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ON PLANAR CREMONA MAPS OF PRIME ORDER

TOMMASO DE FERNEX

Abstract. This paper contains a new proof of the classification of prime order
elements of Bir(P2) up to conjugation. The first results on this topic can be
traced back to classic works by Bertini and Kantor, among others. The in-
novation introduced by this paper consists of explicit geometric constructions
of these Cremona transformations and the parameterization of their conjugacy
classes. The methods employed here are inspired to [4], and rely on the re-
duction of the problem to classifying prime order automorphisms of rational
surfaces. This classification is completed by combining equivariant Mori theory
to the analysis of the action on anticanonical rings, which leads to characterize
the cases that occur by explicit equations (see [28] for a different approach).
Analogous constructions in higher dimensions are also discussed.

Introduction

One of the first contributions to the classification of conjugacy classes

in the Cremona group of P2 can be attributed to Bertini for his work on bi-

rational involutions [6]. The classification of all finite subgroups of Bir(P2)

up to conjugation was successively completed by Kantor in [19]. On the

same topic, one also finds [27], [2], [15] and [12]. The classification of finite

order planar Cremona maps, up to conjugation, is equivalent to the classi-

fication of normal multiple rational planes, up to birational equivalence. In

this area one can find the results of Bottari [7] and Castelnuovo and En-

riques [10]. Recently, Bayle and Beauville [4] and Calabri [8], [9] gave new

proofs of the birational classification of, respectively, involutions in Bir(P2)

and double and triple rational planes. Closely related to these topics are

results leading towards the determination of automorphism groups of ra-

tional surfaces, such as [26], [23], [22], [14], [20], [17], [18] [28] and [29]. We

refer to [1] for an account of the classic theory of planar Cremona maps.

The purpose of this paper is to give a new proof of the birational clas-

sification of planar Cremona maps of prime order, aiming a better under-
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2 T. DE FERNEX

standing of the geometry governing these transformations. Elements rep-

resenting each conjugacy class will be constructed by first realizing them

as automorphisms on birational equivalent models, and then interpreting

the constructions in terms of the geometry of P2. Parameterization of their

classes will follow from this approach.

Extending the methods in [4], the classification of Cremona maps of

prime order is reduced, through a suitable resolution of indeterminacy, to

that of automorphisms of prime order of smooth rational surfaces. In fact,

we will deal with automorphisms of prime order of smooth projective sur-

faces whose canonical class is not numerically effective. The classification

splits into two categories, according to the rank of the invariant part of the

Nerón-Severi group of the surface. If this rank is at least 2, we apply Mori

theory in the spirit of [4] and [28], searching for equivariant fibration struc-

tures. Otherwise the rank is 1. Then, after observing that the surface is

Del Pezzo, the classification is completed by considering the action that the

automorphism induces on the anticanonical ring. This approach enables

us to characterize each case by explicit equations and identify families of

analogous automorphisms in all dimensions.

The classification of automorphisms of prime order of smooth ratio-

nal surfaces has been already proved, by different methods, by Dolgachev

and Zhang in their very nice paper [28]. We would like to mention that

Theorem A below differs from [28, Theorem 1] in the way certain cases

are characterized: in [28] surfaces and automorphisms are constructed and

characterized as cyclic coverings over their quotients, whereas in this paper

we characterize them in terms of their equations.

This paper is organized as follows. The main results of classification,

given in Theorems A, B, E, F, are stated in Section 1. Sections 2 and 3

are respectively devoted to fix the notation and present some preliminary

material. Section 4 contains the proof of Theorems A and B. In Sections 5

and 6, we see two more properties concerning automorphisms of surfaces:

Propositions C and D. Finally, in Section 6, Theorems A, B and Propo-

sitions C, D are applied to prove Theorems E and F. Special numeration,

labeling certain cases, will be consistently adopted in all statements.
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§1. The main results

1.1. Automorphisms of prime order of surfaces

We work over the field of complex numbers. Let X be a smooth pro-

jective surface, and σ ∈ Aut(X). The pair (X,σ) is said to be minimal

if for any birational morphism φ : X → X ′ such that X ′ is smooth and

φσφ−1 ∈ Aut(X ′), φ is an isomorphism. Examples of minimal pairs are

given by the following two classic involutions, whose constructions we re-

call here for the convenience of the reader. If X is a smooth Del Pezzo

surface of degree 2, the linear system | − KX | defines a double covering

over P2, branched along a smooth quartic curve; the involution defined by

this cover is called Geiser involution. Similarly, if X is a smooth Del Pezzo

surface of degree 1, the linear system | − 2KX | defines a double covering

over a quadric cone, branched along the vertex of the cone and a smooth

curve of genus 4, and the corresponding involution is the Bertini involution

of X.

Theorem A. Let X be a smooth projective surface whose canonical

class is not nef, and σ ∈ Aut(X) be an element of prime order n such

that the pair (X,σ) is minimal. Then either (X,σ) is one of the following

(where any value of n may occur) :

1. X ∼= P2 and σ ∈ PGL(3);

2. X is a geometrically ruled surface and σ is fiberwise, either inducing

an effective automorphism on the base curve of the ruling or restrict-

ing to an effective automorphism on each fiber ;

or n = 2 and (X,σ) is one of the following :

3. X is a conic bundle and σ restricts to an effective involution on each

fiber ; the two components of each singular fiber are flipped by σ;
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4. X ∼= P1 × P1 and σ is the involution swapping the two rulings of X;

5. X is a Del Pezzo surface of degree 2 and σ is the Geiser involution ;

6. X is a Del Pezzo surface of degree 1 and σ is the Bertini involution ;

or n = 3 and (X,σ) is one of the following :

A1. X is a Del Pezzo cubic surface defined by an equation of the form

x3 = F (y, z, w) in P3, and σ is the restriction of the automorphism

of P3 given by (x, y, z, w) → (λx, y, z, w), where λ 6= 1 is a 3rd-root of

unity ;

A2. X is a Del Pezzo sextic surface defined by an equation of the form z3 =
F (x, y, w) in the weighted projective space P(1, 1, 2, 3) with coordinates

(x, y, z, w), and σ is the restriction of the automorphism of P(1, 1, 2, 3)
given by (x, y, z, w) → (x, y, λz, w), where λ 6= 1 is a 3rd-root of unity ;

or n = 5 and (X,σ) is one of the following:

A3. X is a Del Pezzo sextic surface defined by an equation of the form

xy5 = F (x, z, w) in the weighted projective space P(1, 1, 2, 3) with co-

ordinates (x, y, z, w), and σ is the restriction of the automorphism

of P(1, 1, 2, 3) given by (x, y, z, w) → (x, λy, z, w), where λ 6= 1 is a

5th-root of unity ;

A4. X is the Del Pezzo surface BlΣ P2, where Σ is the set of four points

in general position, and σ is the lift over X of the birational trans-

formation of P2 given, for suitable coordinates of P2, by (x, y, z) →
(x(z − y), z(x− y), xz).

Moreover, a smooth sextic surface X in P(1, 1, 2, 3) admits both automor-

phisms σ2, σ3 such that, for i = 2, 3, the pair (X,σi) is as in case Ai if and

only if, in suitable coordinates (x, y, z, w), X is defined by x6 + xy5 + z3 +
w2 = 0.

Notation 1.1.1. We will denote byX0 the sextic surface in P(1, 1, 2, 3)
defined by the equation x6 + xy5 + z3 +w2 = 0.

Remark 1.1.2. Even if we just assumed that the canonical class is not
nef, all surfaces appearing in the classification have Kodaira dimension −∞.
This is expected, since Bir(Y ) = Aut(Y ) for any smooth surface Y with nef
canonical class.

Theorem B. Let (X,σ) be as in one of cases A1–A4 of Theorem A.

