification
leading to (4.11), hence can be neglected. The analytical solution is now complete.

Figure 9 shows the prediction of the wave dynamics obtained numerically by the
full hydrodynamic numerical solution and its comparison with the analytical prediction
developed above. Select profiles are shown in figure 10. The analytical solution is found
to be in very good agreement with the numerics, in spite of the various simplifications
made. The analytical prediction nevertheless somewhat under-predicts the exact numerical
solution once the inner shocks are formed. The reason is that the inner shock waves
keep dissipating the heat to the local gas during the propagation. Although such heat
is small comparing with the fluctuation energy, this mechanism is irreversible and will
continuously heat the gas. Before the inner shocks form, this dissipation is negligible and
the agreement between numerics and the analytical result is very good.

4.4. Decay of the N-wave train
Once the shocks form, they rapidly asymptote into a train of sequential N-waves
that progressively weaken as they travel away from the piston. While their speed
is approximately constant, their amplitude is continuously decaying. It is of interest
to establish the decay rate of their amplitude and dependence on forcing frequency,
as this serves to understand the reactive solution described below and evaluate their
penetration capability. Consider an N-wave at a sufficiently late time (after travelling a
few wavelengths), such that the wave shape can be well approximated by a saw-tooth shape
with linear profiles separating the shocks. The wavelength Δ is controlled by the forcing
frequency, i.e. Δ = ρ1c1/ f . The wave evolution is given by (4.8); with α = ρc, this is the
inviscid Burgers equation:
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�

Figure 11. The decay of an N-wave of fixed wavelength Δ; red denotes the wave shape at time t and blue its
evolved form after time δt . The shaded regions are the equal-area lobes justifying the location of the fitted
shock at the same position as the initial one.(

∂α

∂t

)
φ

+ α

(
∂α

∂φ

)
t
= 0. (4.16)

In a wave fixed frame moving at speed α1 = ρ1c1, the shock is stationary. After a time
δt , using the method of characteristics, the multi-valued solution requiring shock fitting
has displaced the wave shape according to its amplitude α; this is shown schematically
in figure 11. Instead of the multi-valued solution denoted by the wave shape marked by
the dotted lines in figure. 11, the position of the fitted shock coincides with the original
one and its new peak amplitude is α′

s . The evolution of the peak amplitude can be easily
determined. In figure 11, the slope of the linear profile at time t + δt is α′

s/(Δ/2). But
since the peak has been displaced by αsδt , the slope is also αs/(Δ/2 + αsδt). We thus
have the relation

α′
s/ (Δ/2) = αs/ (Δ/2 + αsδt) . (4.17)

Writing α′
s = αs + (dα/dt)δt , in the limit of δt → 0, this becomes a differential equation

for the wave amplitude:

1
α2

s

dαs

dt
= − 2

Δ
. (4.18)

Its solution shows that the N-wave amplitude αs decays as Δ/(2t) = ρ1c1/(2t f ).

4.5. Corrections for shock dissipation
The analytical model described above neglects the energy dissipation of internal shocks.
Our ignition simulations described below show that the cumulative effect of many internal
shocks can have a non-negligible effect on ignition, particularly for cases of very high-
frequency forcing, where an igniting particle undergoes repeated shocking before it ignites.
It is thus of interest to correct the model above and incorporate the energy dissipation of
internal shocks. To this effect, a simple correction scheme is to use the shock strength
obtained in the model above, and estimate the irreversible temperature increase via the
exact shock-jump equations. The shock Mach number is evaluated from the jump in
particle speed across each shock obtained by the method of characteristics. The resulting
temperature increment is the correction that is added to all the gas along that constant-
φ line. Each successive shock along that line has the same strength and hence the same
correction. For example, gas having been shocked by four internal shocks will have four
times that temperature correction.
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Figure 12. Evolution of the Mach number of the internal shock wave (left) and the corresponding irreversible
increase across the shock (right).
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Figure 13. The irreversible temperature gain map due to inner shock waves in 2H2 + O2 mixture at state 1
with A = 325 m s−1.

Figure 12 (left) shows the Mach number of the inner shocks evaluated as a function of
particle label φ. Figure 12 (right) gives the corresponding temperature correction. Unity
solution in figure 12 (left) denotes the region where a shock has not yet formed, in which
region there is no shock dissipation and the correction vanishes.

The additional temperature correction is shown in figure 13. The dissipation becomes
finite once the inner shocks form at approximately φ∗ = 0.00126 kg m−2 in this case. The
increasing of the fluctuation amplitude and the frequency would shorten this distance. To
the right of this boundary is the highest region of shock dissipation, which decays as the
inner N-wave structure decays.

The corrected temperature evolution is shown in figure 14. The temperature amplitude
is now in excellent agreement with numerics.
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Figure 14. Temperature profiles obtained numerically (solid lines) and analytically (broken lines) in
2H2 + O2 mixture at state 1 with A = 325 m s−1.

4.6. Problem B: reflected waves on the lead shock
The disturbances generated along the C+ characteristics described above in problem A
finally reflect on the lead shock, generating a wave of opposite nature on the C−
characteristics (expansion for an incident compression, and vice versa) and a temperature
(entropy) disturbance on the particle path. At the level of approximation considered,
these reflected disturbances propagate along straight lines dφ/dt = −ρ1c1 for the C−
characteristics and dφ/dt = 0 for the particle paths by definition and the lead shock
path is a straight line. Appendix B provides the details of this problem for a single
disturbance propagating along a C+ characteristic arriving at the lead shock. Note that
the reflected acoustic disturbances are much weaker than the entropy waves, hence re-
reflections between these waves with other incident waves are not treated. The treatment
provided in Appendix B for a single wave can be generalised for the continuum of waves
arriving at the lead shock. Say the lead shock strength at location φ is known. The C+
characteristic arriving at location φ + δφ will change the shock strength and provide
temperature perturbations along the C− and C0 waves. These perturbations are then added
along these respective lines for the entire domain. Marching along the shock, the arrival
of the next C+ characteristic provides the next perturbation and reflected perturbations
along C− and C0 lines. We marched along the shock at regular intervals in order to obtain
the entire interior solution. The interior solution is then interpolated on the grid with the
desired resolution. The entire solution for reflected waves can thus be obtained by the
method of characteristics. The temperature perturbations due to the reflected acoustic
disturbances are shown in figure 15 while the temperature perturbations are shown in
figure 16 for the chemically frozen 2H2 + O2 mixture with post-shock temperature of
T1 = 1100 K and fluctuation frequency of f = 45.35 kHz.