Denote by f : X → X/σ the quotient map.
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B1. If (X,σ) is as in case A1, then X is a “special” Del Pezzo surface of

degree 3, and X/σ ∼= P2. Moreover, f is defined by the 2-dimensional

linear subsystem of | −KX | spanned by the orbits of (−1)-curves of

X (see Definition 4.1.3), and is totally ramified over a smooth plane

cubic curve.

B2. If (X,σ) is as in case A2, then X is a “special” Del Pezzo surface of

degree 1, and X/σ ∼= F3, the cone in P4 over a rational twisted cubic.

Moreover, f is defined by the linear subsystem of |−3KX | spanned by

3Cx, 2Cx + Cy, Cx + 2Cy, 3Cy, Cw (see Notation 3.2.1), and is totally

ramified over the vertex of the cone and the three-canonical model of

a smooth curve of genus 2.

B3. If (X,σ) is as in case A3, then X is a “special” Del Pezzo surface of

degree 1, and X ∼= X0 (X0 is defined in Notation 1.1.1 above) if and

only if j(C) = 0 for some (equivalently, for every) smooth C ∈ |−KX |.
In all cases, X/σ is isomorphic to the sextic hypersurface of equation

xu = F (x, z, w) in the weighted projective space P(1, 2, 3, 5) with co-

ordinates (x, z, w, u); X/σ can be realized by contracting the curve

G′ ∪S0 of Z22 if X ∼= X0, and of Z211 otherwise (see Notation 2.0.6).
Moreover, f is defined by the linear subsystem of | − 3KX | spanned

by 5Cx, 5Cy, 3Cx +Cz, 2Cx +Cw, Cz +Cw (see Notation 3.2.1), and is

totally ramified over the singular point of X/σ and a smooth elliptic

curve.

B4. If (X,σ) is as in case A4, then X is the Del Pezzo surface of degree 5,
and X/σ is the image of Z5511 under the contraction of G′

1 ∪G
′
2 ∪ S0

(see Notation 2.0.6). Moreover, f is totally ramified over the two

singular points of X/σ.

Remark 1.1.3. The “specialty” mentioned in cases B1–B3 is charac-
terized by the constraints given to the equation defining X (see A1–A3).
It is known that, apart of the Bertini involution, there are no other auto-
morphisms on general Del Pezzo surfaces of degree 1 or 3 (see [20]). The
information on the linear systems defining f , given for cases B1–B3, will
be used to describe the birational transformations they induce on P2. This
is not needed for case B4 (one can show that, in this case, f is defined a
linear subsystem of | − 3KX |).

1.2. Analogous constructions in higher dimensions

Del Pezzo manifolds of dimension N ≥ 3 are classified by Fujita [13].

Del Pezzo manifolds of degree 3 admit projective embeddings as cubic hy-
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persurfaces, and we find in those which are defined by an equation of the

form x3
0 = F (x1, . . . , xN+1) the analogues of case A1.

If X is a Del Pezzo manifold of degree 2, then X is a quartic hypersur-

face in the weighted projective space P(1N+1, 2), and the linear projection

P(1N+1, 2) 99K P(1N+1) induces a double covering of X over PN . This

construction generalizes the Geiser involution.

Let now X be a Del Pezzo manifold of degree 1. X is a sextic hy-

persurface in P(1N , 2, 3). The linear projection P(1N , 2, 3) 99K P(1N , 2)

induces a double covering of X over the cone over Veronese variety v2(P
N ).

This is the higher dimensional analogue of the Bertini involution. If we

additionally assume that X is defined, in suitable weighted coordinates

(x1, . . . , xN , z, w), by an equation of the form z3 = F (x1, . . . , xN , w), then

the linear projection P(1N , 2, 3) 99K P(1N , 3) induces a triple cyclic cov-

ering of X over the cone over v3(P
N ). This extends case A2. Similarly,

we can assume that X is defined by an equation of the form x2x
5
1 =

F (x2, . . . , xN , z, w). Consider the action of order 5 defined on the ring

C[x1, . . . , xN , z, w] by sending x1 → λx1, where λ is a 5th-root of unity.

Then the equation of X is invariant with respect to this action, and the in-

clusion of the invariant subring of C[x1, . . . , xN , z, w]/(x2x
5
1−F ) determines

a degree 5 cyclic covering of X over the sextic hypersurface of equation

x2u = F (x2, . . . , xN , z, w) in the weighted projective space P(1N−1, 2, 3, 5)

of coordinates (x2, . . . , xN , z, w, u). This extends case A3.

The remaining case to generalize is A4. The only Del Pezzo manifolds

of degree 5 are the linear sections of the Grassmannian variety Gr(2, 5)

parametrizing lines in P4. The automorphism σ of X defined as in A4 ex-

tends to the higher dimensional Del Pezzo manifolds in the following way.

Let σ1 be a linear automorphism of order 5 of C5 admitting distinct eigen-

values λj = ej2πi/5 (j = 0, . . . , 4). Let e0, . . . , e4 ∈ C5 be the corresponding

eigenvectors, and consider the basis {ei ∧ ej | 0 ≤ i < j ≤ 4} for C5 ∧ C5,

hence the corresponding Plücker coordinates pij of the projective space P9

in which Gr(2, 5) is embedded. The automorphism σ1 induces on P9 the

automorphism σ2, which sends pij → λiλjpij, and the latter restricts to an

automorphism σ3 of Gr(2, 5). Consider the five dimensional linear subspace

P ⊂ P9 given by p01 − p24 = p02 − p34 = p03 − p12 = p04 − p13 = 0. Then

X = P ∩ Gr(2, 5) is a smooth Del Pezzo surface of degree 5, σ3 restricts to

an automorphism σ of X, and (X,σ) is as in case A4. In a similar fash-

ion, σ3 restricts to automorphisms on the invariant Del Pezzo manifolds of

intermediate dimensions.
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1.3. Birational transformations of prime order of P2

We first recall the definition of three celebrated birational involutions

(Examples 1.3.1–1.3.3) and describe the constructions of four other bira-

tional transformations of P2 (Examples E1–E4). We would like to point

out that, in these examples, not obvious facts will be claimed. Justifica-

tions of such claims are implicitly contained in the proof of Theorem E

below.

Example 1.3.1. Let C be a curve of degree d ≥ 3 with an ordinary
multiple point q of multiplicity d − 2. The de Jonquières involution of

degree d maps a general point p ∈ P2 to its harmonic conjugate on the line
L spanned by p and q with respect to the two residual points of intersection
q′, q′′ of L with C.

Example 1.3.2. Let Σ ⊂ P2 be a set of 7 points in general position.
The Geiser involution maps a general point p ∈ P2 to the ninth base point
of the pencil of cubic |OP2(3) ⊗ IΣ ⊗ Ip|.

Example 1.3.3. Let Σ ⊂ P2 be a set of 8 points in general position.
The Bertini involution maps a general point p ∈ P2 to the additional base
point of the net of sextics |OP2(6) ⊗ I2

Σ ⊗ Ip|.

Example E1. Let Σ ⊂ P2 be a set of 6 points pα such that X =
BlΣ P2 is as in A1. Let γ1, . . . , γ6 be the 6 conics passing through all but
one point of Σ, and L denote the set of 15 lines passing through two of the
six points of Σ. Then L splits in the union of subsets L = L′∪L′′

1 ∪L′′
2 ∪L′′

3,
where L′ = {L1, . . . , L6} and L′′

β = {Lβ,1, Lβ,2, Lβ,3} (β = 1, 2, 3), such that
Lα is tangent to γα at pα (for α = 1, . . . , 6) and the three lines Lβ,1, Lβ,2

and Lβ,3 meet in one point (for β = 1, 2, 3). The set of cubics of the form
Dα = γα +Lα and Dβ = Lβ,1 +Lβ,2 +Lβ,3 spans a net W ⊂ |OP2(3)⊗ IΣ|.
Imposing any extra general base point to W gives two additional base points
to the system, and permutations of such three points define two elements
of order 3 of Bir(P2).

Example E2. Let Σ ⊂ P2 be a set of 8 points such thatX = BlΣ P2 is
as in A2. Let Γw ∈ |OP2(9)⊗I3

Σ| be a curve not contained in the span of the
image of the triple embedding of |OP2(3)⊗IΣ| in |OP2(9)⊗I3

Σ|, and let W be
the linear subsystem of |OP2(9)⊗ I3

Σ| spanned by the image of |OP2(3)⊗ IΣ|
and Γw. For a suitable choice of Γw, any extra general base point imposed
to W carries with it two additional base points, and permutations of such
three points define two elements of order 3 of Bir(P2).
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Example E3. Let Σ ⊂ P2 be a set of 8 points such that X = BlΣ P2

is as in A3. There are curves Γx,Γy,Γz,Γw in |OP2(3a) ⊗ Ia
Σ| (with a =

1, 1, 2, 3, respectively) such that, if W is the linear subsystem of |OP2(15)⊗
I5
Σ| spanned by 5Γx, 5Γy, 3Γx + Γz, 2Γx + Γw,Γz + Γw, then for any extra

general base point imposed to W the base locus incorporates four additional
base points, and permutations of such five points define four elements of
order 5 of Bir(P2).

Example E4. In coordinates (x, y, z) of P2, let τ : (x, y, z) → (x(z −
y), z(x− y), xz). Then τ is an element of order 5 of Bir(P2).

Theorem E. Examples E1–E4 above do define birational transfor-

mations of P2. Any element of prime order of Bir(P2) is conjugate to one

and only one of the birational transformations described in Examples 1.3.1–
E4, or to an element of Aut(P2). Moreover, the transformations defined in

these examples, with the possible exception of Example E4, are not conjugate

to elements of Aut(P2).

Remark 1.3.4. It would be interesting to determine whether Exam-
ple E4 is conjugate to an automorphism of P2. 1

The following theorem gives a description of the moduli spaces of con-

jugacy classes of prime order cyclic subgroups of Bir(P2). Let τ ∈ Bir(P2)

be an element and Gτ ⊂ Bir(P2) be the cyclic subgroup generated by τ .

As in [4], associated to any such τ we consider the normalized fixed curve

NFC(τ). This is defined as the isomorphism class of the union of the irra-

tional components of the normalization of the curve fixed by τ . Since this

is a birational invariant and is the same for every generator of the group

Gτ , we can define the correspondence

NFC : [Gτ ] → NFC(τ)

that associates to any conjugacy class [Gτ ] of a cyclic subgroup of Bir(P2)

the normalized fixed curve NFC(τ) of any generator τ of any representative

Gτ of the class.

Theorem F. The map NFC naturally establishes one–to–one corre-

spondences between :

1Recently, in [5], Beauville shows that the transformation defined in Example E4 is
conjugated to an automorphism of the plane. In fact, it was brought to our attention by
Dolgachev that this was already well known to Iskovskikh.
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1. conjugacy classes [Gτ ], where τ is a de Jonquières involution of P2

of degree d ≥ 3, and isomorphism classes of (hyper-)elliptic curves of

genus d− 2 ≥ 1 ;

2. conjugacy classes [Gτ ], where τ is a Geiser involution of P2, and

isomorphism classes of non-hyperelliptic curves of genus 3 ;

3. conjugacy classes [Gτ ], where τ is a Bertini involution of P2, and iso-

morphism classes of non-hyperelliptic curves of genus 4 whose canon-

ical model lies on a singular quadric ;

F1. conjugacy classes [Gτ ], where τ is as in Example E1, and isomorphism

classes of elliptic curves ;

F2. conjugacy classes [Gτ ], where τ is as in Example E2, and isomorphism

classes of smooth curves of genus 2 ;

F3. conjugacy classes [Gτ ], where τ is as in Example E3, and isomorphism

classes of elliptic curves.

Remark 1.3.5. The four birational transforms τ, τ 2, τ3, τ4, where τ is
as in Example E4, form a single conjugacy class (see Remark 4.6.2 below).
As pointed out to us by A. Beauville, linear automorphisms of order n, for
any given n <∞, form a single conjugacy class.

Proofs of Theorems E and F are contained in the last section.

§2. Notation and conventions

We work over an algebraically closed field k of characteristic zero. We

use standard notation accordingly to [16], [3] and [21]. We will adopt anal-

ogous notation as in [24] to denote certain elliptic fibrations over P1. In

particular,

Notation 2.0.6. Z22 is the (unique) elliptic fibration having one sec-
tion S0, one singular fiber of type II, and one of type II ∗. Z211 is the
(unique) elliptic fibration having one section S0, two singular fibers of type
I1, and one of type II∗. Z5511 is the (unique) elliptic fibration having five
(disjoint) sections S0, . . . , S4, two singular fibers of type I5, and two of type
I1. Z5511 is obtained by resolving the base locus of the plane cubic pen-
cil of equation y(x − y)(x − z) + λxz(y − z) = 0. We fix the following
special notation: if F0 is a fiber of type II∗, then we write F0 = G ∪ G′
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(set-theoretically), where G is the irreducible component occurring with
multiplicity 5, and G′ is the residual curve; if Fi is a fiber of type I5 of
Z5511, then we denote with G′

i the union of the four components of Fi

which are disjoint from S0 (i = 1, 2).

Remark 2.0.7. To keep this paper more self-contained, we opted not
to rely on the classification of extremal rational elliptic fibrations, which is
given in [24]. We will only use the fact that the elliptic fibrations Z22, Z211

and Z5511 are characterized by the data given in Notation 2.0.6

§3. On the action of finite groups

3.1. Cyclic coverings

Let f : X → Y be a cyclic cover, with X a smooth projective variety of

dimensionN . Let R ⊂ X be the set of points fixed by the Galois action, and

set B = f(R). Let R =
∑
Rk andB =

∑
Bk be the decompositions of these

cycles with respect to the dimension of their components, the bottom index

standing for the dimension. Actions of finite groups on smooth varieties

can be locally linearized, up to passing to completion (see [3], page 85).

This fact implies that R is a smooth cycle and Sing Y ⊆ (BN−2 ∪ · · · ∪B0).

In particular, Y is smooth if N = 1, and Y has only isolated singularities

(contained in B0) if N = 2.

3.2. Automorphisms on a Del Pezzo surface of degree 1

If X is a smooth Del Pezzo surface of degree 1, its anticanonical ring

gives an embedding of X into a weighted projective space P = P(1, 1, 2, 3).

We identify X with its image into this space. We can write P = ProjS,

where S = C[x, y, z, w] is the ring graded by the conditions deg x = deg y =

1, deg z = 2 and degw = 3.

Let σ be an automorphism of X of finite order n. Note that σ lifts to

an automorphism of the sheaf of differentials ΩX of X. We deduce that σ is

extends to an automorphism of P. In fact, we can find an automorphism σ ′

of S, of order n, that induces such automorphism of P. One should observe

that the choice of σ′ is not unique.

Notation 3.2.1. We can assume that the coordinates (x, y, z, w),
chosen for P, are equivariant, that is, that they define invariant divisors
on P. (Existence of such coordinates follows from the fact that linear
automorphisms of finite order can be diagonalized.) We write λx, λy, λz, λw

for the associated eigenvalues, so that σ ′ is given by (x, y, z, w) →
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(λxx, λyy, λzz, λww). The divisors of P defined by the above coordinates,
and their restrictions to X, will be respectively denoted by Px, Py, Pz , Pw

and Cx, Cy, Cz, Cw. Note that the last four divisors are invariant elements
in | − aKX |, for opportune values of a.