These two solutions can be linearly combined along with the solution of problem A
to obtain the desired solution for temperature evolution in the induction zone. The
approximate solution illustrated in figure 17 is found in general good agreement with the
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Figure 15. Temperature gain contribution due to C− reflected waves due to the reflection of C+ waves
interacting with the lead shock in 2H2 + O2.
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Figure 16. Temperature gain contribution due to entropy waves generated at the lead shock from C+ waves
reflected at the lead shock in 2H2 + O2.

full numerical solution of figure 6. The timing and amplitude of the various events are
well reproduced. Note, however, that the central part of the hotspots are predicted to be
approximately 5 % hotter than the full simulation results; likewise, cooler portions are
under-predicted by the approximate model by a similar amount.

The gas-dynamic model formulated revealed the most important effects to consider in
the interpretation of the reactive problem, namely the propensity to form inner shocks at a
finite distance from the piston. These inner shocks generate entropy and the cumulative
effect may generate the strongest hotspots. Second in order of importance are the
reflections of these shocks on the lead shock, generating temperature perturbations by
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Figure 17. Analytically reconstructed temperature field for 2H2 + O2 at conditions of table 1 and A = 0.2u p0
and f = 45.4 kHz without chemical reaction.

strengthening the lead shock. Note that the inner shocks decay as N-waves as 1/t . In
problems with very high frequency, the resulting temperature increase near the piston
dominates the temperature increase away from the piston. An example is shown in
figure 18 obtained numerically and using the approximate model developed. In this case,
the fluctuation frequency is increased to 10 times the value as the case shown in figure 6.
The strongest hotspot is dominated by the inner-shock dissipation. Overall, the analytical
results predict very well the location and temperature of the hotspot.

5. The reactive problem solution

5.1. Fuels and their characteristic ignition and reaction times
Shock-induced ignition and transition to detonation was studied in two reactive mixtures
spanning the different behaviours of ignition observed in practice, namely 2H2 + O2 and
C2H4 + 3O2 at a temperature of approximately 1100 K, which is the lower-end temperature
permitting sufficiently rapid auto-ignition and transition to detonation in practice. For the
2H2 + O2 mixture, a post-shock temperature of T1 = 1100 K and post-shock pressure of
p1 = 1 atm are obtained by a piston with mean speed of 1626 m s−1 moving into a gas at
an initial temperature of T0 = 300 K and initial pressure of p0 = 6 kPa. This choice was
also motivated by the abundance of experiments on reference ignition data, e.g. induction
delay, for hydrogen–oxygen at 1 atm, as well as addressing the final stages of DDT
where sufficiently strong shocks are generated in this range of temperatures. Moreover,
approximately 1100 K is the lower limit of high-temperature ignition for hydrogen–oxygen
ignition at 1 atm (Meyer & Oppenheim 1971). The test conditions for C2H4 + 3O2 were
T0 = 300 K and p0 = 6.2 kPa, with a mean piston speed of u p0 = 1259 m s−1, which brings
the post-shock conditions to those studied by Saif (2016) in DDT experiments. Table 1
lists the relevant mixture properties under these conditions. We first characterised the
relevant time scales in the two mixtures in constant-volume calculations; the piston forcing
characteristics are referenced to the relevant chemical times. We define the ignition delay
time ti at constant volume as the time elapsed until maximum thermicity. For a mixture
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Figure 18. Temperature field obtained numerically (top) and analytically (bottom) for 2H2 + O2 at conditions
of table 1, A = 0.2u p0 and f = 454 kHz without chemical reaction.

of ideal gases, the thermicity reduces to (Fickett & Davis 1979; Williams 1985; Kao &
Shepherd 2008)

σ̇ =
N∑

i=1

(
W̄

Wi
− hi

cpT

)
DYi

Dt
, (5.1)

where Wi is the molecular weight of the i th component, W̄ is the mean molecular weight
of the mixture, hi is the specific enthalpy of the i th species, cp is the mixture frozen
specific heat and Yi is the mass fraction of the i th species in the mixture of N total number
of species. The other relevant chemical time is the exothermic reaction time tr , during
which energy release affects the dynamics of the gas. It is defined as the inverse of the
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2H2 + O2 C2H4 + 3O2

Initial state (0)
Temperature T0 300 K 300 K
Pressure p0 5.9×103 Pa 6.2×103 Pa
Shock speed Ds 2.06 ×103 m s−1 1.47 ×103 m s−1

Piston speed u p0 1.63 ×103 m s−1 1.26 ×103 m s−1

Post-shock state driven by piston (1)
Temperature T1 1100 K 1069 K
Pressure p1 1.01×105 Pa 1.5×105 Pa
Density ρ1 0.133 kg m−3 0.522 kg m−3

Sound speed c1 1.01×103 m s−1 5.86×102 m s−1

Non-dimensional activation energy Ta/T1 8.7 22
Ignition delay ti0 3.56×10−5 s 1.39×10−3 s
Reaction time tr 1.72×10−6 s 3.61×10−7 s
Mass-weighted reaction thickness
δφ,r = ρ1(Ds − u p)tr ) 2.09×10−3 kg m−2 1.57×10−1 kg m−2

Von Neumann state of CJ detonation
Shock speed DC J 2.69 ×103 m s−1 2.24 ×103 m s−1

Material speed u p,V N 2.19 ×103 m s−1 1.99 ×103 m s−1

Temperature TV N 1616 K 1874 K
Pressure pV N 1.71 ×105 Pa 3.51×105 Pa
Post-detonation state of CJ detonation
Material speed u p,C J 1.23 ×103 m s−1 1.04 ×103 m s−1

Temperature TC J 3184 K 3391 K
Pressure pC J 9.84 ×104 Pa 1.85×105 Pa

Table 1. Relevant thermochemical properties of the two reacting mixtures.

maximum thermicity. These two time scales are reported in table 1. The ethylene mixture
is characterised by a much larger ratio of these two time scales Λ = ti/tr . This value lies
at the lower range of most hydrocarbons, which partly motivates our selection of this
mixture. Very large values are computationally prohibitive, since the reaction time and
length scales require sufficient resolution. Figure 19 shows the evolution of temperature
and thermicity for the two fuels. For ethylene, we have also calculated the ignition process
using the full mechanism. The reduced mechanism predicts well the ignition delay, with
a minor under-prediction. Both models predict very short reaction times tr , the reduced
model over-predicting it by a factor of 2. In the reactive calculations presented below,
we ensured that the reaction zone thickness was sufficiently well resolved with at least
10 points. The grid spacing used Δφ was 2 × 10−6 kg m−2 for the hydrogen mixture and
2.8 × 10−6 kg m-−2 for the ethylene mixture. A detailed grid sensitivity and convergence
study is reported in Appendix C.