To simplify the statement of the following proposition, we rename

x, y, z, w by x0, . . . , x3, and put ai = deg xi. We write λi for the eigen-

value associated to xi. We denote by Pi the divisor on P defined by xi, and

set Ci = Pi ∩X.

Proposition 3.2.2. Assume that, for some value of i, Ci is a fixed

divisor of X (that is, every point of Ci is fixed). Then there is an opportune

choice of σ′ such that λj = 1 for all j 6= i.

Proof. Up to renaming the coordinates, we can assume that i = 0. We
can find a point p ∈ C0 whose coordinates (0, x1, x2, x3) satisfy x1x2x3 6= 0.

Since σ(p) = p, we have λ
1/a1

1 = λ
1/a2

2 = λ
1/a3

3 . We can also assume that
a1 = 1, and choose σ′ such that λ1 = 1 (this can be done by replacing λi

with λiλ
−ai

1 ). We deduce then that λ2 = λ3 = 1, too.

Clearly, the choice of σ′ as in the statement of Proposition 3.2.2 is

unique. We can view this condition as a way of fixing a distinguished

action of σ on S. In fact, if s ∈ S is the homogeneous element defining

X, so that X = ProjS/(s), then we also get a distinguished action of σ

on S/(s). Therefore, when the assumptions of the proposition above are

satisfied, we shall use σ to denote these particular automorphisms of S and

S/(s). Recall that S/(s) is isomorphic to the anticanonical ring of X. It

is important to keep in mind that the above “distinguished” action on S is

not necessarily the one induced, via this isomorphism, by the natural action

on the anticanonical ring.

3.3. Automorphisms of prime order of plane cubic curves

Let C be an irreducible plane cubic curve and σ an automorphism of C

of prime order n ≥ 3. Let f : C → C/σ be the projection on the quotient

and R ⊂ C be the fixed point set. If C is singular, let q denote the singular

point.

Proposition 3.3.1. If C is smooth, then either R = ∅ and C/σ is

an elliptic curve (any value of n may occur), or R 6= ∅, C/σ ∼= P1 and

n = 3. If C is a nodal cubic, then q is the only fixed point and C/σ is
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isomorphic to a nodal cubic: the two tangent directions at q are fixed by σ,
and the corresponding eigenvalues are λ and λ−1, where λ 6= 1 is a nth-root

of unity. If C is a cuspidal cubic, then there is another fixed point distinct

from q and C/σ ∼= P1.

Proof. The first case follows directly by Hurwitz formula. So, assume
that C is singular. Clearly q is a fixed point. Take the normalization
P1 → C. Then σ lifts to a (non-trivial) automorphism of P1. We start
considering the case when q is a node of C. Let q ′, q′′ ∈ P1 be the two
inverse images of q. Since n is odd, q ′ and q′′ are necessarily fixed points.
Therefore q is the only fixed point of C and, locally, the two branches of C
passing through q are stabilized by σ. By expressing σ in two affine charts
of P1, we determine the two eigenvalues of the action induced on TqC. Then
the computation of the invariant subring of the local ring of X at q shows
that C/σ has an ordinary node at f(q). Now suppose that q is a cuspidal
point. By considering the action on P1, we see that there is another fixed
point beside q. This time the local computation shows that C/σ is smooth
at f(q).

3.4. Equivariant Mori theory

Let X be a smooth projective variety and G be a finite group acting

on X. Then G acts on N 1(X) and N1(X), and the perfect pairing ( · ) :

N1(X)×N1(X) → R restricts to a perfect pairing N 1(X)G×N1(X)G → R.

In particular, N 1(X)G and N1(X)G have the same dimension, that we shall

denote by ρ(X)G.

Assume that ρ(X)G ≥ 2. The cone NE(X)G := NE(X) ∩ N1(X)G is

called G-invariant cone of curves of X. Let FG be a negative extremal

face of NE(X)G. First of all, note that FG is contained in the boundary of

NE(X). Let F be the smallest extremal face of NE(X) containing F G.

Proposition 3.4.1. F is invariant under the action of G, and the

extremal contraction contF : X → Y of the face F is a G-equivariant

morphism.

Proof. Let LF be a good-supporting divisor for the face F , and con-
sider the divisor L =

∑
g∈G gLF . L is still nef, is positive on NE(X) − F ,

and vanishes along FG. Therefore L is a good-supporting divisor for some
extremal face F ′ of NE(X) with FG ⊆ F ′ ⊆ F . By assumption on the
dimension of F , we conclude that F ′ = F . Since L is G-equivariant, so are
F and contF .
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3.5. Resolution of indeterminacy of pairs

Let ψ : X ′
99K X be a birational map between two projective varieties.

If G is a subgroup of Bir(X) and G′ = ψ−1Gψ, then we say that (X,G) and

(X ′, G′) are birationally equivalent pairs. If in addition X ′ is smooth and

G′ ⊆ Aut(X ′), then we say that (X ′, G′) is a resolution of indeterminacy

of the pair (X,G). We recall the following result (see [11] for a proof and a

stronger statement for the case of smooth surfaces).

Theorem 3.5.1. In the notation above, assume that G is finite. Then

there exists a resolution of indeterminacy (X ′, G′) of the pair (X,G).

§4. Proofs of Theorems A and B

Let X be a smooth projective surface whose canonical class is not nef,

and let σ ∈ Aut(X) be an element of finite order.

Lemma 4.0.2. The pair (X,σ) is minimal if and only if for each (−1)-
curve E of X there exists an integer k such that E and σkE intersect

properly.

Proof. Suppose that there is a (−1)-curve E such that, for somem ≥ 1,
σkE ∩ E = ∅ for 1 ≤ k ≤ m − 1 and σmE = E. Then the contraction of
the disjoint (−1)-curves σkE, for k = 0, . . . ,m − 1, gives an equivariant
birational morphism onto a smooth surface, so (X,σ) is not minimal. Con-
versely, let f : X → X ′ be a non-trivial birational morphism of smooth
surfaces, σ′ ∈ Aut(X ′) be an element of finite order, and σ ∈ Aut(X) be
such that fσ = σ′f . Let E be a (−1)-curve contained in the exceptional
locus of f and m the least positive integer such that σmE = E. Note that
the curve C = E+ σE+ · · ·+σm−1E is f -exceptional, so C2 < 0. Suppose
that E and σkE meet properly for some positive k ≤ m−1. Then for every
i = 0, . . . ,m − 1, if j(i) denotes the least non-negative integer such that
i+ k ≡ j(i) modulo m, we have σiE · σj(i)E ≥ 1. Note that j(i) 6= i. Then
we get the contradiction

0 > C2 =

m−1∑

i=0

m−1∑

j=0

σiE · σjE ≥
m−1∑

i=0

((σiE)2 + σiE · σj(i)E) ≥ −m+m ≥ 0.

4.1. The invariant part of the cone of curves

Assume thatKX is not nef, σ has prime order n, and (X,σ) is a minimal

pair. Recall that ρ(X)σ denotes the rank of NS(X)σ .
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Proposition 4.1.1. Suppose that ρ(X)σ ≥ 2. Then (X,σ) is one of

cases 2 and 3 of Theorem A.

Proof. Since ρ(X)σ ≥ 2 and KX is not nef, we can find an extremal
ray R of NE(X)σ contained in the negative part of ∂ NE(X). Let F be the
smallest extremal face of NE(X) containing R. By Proposition 3.4.1, the
contraction of F is σ-equivariant. We claim that either F = R, or n = 2 and
the extremal rays of F are generated by (−1)-curves E satisfying E ·σE = 1.
To see this, suppose that F 6= R. Let [E] be a minimal generator of an
extremal ray of F and consider the curve C = E+σE+ · · ·+σn−1E. Note
that [C] ∈ ∂NE(X), so C2 ≤ 0 by [25, Lemma 2.5]. If n = 2, then

0 ≥ C2 = E2 + 2E · σE + (σE)2 = 2(E2 +E · σE).

We observe that the possibility E2 = E · σE = 0 can not occur, since [E]
and [σE] span different rays. Thus E2 = −1 and E · σE = 1, as claimed.
Consider now the case n ≥ 3. First of all, note that the σiE are (−1)-curves.
By Lemma 4.0.2, there is a positive integer k such that E · σkE ≥ 1. We
put η = σk. Note that η has order n, and (X, η) is a minimal pair. We
deduce that ηiE ·ηjE ≥ 0 for 0 ≤ i < j ≤ n−1, and in fact ηiE ·ηi+1E ≥ 1
for all i. Note also that C = E + ηE + · · · + ηn−1E. Keeping in mind that
n ≥ 3, we get the contradiction

0 ≥ C2 ≥
n−1∑

i=0

((ηiE)2 + 2ηiE · ηi+1E) ≥ −n+ 2n > 0.

Now we can conclude the proof of Proposition 4.1.1. First, suppose that
R = F . Since (X,σ) is a minimal pair, the σ-equivariant contraction of F
is a P1-bundle fibration. If σ acts on each fiber, then there are not fixed
fibers since the set of fixed points of X is smooth and contains a double
section. This gives case 2 of Theorem A. Now suppose that R ( F . By
the above arguments, the σ-equivariant contraction of F is a conic bundle
whose singular fibers are curves of the form E ∪ σE. Let q be the singular
point of a singular fiber. Since the action on Tq X has eigenvalues 1 and
−1, we can find, locally near q, a fixed section through q. This implies that
the automorphism induced on Y is trivial. The same argument used for the
case of σ-invariant P1-bundles shows that σ restricts to an effective action
on each fiber. This gives case 3 of Theorem A.

Proposition 4.1.2. Suppose that X ∼= P1 × P1 and ρ(X)σ = 1. Then

n = 2 and σ swaps the two rulings of X. This is case 4 of Theorem A.
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Proof. Since ρ(X)σ = 1, n = 2 and σ swaps the two extremal rays of
NE(X).

Definition 4.1.3. Let X be a smooth Del Pezzo surface. The set of
(−1)-curves of X splits in orbits under the action of σ. We call orbits of

(−1)-curves the divisors on X of the form D = E+σE+ · · ·+σn−1E, with
E a (−1)-curve of X.

Proposition 4.1.4. Suppose that X 6∼= P2,P1 × P1 and ρ(X)σ = 1.
Then either n = 2 and X is a Del Pezzo surface of degree 1 or 2, or n = 3
and X is a Del Pezzo surface of degree 1 or 3, or n = 5 and X is a Del

Pezzo surface of degree 1 or 5.

Proof. By pulling back an ample line bundle fromX/σ, we see that one
of the two generators of NS(X)σ ∼= Z is ample. SinceKX is in NS(X)σ and is
not nef, −KX is ample, that is, X is a Del Pezzo surface. Then X ∼= BlΣ P2

where Σ ⊂ P2 is a set of r distinct points in general position, 1 ≤ r ≤ 8. We
recall that the degree of X as Del Pezzo surface is d = K 2

X = 9 − r. Let D
be an orbit of (−1)-curves of X. Since D is invariant under the action of σ,
D ∈ |−aKX | for some positive integer a. Then n = D · (−KX) = ad, hence
d = 1 or n, since n is prime. We can conclude by the fact that n divides
the number of (−1)-curves of X (this number is well known as a function
of d, see for instance [23]).

The remaining part of this section is devoted to the analysis of the six

cases presented by Proposition 4.1.4.

4.2. The Geiser and Bertini involutions

Let σ be a biregular involution on a Del Pezzo surface X of degree 1 or

2, and assume that ρ(X)σ = 1. Then the action that σ induces on Pic(X)

is the same as the one induced by the Bertini or the Geiser involution,

respectively. Since their difference induces an automorphism of P2 which

fixes the points of Σ, they are the same automorphism.

4.3. Cases A1 and B1

Let X be a smooth Del Pezzo surface of degree 3 and σ be an auto-

morphism of X of order 3 such that ρ(X)σ = 1.

Proposition 4.3.1. Let X and σ as above. Then (X,σ) is as in

case A1, X/σ ∼= P2, and the quotient map f : X → X/σ is totally ramified

over a smooth plane cubic. Moreover, f is defined by the linear subsystem

of | −KX | spanned by the orbits of (−1)-curves.
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Proof. We identify X with its anticanonical embedding in P3. Since
σ acts on | − KX |, σ is the restriction to X of a linear automorphism of
P3. In particular, the fixed point set R consists of points, lines and possibly
a smooth plane cubic. Since ρ(X)σ = 1, the eigenvalues of the action of
σ on H2(X,Z) are 1, three times λ, and three times λ2, with λ = e2πi/3,
thus the trace is −2. Therefore the trace of σ acting on H ∗(X,Z) is 0. By
Lefschetz this is the sum of the Euler numbers of the fixed components of
σ. We conclude that R is a plane section of X, hence σ fixes a plane in P3.
It follows at once that X has equation of the form x3 = F (y, z, w) and f
is the projection over the plane x = 0. Since the orbits of (−1)-curves are
mapped to lines of this P2 spanning |OP2(1)|, f is defined by the claimed
linear system.

4.4. Cases A2 and B2

Let X be a Del Pezzo surface of degree 1 and σ be an automorphism

of X of order 3 such that ρ(X)σ = 1. As usual, f will denote the quotient

map. Note that the base point q of | − KX | is fixed by σ. In particular,

σ lifts to an automorphism of Y = Blq X which stabilizes the exceptional

divisor Eq. We denote by g : Y → Y/σ the quotient map.

Lemma 4.4.1. The action induced by σ on | −KX | is trivial.

Proof. Arguing as in the proof of Proposition 4.3.1, we see that the
trace of σ acting on H∗(X,Z) is −1. If σ does not act trivially on | −KX |
the fixed components are points or smooth curves of genus ≤ 1. Since these
have positive Eulen number, this is impossible.

Lemma 4.4.2. The ramification locus R of f is the disjoint union of

q and Cz (see Notations 3.2.1). Moreover, f(q) is a singularity of X/σ of

type 1
3(1, 1).

Proof. It follows from Lemma 4.4.1 that Eq is a fixed curve on Y . Since
fixed divisors are smooth, we deduce that q is an isolated fixed point of X.
f(q) is a singularity of type 1

3(1, 1) because σ acts trivially on PTqX. Let R1

be the union of the 1-dimensional components of R. Since R intersects the
general C ∈ | −KX | in three points, one of which is q, we have R1 · C = 2.
Noting that R1 is invariant and Pic(X)σ = −KXZ, we deduce that R1 ∈
| − 2KX |. Since R1 intersects properly every C ∈ | −KX |, it must be Cz.
By Lefschetz, the Euler number of R is −1. Since Cz has Euler number −2,
we conclude that q is the only isolated fixed point.
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Proposition 4.4.3. Let X be a smooth Del Pezzo surface of degree 1
and σ be an element of order 3 in Aut(X). Then (X,σ) is as in case A2.