For reference, we also provide the calculations of the hypothetical CJ detonation and the
corresponding von Neumann state. These values are tabulated in table 1. Of interest are
the values of material velocity at the CJ state. Since in both cases the piston speed is larger
than the material speed at the CJ state, this means that the detonation waves established
by the piston speeds selected are over-driven.

5.2. Ignition and transition to detonation without fluctuations
The dynamics of shock-induced ignition was first studied in the absence of fluctuations.
Figure 20 shows the evolution of the temperature field. For the hydrogen mixture, the
first ignition along the piston path occurs approximately at the constant-volume ignition
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Figure 19. Temperature and thermicity evolution at constant volume for 2H2 + O2 (top) and C2H4 + 3O2
(bottom) taking state 1 (see table 1) as initial condition; ‘full’ and ‘reduced’ profiles denote solutions obtained
with the full San Diego mechanism and the reduced mechanism used in this study.

time, since prior to this event, the lack of thermal evolution keeps the gas shocked by
the lead shock at the constant post-shock state. The subsequent rapid acceleration of the
reaction zone and formation of an internal shock on the time scale of energy deposition tr
is characteristic of such dynamics; this internal dynamics is compatible with the model of
Sharpe (2002). The rapid internal acceleration of the fast flame leads to the development of
an internal CJ detonation wave followed by an interior Taylor wave (Fickett & Davis 1979).
The arrival of the internal detonation wave at the lead shock transmits an over-driven
detonation wave in the quiescent gas, which eventually decays towards the self-sustained
over-driven solution supported by the piston speed.

The transition sequence for the ethylene mixture follows a similar sequence, but the
rapid initial transition occurs faster, on time scales of tr , which are much shorter than the
ignition delay time scale in this case.

5.3. Slow forcing
When the forcing period is longer than the induction delay, the sequence of events leading
to auto-ignition resembles qualitatively the ignition sequence without fluctuations. An
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Figure 20. Shock-induced ignition in 2H2 + O2 (top) and C2H4 + 3O2 (bottom) without perturbations. The
initial conditions in the pre-shock region are zero velocity and state 0, with piston velocities given in table 1.
The post-shock state is state 1.

example is shown in figure 21 for the hydrogen system. The slow compression of the gas
in the induction zone shortens the ignition delay to 2.5 × 10−5 s. One could modify the
analysis of Sharpe (2002) to account for the non-uniform conditions in a straightforward,
albeit algebraically complex manner. Note that the phase of the fluctuation is likely to be
very important here. Initial cooling of the induction-zone gas would have the opposite
effect to delay the ignition. The effect of the phase of the fluctuation, while interesting in
its own right, is left for future study.

When the period of the fluctuation becomes comparable with the induction delay, it
modifies the induction time gradient more significantly and can give rise to first ignition
away from the piston face. An example is shown in figure 22 for the ethylene mixture.
The gradient of ignition delay set up by the lead shock and modulated by the piston
non-steadiness can be flatter than that provided by a steady shock. Its phase velocity
becomes closer to the acoustic signals ±ρ1c1, leading to more prompt acceleration by
the Zel’dovich gradient mechanism (Sharpe & Short 2003) in both directions. While not
shown, the slope of the C+ and C− characteristics in the induction zone is ±ρ1c1, which,
by virtue of the values of table 1 for the shock speed, are 2.5 times steeper than the lead
shock. It can be speculated that the rapid formation of inner detonations is due to these
more favourable gradients.

1009 A42-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

22
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.229


Journal of Fluid Mechanics

1×10–5

2×10–5

3×10–5

4×10–5

5×10–5

t (
s)

0 0.0010 0.0020 0.0030 0.0040

φ (kg m−2)

T 
(K

)

0

500

1000

1500

2000

2500

3000

3500

4000

Figure 21. Shock-induced ignition with 2H2 + O2, f = 4.535 kHz, A = 0.2u p .
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Figure 22. Shock-induced ignition in C2H4 + 3O2 with f = 0.2 kHz, A = 0.2u p0.

5.4. Forcing on induction time scales
When the forcing frequency is further increased, the nonlinearity results in stronger
lead shocks by the inert mechanism discussed above, but the phase velocity of the fast
flames is now larger than the acoustic speeds, resulting in decoherence of the Zel’dovich
mechanism. Figure 23 shows a striking example of this situation. The first ignition begins
at t = 1.3 × 10−5 s. The spontaneous wave from the first ignition generates a forward and
backward shock, which are out of phase with the fast flame. The forward-facing shock
catches up to the lead shock and generates the second hotspot at φ = 1.2 × 10−3 kg m−2.
The fast flame evolving from the second hotspot is now in phase with the acoustics,
resulting in detonation formation. After formation of this one-dimensional detonation
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Figure 23. Shock-induced ignition in 2H2 + O2 with f = 45.4 kHz and A = 0.2u p0.
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Figure 24. Shock-induced ignition in C2H4 + 3O2 with f = 20 kHz and A = 0.2u p0.

structure, the reaction zone length oscillates almost in phase with the fluctuation, but
the reaction never decouples from the lead shock. Some weak shocks can be observed
in the reacted gas with some complex forward and backward patterns. They are formed
by interaction between the previous inner shock and the boundary (piston or lead shock
wave). Since these shock waves are not in the reaction zone, they do not influence the
detonation formation process.

A similar hot-spot ignition mechanism was also observed in the ethylene–oxygen
system. The first ignition starts on the first hotspot at t = 2.80 × 10−5 s. Different from
the hydrogen–oxygen ignition, the spontaneous wave generates two stronger shock waves
and the forward-propagating shock wave keeps in phase with the reaction front until it
reaches the lead shock. The detonation forms prior to the reaction zone reaching the
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Figure 25. Shock-induced ignition in 2H2 + O2 with f = 454 kHz and A = 0.2u p0. The purple line denotes
the ignition locus prediction without coupling to the gas exothermicity predicted by coupling of (5.2) and the
analytical temperature field of § 4.

second hotspot. The backward-propagating shock wave decouples from the reaction front
and reflects on the piston prior to the reaction front.