Proof. We can embed X as a hypersurface of degree 6 in the weighted
projective space P(1, 1, 2, 3). We fix coordinates (x, y, z, w) according to
Notation 3.2.1. Note that Cz is a fixed divisor on X. Then Proposition 3.2.2
implies that σ is the restriction to X of the automorphism of P(1, 1, 2, 3)
given by (x, y, z, w) → (x, y, λz, w), where λ 6= 1 is a 3dr-root of unity.
In particular, we deduce that X is defined by an equation of the form
z3 = F (x, y, w).

We deduce the following

Corollary 4.4.4. f is the restriction of the linear projection of

P(1, 1, 2, 3) from the point (0, 0, 1, 0) to Pz (see Notation 3.2.1). In par-

ticular, X/σ = Pz
∼= P(1, 1, 3) ∼= F3 ⊂ P4, the cone over a rational twisted

cubic. In terms of linear systems, f is defined by the linear subsystem of

| − 3KX | spanned by 3Cx, 2Cx + Cy, Cx + 2Cy, 3Cy , Cw.

If we embed X in P6 by | − 3KX |, then the orbits of (−1)-curves are

hyperplanes sections, the quotient map f is the restriction to X of a linear

projection π : P6
99K P4, and X/σ = F3 ⊂ P4. Let φ : F3 → F3 be the

resolution of the singularity p ∈ F3, and E = φ−1(p) be the exceptional

curve. Then Y/σ = F3, g(Eq) = E and φg = fψ. Let R′ and B′ be the

ramification and branch loci of g. Note that they are divisors containing

respectively Eq and E, and that g∗B′ = 3R′. Using 2R′ = KY −g∗KF3
, one

sees that B ′ ∼ 2φ∗O
F3

(1) + E. Therefore f is branched along the vertex

p of F3 and a (smooth) curve B1 ∈ |O
F3

(2)|. B1 is a sextic and 3KB1

∼=
OP4(1)|B1

by adjunction, so B1 has genus 2. Riemann-Roch formula implies

that the embedding of B1 in P4 is given by the complete linear system |KB1
|.

This concludes the proof of B2.

4.5. Cases A3 and B3

Let X be a Del Pezzo surface of degree 1 and σ be an automorphism

of X of order 5.

Lemma 4.5.1. σ acts effectively on |−KX |, whose invariant curves are

a rational cuspidal curve Cx and an elliptic curve Cy (see Notations 3.2.1).
The ramification locus of f : X → X/σ is the disjoint union of Cy and the

cuspidal point q1 of Cx. The quotient surface X/σ has a unique singularity

at the point f(q1).
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Proof. Since the base point q of | −KX | is fixed, every invariant but
not fixed C ∈ | −KX | must be a cuspidal curve by Proposition 3.3.1. We
deduce that σ acts effectively on | −KX |, so that Cx and Cy are the only
two invariant members of | − KX |. By computing the Euler number of
X− (Cx ∪Cy), we deduce that one of the two curves, say Cy, is fixed, while
the other one, Cx, is a rational cuspidal curve. Note that the cuspidal point
q1 of Cx is the only isolated fixed point of X, so f(q1) is the only singularity
of X/σ.

Proposition 4.5.2. Let X be a smooth Del Pezzo surface of degree 1
and σ be an element of order 5 in Aut(X). Then (X,σ) is as in case A3.

Proof. The proof is analogous to that of Proposition 4.5.2. This time,
in the embedding of X in P(1, 1, 2, 3), σ is the restriction of an automor-
phism acting effectively only on the y coordinate, and X has equation of
the form xy5 = F (x, z, w).

Proposition 4.5.3. X/σ can be identified with the sextic hypersurface

of equation xu = F (x, z, w) in the weighted projective space P(1, 2, 3, 5) with

coordinates (x, z, w, u). Let p1 = (0, 1, 0, 0) ∈ P(1, 2, 3, 5). Then p1 = f(q1)
and is a singularity of X/σ of type 1

5 (1, 4). In terms of linear systems, f
is defined by the linear subsystem of | − 5KX | spanned by 5Cx, 5Cy , 3Cx +
Cz, 2Cx + Cw, Cz + Cw.

Proof. Since the relation xy5−F = 0 involves only the 5th power of y,
the ring of invariants T σ of T = C[x, y, z, w]/(xy5−F ) is generated, over C,
by the classes of x, y5, z, w. This yields the projective description of X/σ,
since T σ ∼= C[x, z, w][u] with u = F (x, z, w)/x. Clearly p1 = f(q1). The
equation of X/σ near p1 is approximated by the linear equation x = 0 (of
weight 1), so the nature of the point p1 ∈ X is the same as the one of the
point (0, 0, 1) of P(2, 3, 5). This is a singularity of type 1

5(1, 4). The last
statement of the proposition follows from the fact that T σ

5 generates the
ring ⊕m≥0T

σ
5m.

We can also follow a more geometric approach to study the quotient

X → X/σ, by understanding explicitly the system | −KX | in terms of the

embedding of X in P(1, 1, 2, 3). For t ∈ C, we put Ct = Cy − tCx. Note

that Cx is given by F (0, z, w) = 0 in Px, and Ct by F (x, z, w) = t5x6 in Pt.

Here Pt ⊂ P(1, 1, 2, 3) is the subspace defined by y = tx. If L = Px ∩ Py,

then Cx ∩ L = Cy ∩ L = q. We see that q 6= (0, 0, 1, 0), (0, 0, 0, 1) since
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H0(−2KX) and H0(−3KX) are globally generated. Moreover, we observe

that (0, 1, 0, 0) is the cuspidal point q1 of Cx.

Note that either j(Ct) 6= 0 or j(Ct) = 0 for all smooth Ct. Indeed the

restrictions of x, z, w to Ct define divisors on Ct which are linearly equivalent

to q, 2q, 3q, respectively. Thus, by embedding Ct in P2 via |OCt
(3q)|, Ct

is defined, in an affine chart, by F (1, z, w) = t5. Writing this equation

in Weierstrass normal form (w′)2 = (z′)3 + Az′ + B, we see that A is

independent of t.

Let π : P(1, 1, 2, 3) 99K Py be the linear projection from the point q1 =

(0, 1, 0, 0). Its restriction toX contracts Cx to q and coincides with f outside

Cx, since π|(X−Cx) is finite of degree 5 and σ acts on the fibers of π. We

resolve the indeterminacy of π by taking the weighted blowup of P(1, 1, 2, 3)

at q1 = (0, 1, 0, 0), with weights 1, 2, 3. This restricts to the weighted blowup

g : Blwq1
X → X of X at q1 with weights 2, 3. The latter gives a resolution

f1 : Blwq1
X → Py of π|X . Let E1 be the exceptional divisor of g and C ′

x, C
′
y

be the strict transforms of Cx, Cy. Next we take the blowup Blq Py of Py

at q. Let E and L′ be the corresponding exceptional divisor and the strict

transform of L. Then f1 factors through a morphism f2 : Blwq1
X → Blq Py

and Blq Py → Py, and, moreover, f2(C
′
x) = E and f2(E1) = L′. Indeed

f−1
1 (q) = C ′

x, and this curve intersects E1
∼= P(2, 3) at a point distinct from

(1, 0) and (0, 1). So Blwq1
X is smooth along this curve, and we can apply the

universal property of the blowup to f1. Moreover, f2(C
′
x) = E, since C ′

x is

the only curve contracted by f1, and, by construction, f1(E1) = Px∩Py = L,

so f2(E1) = L′.

Proposition 4.5.4. There is a morphism g ′ : Blq Py → X/σ such that

fg = g′f2. Moreover, X/σ = ν(Z), where Z ∼= Z22 (∼= Z211) if j(C) = 0
(6= 0, respectively) for some (equivalently, for every) smooth C ∈ | −KX |,
and ν is the contraction of G′ t S0 to p t p1 (see Notation 2.0.6).