5.5. Forcing periods between ti and tr
When the forcing frequency is increased such that the nominal induction zone counts many
forcing periods, a sequence of hotspots are observed. Figure 25 shows this interesting
regime for the hydrogen–oxygen case for a frequency of 453.5 kHz and amplitude
A = 0.2Up0. The higher frequency no longer significantly shortens the delay to first
ignition at hotspots, since the inner-shock amplitude remains controlled by the fluctuation
amplitude, which is kept constant. The slight reduction in ignition delay in this case is
due to the residual repeated shock energy dissipation modelled in the previous section.
Instead, a series of subcritical hotspots are generated along particle paths where internal
shocks locally amplified the lead shock. These hotspots can be clearly identified as vertical
particle paths originating from the confluence of internal shocks with the lead shock. Note
that the higher frequency modulates the trajectory of the fast flame. The saw-tooth fast-
flame trajectories are now significantly out of phase with the acoustics. This phenomenon
is particularly striking in the more sensitive ethylene system illustrated in figure 26. Owing
to the much larger effective activation energy of the induction kinetics, the hotspots are
igniting much earlier than cold spots and the saw-tooth fast flames are even more out of
phase with the acoustics.

To help us in the interpretation of the mechanism of ignition, we made use of the
temperature field prior to ignition determined in § 4, in order to determine the locus of
the fast flame without accounting for exothermicity. For this purpose, the induction layer
is modelled in a conventional way by(

∂ζ

∂t

)
φ

= k exp
(

−Ta

T

)
, (5.2)

where ζ is the induction progress variable ranging from 0 (fresh gases) to 1 (end of
induction time) and the constants k and Ta are calibrated to recover the correct ignition
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Figure 26. Shock-induced ignition in C2H4 + 3O2 with f = 200 kHz and A = 0.2u p0. The purple line denotes
the ignition locus prediction without coupling to the gas exothermicity predicted by coupling of (5.2) and the
analytical temperature field of § 4.

delay and sensitivity to temperature. These are calibrated for constant-volume calculations
in Cantera. They yield Ta = 9562.2 K and k = 1.6118 × 108 s−1 for the hydrogen–oxygen
mixture and Ta = 23 825.0 K and k = 3.452 × 1012 s−1 for the ethylene mixture under
these operating conditions. Given the temperature field, integration of (5.2) yields the
ignition delay ti (φ) along a particle path implicitly:

1 =
∫ ti

tS

k exp
(

− Ta

T (t)

)
dt, (5.3)

where tS(φ) is the lead shock time.
Figure 25 shows how the sequence of hotspots are formed and compares their

location with the zero-order prediction. While each sequential hotspot is formed from
the coalescence of the internal shock with the lead shock, we note that the ignition delay
of each hotspot is successively shorter than the previous one. This is very well predicted
by the ignition model with no exothermicity coupling. The mechanism of this reduction is
the cumulative energy dissipation heating along a particle path. Nevertheless, we observe
that by the fourth hotspot, the energy release from previous hotspots has now played a
sensible role in shortening the induction time. The inert gas-dynamic model begins to
over-predict the ignition delay, since it neglects the effect of energy release on further gas
compression in the induction zone. The mechanism suggested from figure 25 is through
the strengthening of forward-facing shock waves passing through the main reaction zone.
After the sixth hotspot, the sequence of hotspots become in phase with the motion of one
of the inner shocks. We thus see a discrete-like gradient amplification mechanism where
the sequence of hot-spot onset becomes in phase with acoustics. We label these hot-spot
cascades.

More complex hot-spot cascades can be observed in a more sensitive mixture. Figure 26
shows the ethylene–oxygen ignition with fluctuation frequency of 200 kHz and amplitude
of 20 % of the mean speed. The first ignition starts at t = 2.2 × 10−5 s from the first
hotspot – this is very well predicted by the uncoupled ignition model. Nine hot-spot
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ignitions can be observed prior to the reaction front merging to the lead shock and
detonation formation. The second hotspot is also very well predicted by the model. The
third, however, is accelerated by the energy release of the previous two, transmitted along
the forward shocks originating from the first two. The three first hotspots thus follow the
hot-spot cascade mechanism described above. Note that the inert model over-predicts the
ignition delay more severely than for hydrogen, due to neglect of the gas-dynamic heating
from previous reactions. By the fourth hotspot, the heating provided by the previous three
hotspots gives rise to a more substantial decrease in the induction delay, as expected for
this system with a higher activation energy.

Nevertheless, the arrival of the first shock amplified by the hot-spot cascade at the lead
shock creates a strong enough disturbance to lead to prompt ignition at the hotspot along
φ = 0.006 (hotspot 7). This localised energy release triggers the backwards sequence of
promoting the ignition of hotspots 6 and 5 and 4. It also triggers the sequence of hotspots
8 and 9, aided by the shock from hotspot 3. Note that the internal transitions follow again
a discrete version of the gradient or SWACER mechanism. We refer to this more complex
situation as ‘bifurcated hotspot cascade’, since forward and backward hotspot avalanches
are present due to hot-spot–lead-shock feedback.

5.6. Fast forcing
Once the ignition delay is much longer than the fluctuation period, the hot-spot cascade
mechanism disappears. Figure 27 shows the pattern for hydrogen–oxygen ignition with
frequency in 4535 kHz and amplitude of 20 % of the mean speed. The first ignition starts
near the piston at t = 1.0 × 10−5 s and a slow reaction front develops in the first layer of
gas of width of approximately δφ � 0.0002 kg m−2. Subsequently, the evolution follows a
process very similar to the non-fluctuated case of figure 20. The zone marked by the slow
acceleration of the reaction front is likely due to the finite region of dissipation created
by the N-wave train. The N-wave train decays as 1/x and its influence is only felt a few
wavelengths away from the piston. For reference, the inert solution can be inferred from
the results shown in figure 18 by rescaling t and φ by a factor of 10, controlled by the
unique time scale in the inert problem, the fluctuation period. The inert N-wave train
inferred by the rescaled results of figure 18 has decayed by nearly an order of magnitude
at this penetration distance of δφ � 0.0002, which corresponds to eight wavelengths of
the train. The relatively slow reaction front observed in figure 27 is thus due to the
energy dissipation gradient of the N-wave train decay. Further away, the fluctuations no
longer play a substantial role directly. Although the first ignition delay was very short, the
detonation front forms relatively late. Compared with the non-fluctuation case (figure 20),
the inner supersonic reaction front forms almost at the same time. The place and time of
merging between the inner supersonic reaction front and the lead shock does not have
significant changes. This very high-frequency fluctuation does not make a significant
contribution to reducing the time of the detonation formation in this one-dimensional
ignition problem.

A similar pattern was observed for the more sensitive ethylene–oxygen system. Figure 28
shows the ignition diagram with fluctuation frequency of 2000 kHz and amplitude of 20 %
of the mean speed. In this case, the ignition delay has been shortened at t = 1.3 × 10−5 s
but the supersonic reaction wave takes longer to form. Two hotspots are formed in this
case. The first hotspot is generated from the dissipation. The second hotspot is formed by
the complex hotspot cascade mechanism which is the interaction between the lead shock
and intensified inner shock. In this mixture, the ignition delay is much more sensitive
than for the hydrogen–oxygen mixture. The intensified shock wave is strong enough to
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Figure 27. Shock-induced ignition in 2H2 + O2 with f = 4540 kHz and A = 0.2u p0.
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Figure 28. Shock-induced ignition in C2H4 + 3O2 with f = 2000 kHz and A = 0.2u p0.

generate an ignition hotspot. This hotspot ignition locus quickly accelerates to an inner
detonation, which catches up to the main shock. These inner dynamics shortens the
formation distance of the final detonation by approximately 90 % as compared with the
nominal non-fluctuated case and cannot be neglected.

6. Further discussion
The effect of the forcing frequency and forcing amplitude on the ignition delay of the first
spot is shown in figure. 29 for the two mixtures studied for 16 hydrogen–oxygen cases
and 16 ethylene–oxygen cases. All the cases have been categorised into four groups by
their forcing strength which ranges from 0.05u p0 to 0.2u p0. The ignition delay has been
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Figure 29. Ignition delay of the first hotspot for 2H2 + O2 (left) and C2H4 + 3O2 (right) for different
perturbation frequency and amplitude.

normalised by the original ignition delay without forcing: ti0. The frequencies have been
normalised by fi = 1/ti0. These results were obtained numerically by solving the full
Lagrangian problem. These are well predicted by the ignition model without coupling,
as discussed above. The effect of the forcing amplitude is to reduce the ignition delay,
as it provides stronger hotspots, as expected. The effect of the forcing frequency is,
however, more interesting and reveals the role of the energy dissipation by shock heating.
It also shows that increasing frequency reduces the ignition delay time. With increasing
frequency, a particle of gas experiences more heating from the higher number of repeated
shock interactions.

The ignition delay is thus decreased by the increase in the cumulative energy dissipation.
Note also that the ignition delay reduction is much more substantial in the ethylene system,
owing to the stronger sensitivity of ignition kinetics to temperature.

The mechanisms of pressure wave enhancement identified in the present paper are in
agreement with the gradient mechanism of Zel’dovich or the SWACER mechanism. The
physics operating in the low-frequency regime is in line with the runaway mechanism
for arbitrary gradients studied in the past by Sharpe & Short (2003). Changes in the
forcing frequency changes the lead shock strength distribution, hence the induction delay
distribution. With increasing frequency, the fast flame from each distinct spot becomes less
in phase with the acoustics. The runaway process now relies on the sequence of hotspots
being in phase with acoustics. Two cascade mechanisms were identified. The first relies on
the energy release of a previous hotspot to strengthen a forward-facing compression wave.
This in turn shortens the ignition delay of the next hotspot, and so forth. This mechanism
is the discrete version of shock-to-detonation transition modelled by Sharpe (2002).

The second cascade mechanism occurs in sufficiently sensitive systems (high activation
energy). The first-generation cascade amplifies a shock that arrives at the lead shock
prior to the cascade culminating in transition to detonation. The shock–shock interaction
triggers a second generation of hotspot cascades of the first type.

The phase of the perturbations induced by the piston was not studied in the present
work. When the forcing frequency is much larger than the inverse of ignition delay time,
i.e. f/ fi � 1, the phase is not expected to play any sensible role. However, when f/ fi � 1,
the phase of the perturbation will likely play a very important one. For example, in the limit
of f/ fi � 1, the problem consists of ignition and detonation transition behind a slowly
accelerating or decelerating shock. When the shock accelerates, the negative temperature
gradient behind it induces a more prompt ignition. Likewise, ignition behind a decelerating
shock is suppressed. This type of problem can be best studied by the methods outlined by
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Figure 30. Detonation formation time for 2H2 + O2 (left) and C2H4 + 3O2 (right) for different perturbation
frequency and amplitude.

Sharpe (2002). This is left for future study, since we are interested in the multi-hotspot
scenarios leading to cooperative phenomena and cascades.

Interestingly, the hotspot cascades in the multi-hotspot scenarios permit for detonations
to form on the same time scales as the shortest ignition delay. Figure 30 shows the
detonation formation time for all the cases studied. These time scales are comparable with
those of figure 29. The gas-dynamic model developed is thus sufficient to determine this
time of first ignition. It is only for sufficiently high-frequency oscillations that the cascades
are suppressed by the mechanism of inner N-wave decay, reducing the effective penetration
distance of the energy dissipation, as discussed above. The inner-shock decay results in a
more pronounced gradient in hotspot ignition gradient, suppressing the coherence between
hotspots and shocks. At these high frequencies, the time to detonation actually increases
with increasing frequency. In the limit of high frequency, only one generation of hotspots
near the piston remains, leading to prompt first ignition but unfavourable gradient.

While the problem studied is a very canonical one, it may find direct application in the
understanding of the late phases of DDT, where transonic turbulent flames are generated
(Saif et al. 2017; Poludnenko et al. 2019). A highly non-steady turbulent flame generating
high-frequency mechanical oscillations may trigger such hotspot cascades. When they are
transonic, parts of their energy release is in phase with the acoustics. Likewise, unstable
detonations rely on high-frequency oscillations to intermittently re-amplify and survive
quenching (Radulescu & Sow 2023; Sow et al. 2023). An analogous problem to our
study is the problem of shock-induced ignition in shock tubes by reflected shocks. In
this problem, boundary layers form on the walls, which provide the source of acoustic
perturbations of transverse nature. In this problem, premature ignition is often observed,
and its origin is difficult to explain. Perhaps the main advance in this problem is the
study of Khokhlov et al. (2015), who first established that perturbations due to boundary
layers do not directly control the onset of hotspots. Instead, their continuous feedback to
the main shock via acoustic waves provides the entropy perturbations favourable to the
generation of hotspots. We mention this to highlight the long-range effects of hotspots
through interactions with the main shocks via acoustic waves, as discussed in the present
study in the context of hotspot cascades.