Proof. Let h : P̃y → Py be the minimal resolution of the two sin-

gularities of Py. Note that 6L is a Cartier divisor, and h∗(6L) = 6L̃ +

3F + 4H + 2H ′. Here L̃ = h−1
∗ L, F = h−1((0, 1, 0)) is a (−2)-curve,

and H ∪ H ′ = h−1((0, 0, 1)) is a chain of two (−2)-curves. We com-
pute L̃2 = −1 by L2 = 1/6. Let q̃ = h−1(q). Then h lifts to a mor-
phism h′ : Bleq P̃y → Blq Py, and the exceptional divisor Ẽ of Bleq P̃y is

mapped isomorphically to E. The strict transform, over Blq P̃y, of the curve

L̃∪F∪H∪H ′ is a chain of four (−2)-curves. Its contraction g̃ : Bleq P̃y → X ′
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factors through h′ and a morphism g′ : Blq Py → X ′ which contracts L′

(generating a singularity of type 1
5(1, 4)) and is an isomorphism outside L′.

This gives g′f2g
−1 = f , hence X ′ = X/σ.

Let Dt = (π|X)∗Ct, for t ∈ C. The minimal smooth resolution ν : Z →
X/σ of the base locus of f∗| − KX | (which is supported at p) factors as
ν = ν̃g̃. Z is an elliptic fibration with only one section S0 (the exceptional
divisor of the last monoidal transformation) and having a singular fiber F0

of type II∗, so it is either Z22 or Z211 accordingly to the j-invariant of the
elements in | −KX |. We conclude by observing that ν is the contraction of
G′ t S0, where G′ is as in Notation 2.0.6.

To conclude the proof of B3, we observe that the branch divisor of f is

the proper transform of Cy ⊂ Py, so it is an elliptic curve.

4.6. Cases A4 and B4

Let X be the Del Pezzo surface of degree 5 and σ be an automorphism

of X of order 5. Although it is known that Aut(X) ∼= S5, the symmetric

group on five letters, we will explicitly tread also this case. In a suitable

coordinate system, X is the blowup of P2 along the set Σ of four points

pi in general position. Let Li,j be the line passing through the points pi

and pj, L
′
i,j be the proper transform of Li,j over X, Ei be the exceptional

divisor over the point pi. The set {L′
i,j, Ei}i,j is the set of (−1)-curves

of X. One can check that none of the (−1)-curves can be invariant and

the five components of each σ-orbit of (−1)-curves are configured into a

pentagon. We can assume, without lost of generality, that the two orbits

are D1 = L′
1,2 +E1 +L′

1,4 +L′
2,3 +E2 and D2 = L′

3,4 +L′
1,3 +E4 +E3 +L′

2,4.

The five points of intersection of D1 and D2 establish (in a obvious way)

a one–to–one correspondence between the components of D1 and D2. Fix

coordinates (x, y, z) in P2 such that p1 = (1, 0, 0), p2 = (0, 1, 0), p3 = (0, 0, 1)

and p4 = (1, 1, 1), and let τ be the order 5 Cremona transformation defined

by

(x, y, z) → (xz, x(z − y), z(x − y)).

Proposition 4.6.1. Let X be the Del Pezzo surface of degree 5 and σ
be an automorphism of X of order 5. In the notation above, after suitably

reordering the points pi, σ is the lift on X of τ . This is case A4.

Proof. By means of the correspondence described above, an order 5
automorphism of X is uniquely determined by the action induced on the
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orbit of one (−1)-curve. We deduce that τ ′ = σm for some m. Consider the
elements η, φ, ψ ∈ Aut(P2) determined by the tree permutations (p1p4p2p3),
(p1p3p2p4) and (p1p2)(p3p4) on Σ, and let η′, φ′, ψ′ ∈ Aut(X) be their lifts
over X. Then one can check that σ, σ2, σ3, σ4 are conjugated one into the
other by elements in {η′, φ′, ψ′}.

Remark 4.6.2. τ, τ 2, τ3, τ4 are conjugated one into the other by ele-
ments in {η, φ, ψ}.

By blowing up X along D1 ∩ D2, we obtain an elliptic fibration Y ∼=
Z5511. The two fibers of type I5 are the strict transforms D′

1 and D′
2 of D1

and D2. Let F1 and F2 denote the other two singular fibers. Note that σ

acts fiberwise on Y . By Euler number computation and Proposition 3.3.1,

we can see that the elliptic fibration is σ-invariant and the nodes y1, y2 of

the two fibers F1, F2 are the only fixed points of Y . Let g : Y → Y/σ be the

quotient map and ν : Z → Y/σ be the minimal resolution of singularities.

Proposition 4.6.3. Y/σ is an elliptic fibration over P1 having exactly

four singular fibers of type I1 and two singular points of type 1
5(1, 4), and

Z ∼= Z5511.

Proof. The elliptic fibration of Y induces a fibration on the quotient,
and each D′

i is mapped to a nodal curve. Proposition 3.3.1, applied to the
irreducible fibers of Y , yield the first part of the proposition. By resolving
the two singularities of Y/σ′, we obtain Z ∼= Z5511.

If Gi = h−1
∗ g(D′

i) and G′
i = h−1g(yi) \Gi, we deduce the following

Corollary 4.6.4. X/σ ∼= ν(Z5511), where ν is the contraction of the

cycle S0 tG
′
1 tG

′
2. In particular, X/σ has two singularities of type 1

5(1, 4)
and f : X → X/σ is ramified over these two points.

4.7. The last statement of Theorem A

Let X ⊂ P(1, 1, 2, 3) be a smooth sextic surface and, for i = 2, 3,

assume there is a σi ∈ Aut(X) such that (X,σi) is as in case Ai. The

quotient map fi : X → X/σi is the restriction to X of a linear projection

πqi
: P(1, 1, 2, 3) 99K Pi, where Pi ⊂ P(1, 1, 2, 3) is a suitable subspace.

We can assume that Pi ∩ X is the ramification divisor of fi. Then we

can choose coordinates (x, y, z, w) in P(1, 1, 2, 3) such that q2 = (0, 0, 1, 0),
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P2 = {z = 0}, q3 = (0, 1, 0, 0) and P3 = {y = 0}. In this coordinate

system, X is defined by an equation of the form xy5 + z3 + G(x,w) = 0.

Using that X is smooth, one can check that this equation is reduced to

xy5 + z3 +w2 + x6 = 0 by an opportune change of coordinates. The proofs

of Theorems A and B are now complete.

§5. Building back the covering

The following proposition gives the construction of (X,σ) (for cases B1–

B3) starting from the quotient X/σ.

Proposition C.

C1. Let B be a smooth cubic of P2. Then there is a triple cyclic cover

f : X → P2 branched along B, and (X,σ) is as in case A1 for any

generator σ of the Galois group of the covering.

C2. Let F3 ⊂ P4 be a cone over a rational twisted cubic, and let B1 ⊂ F3 be

a smooth curve of genus 2, cut on the cone by a quadric hypersurface

of P4. Then there is a triple cyclic cover f : X → F3 branched along

B1 and the vertex p of the cone, and (X,σ) is as in case A2 for any

generator σ of the Galois group of the covering.

C3. Let Z = Z22 or Z211, and ν : Z → Y be the contraction of G′ ∪ S0.

Let B1 be a smooth member of | −KY |. Then there is a cyclic cover

f : X → Y of degree 5 branched along B1 and the singular point p1

of Y , and (X,σ) is as in case A3 for any generator σ of the Galois

group of the covering. In particular X ∼= X0 if and only if Z = Z22.

Proof. Consider case C1. The section s ∈ H0(OP2(3)) vanishing along
B determines a triple cyclic cover f : X → P2, where X = Spec(OP2 ⊕
OP2(−1) ⊕OP2(−2)). X is smooth and f is totally ramified over B. Since
−KX = f∗OP2(1), it is ample and has self intersectionK2

X = 3 by projection
formula. To conclude, let σ be a generator of the Galois group of X → P2.
Then ρ(X)σ = ρ(P2) = 1.