7. Conclusion
Our study of ignition behind a shock driven by an oscillating piston has revealed the
intricate role of mechanical fluctuations in the ignition process and runaway to detonation.
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A substantial decrease in the ignition delay was observed, owing to the changes in the
lead shock strength. With increasing frequency of oscillation, the role of lead shock
modulation was decreased in favour of the role of the internal shock wave motion and
resulting dissipative heating. The internal shock wave motion permitted hotspot cascades,
the organisation of sequential hotspots in phase with the acoustics. However, further
increase in forcing frequency suppressed the cascade mechanism.

The present paper shows conclusively that the high-frequency forcing can play a very
substantial role in the transition from a shock-induced ignition to detonation. The results
may thus clarify the general experimental observations of anomalous ignition in DDT in
turbulent flames and analogous phenomena within very unstable detonation waves.

The present paper also provided significant advancements in the modelling of these
events. We provide a novel closed-form model in Lagrangian coordinates for the
generation of the train of compression and expansions, their steepening into a train of
N-shock waves and their reflection on the lead shock, as well as the distribution energy
dissipation rate in the induction zone. The predictions of the model were found to be
in excellent agreement with numerics. The analytical approach permitted insight into the
physical processes controlling the evolution of the temperature distribution in the induction
zone prior to ignition.

To the best of our knowledge, the formulation of the problem in Lagrangian coordinates,
and the development and verification of the numerical scheme for reactive Lagrangian gas
dynamics with multiple components and state-dependent properties, is also novel.
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Appendix A. Transformation of the Euler equations for a multi-component reactive
gas to Lagrangian coordinates
We derive the Lagrangian form of the governing equations for a multi-component reactive
medium and their characteristic form, generalising the results obtained by Fickett et al.
(1970) for a single irreversible reaction.

A.1. The reactive Euler equations in laboratory coordinates
The reactive Euler equations are well known in Eulerian, or laboratory, coordinates. In one
dimension, the independent variables are x and time t . The Euler equations can be written
as

Dρ

Dt
+ ρ

(
∂u

∂x

)
t
= 0, (A1)

ρ
Du

Dt
+
(

∂p

∂x

)
t
= 0, (A2)

ρ
Detot

Dt
+
(

∂ (pu)

∂x

)
t
= 0, (A3)

ρ
DYi

Dt
= ωi . (A4)
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The material derivative is D/Dt = (∂/∂t)x + u(∂/∂x)t , etot = e + (1/2)u2 the total
energy, e the specific internal energy of the mixture, Yi the mass fraction of the i th
component and ωi the mass production rate of species i per unit volume per unit time,
obtained from chemical kinetics. After some thermodynamic manipulations, the energy
equation (A3) can be also written as

Dp

Dt
= c2 Dρ

Dt
+ ρc2σ̇ , (A5)

where σ̇ is the thermicity, which denotes the gas-dynamic effect of chemical reactions or
other relaxation phenomena on the rate of pressure and speed changes along the family of
characteristics. The thermicity in its most general form is given by (Fickett & Davis 1979)

σ̇ = − ρ

cp

(
∂v

∂T

)
p,Yi

N∑
i=1

(
∂h

∂Yi

)
p,ρ,Y j, j �=i

DYi

Dt
. (A6)

For a mixture of ideal gases, the thermicity reduces to

σ̇ =
N∑

i=1

(
W̄

Wi
− hi

cpT

)
DYi

Dt
, (A7)

where Wi is the molecular weight of the i th component, W̄ is the mean molecular weight
of the mixture, hi is the specific enthalpy of the i th species and cp is the mixture frozen
specific heat.

The characteristic equations are obtained by simple manipulations of these expressions
and yield

D± p

Dt
± ρc

D±u

Dt
= ρc2σ̇ , (A8)

where
D±
Dt

≡
(

∂

∂t

)
x
+ (u ± c)

(
∂

∂x

)
t

(A9)

are derivatives along the C+ and C− characteristics, given respectively by dx/dt = u ± c.

A.2. Lagrangian coordinates and transformation rules
In one-dimensional problems where one boundary condition can be prescribed along a
particle path x p(t), where u = ẋ p(t), ρ = ρp(t), etc., we can change from an Eulerian
frame to a Lagrangian frame, by transforming the reactive Euler equations expressed with
independent variables (x, t) to Lagrangian independent variables (φ, t ′) by the formal
change of variables:

φ =
∫ x

x p(t)
ρ dx, t ′ = t. (A10)

The density-weighted coordinate φ remains constant along a particle path through the
conservation of mass, as we show below. Equations (A10) permit one to evaluate the
derivatives (∂φ/∂x)t and (∂φ/∂t)x required for the change of variables. Using the Leibniz
rule of differentiation of an integral where both the integrand and the integral bounds vary
with the variable used for differentiation, we obtain(

∂φ

∂x

)
t
= ρ,

(
∂φ

∂t

)
x
=
∫ x

x p(t)

(
∂ρ

∂t

)
x

dx − ρp ẋ p. (A11)
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To evaluate the last integral in (A11), we make use of the continuity equation (A1)
rewritten as (

∂ρ

∂t

)
x
+
(

∂ρu

∂x

)
t
= 0 (A12)

and obtain (
∂φ

∂x

)
t
= ρ,

(
∂φ

∂t

)
x
= −ρu. (A13)

Using (A13), it can be verified that the variation of φ along a particle path, namely

Dφ

Dt
≡
(

∂φ

∂t

)
x
+ u

(
∂φ

∂x

)
t
= 0, (A14)

is indeed zero and φ serves as a particle label.
We can now operate the formal change of variables using (A13) and the chain rule of

differentiation for any field variable a(φ(x, t), t ′(x, t)), yielding the following:(
∂a

∂x

)
t
=
(

∂a

∂φ

)
t ′

(
∂φ

∂x

)
t
+
(

∂a

∂t ′

)
φ

(
∂t ′

∂x

)
t
= ρ

(
∂a

∂φ

)
t ′

, (A15)(
∂a

∂t

)
x
=
(

∂a

∂φ

)
t ′

(
∂φ

∂t

)
x
+
(

∂a

∂t ′

)
φ

(
∂t ′

∂t

)
x
= −ρu

(
∂a

∂φ

)
t ′

+
(

∂a

∂t ′

)
φ

. (A16)

The above two expressions can also be used for substitution expressions for derivatives
along particle paths:

Da

Dt
≡
(

∂a

∂t

)
x
+ u

(
∂a

∂x

)
t
=
(

∂a

∂t ′

)
φ

, (A17)

and along C+ and C− characteristics:

D±a

Dt
≡
(

∂a

∂t

)
x
+ (u ± c)

(
∂a

∂x

)
t
=
(

∂a

∂t ′

)
φ

± ρc

(
∂a

∂φ

)
t ′

. (A18)

A.3. The reactive Euler equations in Lagrangian coordinates
Equations (A15)–(A18) now permit us to rewrite the reactive Euler equations (A1)–(A4)
as (

∂v

∂t ′

)
φ

−
(

∂u

∂φ

)
t ′

= 0, (A19)(
∂u

∂t ′

)
φ

+
(

∂p

∂φ

)
t ′

= 0, (A20)(
∂etot

∂t ′

)
φ

+
(

∂pu

∂φ

)
t ′

= 0, (A21)(
∂Yi

∂t ′

)
φ

= ωi

ρ
, (A22)

where v = 1/ρ is the specific volume.
The alternative form of the energy equation (A5) becomes(

∂p

∂t ′

)
φ

= c2
(

∂ρ

∂t ′

)
φ

+ ρc2σ̇ (A23)
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Figure 31. A disturbance catching up to the lead shock, modifying its strength, and resulting acoustic and
entropy wave generation.

and the characteristic equation (A8) becomes((
∂

∂t ′

)
φ

± ρc

(
∂

∂φ

)
t ′

)
p ± ρc

((
∂

∂t ′

)
φ

± ρc

(
∂

∂φ

)
t ′

)
u = ρc2σ̇ . (A24)

We remark that the C+ and C− characteristics are given by
dφ

dt ′
= ±ρc (A25)

and the characteristic speeds are ±ρc.

Appendix B. Reflected disturbances at the lead shock
We consider the problem of a weak disturbance propagating along a C+ characteristic
overtaking a lead shock of arbitrary strength, generating a reflected acoustic disturbance
along a C− characteristic and an entropy wave along a particle path. Figure 31 illustrates
the various states: state 1 is the post-shock state, state 2 is the post-incident disturbance
state, state 4 is the state behind the reflected acoustic disturbance and state 3 is the state
behind the modified lead shock. The upstream uniform state 0 and states 1 and 2 are known
and we seek to determine states 3 and 4. The original incident shock has Mach number
Mi , and the new Mach number of the incident shock disturbance is Mt . We characterise
the inner disturbance by its over-pressure, which we take as being a small perturbation
z12 = (p2 − p1)/p1 � 1. We thus linearise around state 1, i.e.

p = p1 + p′, (B1)
ρ = ρ1 + ρ′, (B2)
T = T1 + T ′, (B3)

Mt = M0 + M ′, (B4)
where the prime quantities are small.
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The linearised version of the characteristic equations along the C± characteristics
becomes

dp′ ± ρ1c1du′ = 0. (B5)

The energy equation for a non-reacting perfect gas along a particle path is
dp

p
− γ

γ − 1
dT

T
= 0 (B6)

which linearises to
p′

p1
− γ

γ − 1
T ′

T1
= 0. (B7)

The disturbances in state 3 are related to the change in Mach number via the Rankine–
Hugoniot relations:

p′
3 =

(
dp

dM

)
RH

M ′, (B8)

u′
3 =

(
du

dM

)
RH

M ′, (B9)

T ′
3 =

(
dT

dM

)
RH

M ′, (B10)

where derivatives with subscript ‘RH’ are to be taken from the Rankine–Hugoniot
relations p(M), u(M) and T (M), respectively. Below, these derivatives are taken with
respect to pressure, e.g. (du/dM)RH = (du/dp)RH (dp/dM)RH .

Using the method of characteristics, the pressure, speed and temperature disturbances
can be found by straightforward solution of the compatibility equations (B5) in the acoustic
regime considered. Across the incident disturbance, the C− compatibility relation requires

p′
1 − ρ1c1u′

1 = 0. (B11)

Across the reflected disturbance, the C+ compatibility relation requires

p′
2 − ρ1c1u′

2 = p′
4 − ρ1c1u′

4. (B12)

Across the contact discontinuity, mechanical equilibrium applies, u′
3 = u′

4 and p′
3 = p′

4.
Solving this system of algebraic equations, one obtains the strength of the disturbances in
terms of p′

2:

u′
2 =

(
1

ρ1c1

)
p′

2, (B13)

T ′
2 =

(
γ − 1

γ

T1

p1

)
p′

2, (B14)

p′
3 = p′

4 =
(

2
1 + ρ1c1(du/dp)RH

)
p′

2, (B15)

u′
3 = u′

4 =
(

2(du/dp)RH

1 + ρ1c1(du/dp)RH

)
p′

2, (B16)

T ′
3 =

(
2(dT/dp)RH

1 + ρ1c1(du/dp)RH

)
p′

2, (B17)

T ′
4 =

(
γ − 1

γ

T1

p1

2
1 + ρ1c1(du/dp)RH

)
p′

2. (B18)
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Figure 32. Temperature perturbations behind a Mi = 4.05 lead shock after the catch up of an arbitrary strength
shock in a perfect gas with γ = 1.348. Full lines are the exact solution while broken lines are the acoustic
approximation for the inner disturbance.

This completes the solution. Figure 32 shows the performance of the acoustic treatment
of inner perturbations on the temperatures obtained behind the shock. Comparison is made
against exact calculations using the exact jump equations where the inner disturbance is a
shock wave and the reflected wave is a centred expansion wave (Bull et al. 1954).

Simplifications for weak or strong incident shocks are straightforward. If one assumes a
strong lead shock, starting with the usual strong shock Rankine–Hugoniot expressions

u

D
= p

ρ0 D2 = 2
γ + 1

and
ρ

ρ0
= γ + 1

γ − 1
, (B19)

one obtains

p′
3 = p′

4 = 4(γ − 1)

2(γ − 1) + √
2γ (γ − 1)

p′
2, (B20)

u′
3 = u′

4 = 1

1 + γ√
2γ (γ − 1)

p′
2

ρ0 D
, (B21)

T ′
2

T1
= γ − 1

γ

p′
2

p1
, (B22)

T ′
3

T1
= 4(γ − 1)

2(γ − 1) + √
2γ (γ − 1)

p′
2

p1
, (B23)

T ′
4

T1
= 4(γ − 1)2

γ
(
2(γ − 1) + √

2γ (γ − 1)
) p′

2
p1

. (B24)

For weak shocks treated in this paper, the exact Rankine–Hugoniot shock jump
conditions can be parametrised by the shock over-pressure z = (p − p0)/p0 and truncated
at the desired order. The exact expressions are given by Whitham (1974)
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Figure 33. Grid convergence study for ignition in 2H2+O2 with f = 454 kHz and A = 0.2u p0 for a grid
spacing of �φ of (a) 8 × 10−6kg/m2, (b) 4 × 10−6kg/m2, (c) 2 × 10−6kg/m2 and (d) 1 × 10−6kg/m2.

p

p0
= 1 + z,

ρ

ρ0
=

1 + γ + 1
2γ

1 + γ − 1
2γ

,
c

c0
=
√

p

p0

ρ0

ρ
,

T

T0
=
(

c

c0

)2

, (B25)

u − u0

c0
= z

γ

√
1 + γ + 1

2γ

, M =
√

1 + γ + 1
2γ

(B26)

which permits one to rewrite the derivatives in terms of z, for example

(
du

dp

)
RH

=

(
du

dz

)
RH(

dp

dz

)
RH

= c0

p0

√
2 + z + z/γ (z + γ (4 + z))√

2 (z + γ (2 + z))2 . (B27)

If one wishes to truncate the approximation to weak incident shocks, while retaining
nonlinearity, the Rankine–Hugoniot equations can be expanded in Taylor series in terms
of z and retain only terms up to O(z2), such that entropy and the Riemann variable J−
remain constant; the leading contributions to changes in entropy and J− across the shock
are terms of O(z3) (Whitham 1974).
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Appendix C. Grid convergence study and the effect of numerical resolution
A grid convergence study was performed for the numerically challenging problems of
ignition with embedded hotspots leading to hotspot cascades. The conditions targeted are
those illustrated in figures 25 and 26 for the hydrogen and ethylene mixtures, respectively.

Figure 33 shows the numerical results obtained for 500, 1000, 2000 and 4000 grid
points covering the φ axis, corresponding respectively to a grid spacing Δφ of 8 × 10−6,
4 × 10−6, 2 × 10−6 and 1 × 10−6 kg m−2. As can be verified, the effect of changing
the resolution over an order of magnitude has minimal impact on the solution, both
quantitatively and qualitatively. The principal difference is the reduction of numerical
dissipation at contact surfaces resulting from the shocks overtaking the lead shock. While
the rear-facing (non-physical) flames are clearly observed at the lowest resolution along
these contact surfaces, these are significantly minimised as the resolution is increased
and the physical fast flames propagating forward have speeds an order of magnitude
larger than numerical ones. At the largest resolutions of cases (c) and (d), the reaction
profile acquires its characteristic saw-tooth profile with nearly vertical contact surfaces.
The results reported in the paper use the resolution as in (c).

It is worthwhile commenting on the effect of resolving the inner structure of the internal
fast flames. Their characteristic thickness is given by the product of the wave speed
and the characteristic reaction time tr listed in table 1. Taking the shock speed as the
characteristic speed, for reference, the resulting characteristic thickness in this case is
δφr � 1 × 10−4 kg m−2. This means that the solutions presented above have 13 points per
δφr at the lowest resolution and up to 100 points per δφr at the highest resolution. As
internal waves propagate at lower speeds, the number of points in their thickness degrades
in the same proportion as the speed drops.

The resolution study performed for ignition in ethylene is more revealing of the
importance of resolving the very thin reaction zones. Figure 34 shows the numerical results
obtained for varying the resolution over two orders of magnitude, frame (g) corresponding
to the resolution of the results presented in the paper. The number of points in the domain
were respectively 78, 156, 312, 625, 1250, 2500, 5000 and 10 000 grid points covering
the φ axis, corresponding respectively to grid spacings Δφ of 1.8 × 10−4, 9.0 × 10−5,
4.5 × 10−5, 2.2 × 10−5, 1.1 × 10−5, 5.6 × 10−6, 2.8 × 10−6 and 1.4 × 10−6 kg m−2. For
reference, the characteristic reaction zone thickness is δφr � 4.1 × 10−5 kg m−2. This
means that the most resolved simulation has approximately 30 points per δφr and cases
(a), (b) and (c) do not resolve the reaction zone thickness at all.

Similar to the hydrogen case, the effect of increasing the resolution is to sharpen the
contact surfaces and minimise the non-physical numerical flames propagating backwards.
At the low resolution of cases (a) and (b), the hotspots are not resolved at all, as
numerical flames consume them as soon as they are present. With increasing resolution,
hotspots appear and burn progressively slower as the resolution is increased. By cases
(g) and (h), the fast flame structure acquires the expected saw-tooth shape with minor
differences in the sequence of events observed. Note, however, that the lowest speed fast
flames originating from the first three hotspots are still somewhat affected by numerical
resolution. Nevertheless, the solution remains qualitatively similar and described by the
same physics as discussed in the main text.

The general conclusion of our resolution study suggests that at least approximately 10
grid points are required to cover the characteristic reaction zone thickness of fast flames
in order to guarantee that the fast flames propagate well in excess of numerical flames.
This resolution was ensured in the body of this work. In practice, lower resolutions lead to
hotspots developing more rapidly due to numerical diffusion. This is now well understood
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Figure 34. Grid convergence study for ignition in C2H4 + 3O2 with f = 200 kHz and A = 0.2u p0 for a grid
spacing Δφ of (a) 1.8 × 10−4, (b) 9.0 × 10−5, (c) 4.5 × 10−5, (d) 2.2 × 10−5, (e) 1.1 × 10−5, (f ) 5.6 × 10−6,
(g) 2.8 × 10−6 and (h) 1.4 × 10−6 kg m−2.
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in the literature of numerical simulations of inviscid gas-dynamic problems coupled to
stiff reactive problems leading to contact surfaces and shear layers along which numerical
flames are established (Gamezo et al. 1999; Sharpe 2001; Radulescu et al. 2007; Radulescu
2018).

The discussion highlights the importance of resolving the reaction zone of fast flames,
not only the induction zones, which is usually the metric used in the literature.
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