For case C2, consider the blowup φ : F3 → F3 of F3 at the vertex
p. Let E denote the exceptional divisor. Let H = φ∗O

F3
(1) and B̃ =

φ−1(B1∪{p}). Then B̃ ∈ |2H+E| = |3(H−F )|. Set L = OF3
(H−F ). The

section s ∈ H0(L3) defining B1 determines a triple cyclic cover f̃ : X̃ → F3

(totally) ramified over B̃, where X̃ = Spec(OF3
⊕L−1 ⊕L−2). X̃ is smooth

since F3 and B̃ are smooth. Set E ′ := f̃−1(E). Then E ′ = (1/3)f̃∗(E)
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and f̃∗E
′ = E. By projection formula, (E ′)2 = −1, so there is a morphism

ψ : X̃ → X contracting E ′ to a smooth point. Then we can find a morphism
f : X → F3 such that fψ = φf̃ . By construction, f is a degree 3 cyclic cover
branched along B. Since −KX = (1/3)f ∗H

F3
, −KX is ample. Moreover,

H2
F3

= 3 yields K2
X = 1 by projection formula. To conclude, let σ be one of

the two generators of the Galois group of X → F3. Then ρ(X)σ = ρ(F3) =
1.

For case C3, set C = ν(G) (G is the irreducible component of the fiber
F0 occurring with multiplicity 5, and is the only component not contracted
by ν). Then B1 is linearly equivalent to 5C. The section s ∈ H0(OY (−5C))
vanishing along B1 determines a degree 5 cyclic covering f : X → Y , where
X is the normalization of Spec(⊕4

m=0OY (−mC)). This covering is étale
outside B1 ∪ {p1} and totally ramified over B1. A local computation over
the point p1 shows that X is smooth and f is totally ramified over p1. We
have −KX = f∗C. Note that C2 = 1/5, so C2 is ample by Kleiman’s
criterion. Hence −KX is ample as well and, by projection formula, K2

X =
1. To conclude, let σ be any generator of the Galois group of f . Then
ρ(X)σ = ρ(Y ) = 1.

§6. Counting the number of automorphisms

Bertini and Geiser involutions are unique on a given Del Pezzo surface

of degree 1 or 2. Here we consider the same question for the automorphisms

described in cases A1–A4 of Theorem A.

Proposition D.

D1. If X is as in A1, there are exactly eight distinct automorphisms as

in A1 if X is the Fermat cubic (i.e., if X is defined by x3 + y3 + z3 +
w3 = 0), and exactly two otherwise.

D2. If X is as in A2, it has exactly two distinct automorphisms as in A2.

D3. If X is as in A3, it has exactly four distinct automorphisms as in A3.

D4. If X is as in A4, it has exactly 24 distinct automorphisms as in A4.

Proof. Case D1 of the proposition is well known (see for instance [26],
page 129). Assume then that X is a smooth sextic surface in P(1, 1, 2, 3).
D2 follows simply by the fact that there is only one linear projection from
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P(1, 1, 2, 3) onto P(1, 1, 3). Concerning case D3, suppose there are two auto-
morphisms σ1, σ2 ∈ Aut(X) of order 5 corresponding to two distinct linear
projections πqi

: P(1, 1, 2, 3) 99K Pi
∼= P(1, 2, 3). Then we can fix coordi-

nates (x, y, z, w) in P(1, 1, 2, 3) such that q1 = (1, 0, 0, 0), P1 = {x = 0},
q2 = (a, 1, 0, 0) and P2 = {bx + cy = 0} (we assume that Pi ∩X = Ri, the
ramification divisor of fi). But one can see, by considering how it reflects
on the equation of X, that this situation is impossible.

Lastly, let X = BlΣ P2 be the Del Pezzo surface of degree 5. Let L
be the set of lines passing through pairs of points of Σ. Any splitting of
L into two “triangles” (i.e. into two sets of three lines with no common
points) determines a decomposition of the set of (−1)-curves of X in two
“pentagons”. To each distinct splitting of L as above there correspond
four automorphisms of order 5, and conversely. We conclude counting six
possible distinct ways of splitting L.

§7. Proofs of Theorems E and F

The results proved in the previous sections are finally applied to prove

the classification of birational transformations of prime order of P2 (Theo-

rem E) and of their moduli spaces (Theorem F). Part of the the arguments

used in the proofs are taken from [4].

7.1. Proof of Theorem E

Let τ be a birational transformation of P2 of prime order p. By The-

orem 3.5.1, there is a resolution (X,σ) of the pair (P2, τ). We can assume

that (X,σ) is a minimal pair. Note that KX is not nef, thus we can apply

to (X,σ) the results stated in Theorem A of Chapter 5.

In case 2 of Theorem A, X is isomorphic to an Hirzebruch surface Fe

for some e ≥ 0. We perform elementary transformations to reduce (X,σ)

to (F1, σ
′), with σ′ ∈ Aut(F1), in the following way. We can find a fixed

point of X not contained in the (−e)-curve. Blowing it up and contracting

the proper transform of the fiber, we obtain Fe−1 if e ≥ 2, or F1 if e = 0.

Note that σ induces there an automorphism. Proceeding in this way, we

end up with the desired (F1, σ
′). Finally, contracting the (−1)-curve of F1,

we obtain an automorphism of P2.

We consider now case 4 of Theorem A. By blowing up a fixed point of

X = P1×P1 and contracting the proper transforms of the two lines through

that point, we see that σ is birationally equivalent to an automorphism on

P2.
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Next, let (X,σ) be as in case 3 of Theorem A. The fixed divisor R ⊂ X

is a smooth curve passing to the singular point of each reducible fibers and

intersecting each smooth fiber in two distinct points. After contracting one

component of each reducible fiber ofX, we get on a Fe, where σ induces a bi-

rational involution and R is mapped isomorphically. Performing elementary

transformations centered at general points of the image of R, we eventually

get a birational involution τ ′ on F1. After this birational modification, R is

mapped isomorphically to a curve in F1. We will still denote this curve by

R. Let E and F be respectively the (−1)-curve and a fiber of F1, and write

R = 2E + rF . Adjunction formula yields r = g+2, where g is the genus of

R, thus E · R = g. After further suitable elementary transformations, we

can lower the multiplicity of intersection at each point of R ∩ E until we

get that R and E meet transversally in g distinct points. At this point we

blow down E, obtaining a birational involution of P2. This involution fixed

a curve of degree d = g+2 with an ordinary multiple point q of multiplicity

g as unique singularity, and lets invariant the lines through q. This is a de

Jonquières involution of degree d ≥ 2. To conclude this case, we claim that

any de Jonquières involution of degree 2 is conjugate to an automorphism.

In analogy with Example 1.3.1, a point q is fixed outside a smooth conic

C. Let T1 and T2 be the two lines passing through p and tangent to C, qi

be the point of contact of Ti with C, and L be the line spanned by q1 and

q2. Blowing up P2 at q1 and q2 and contracting the proper transform of L,

we get to P1 × P1, where the de Jonquières involution induces an automor-

phism σ′. We observe that ρ(P1 × P1)σ
′

= 1, which in particular implies

that (P1 × P1, σ′) is a minimal pair. By Theorem A, σ′ is the involution

which exchanges the two rulings of P1 × P1, so it is birationally equivalent

to an automorphism of P2.

Each case among 5–A4 of Theorem A is clearly birationally equiva-

lent to one of the birational transforms described in Examples 1.3.2–E4

(in the same order). The normalized fixed curve NFC(τ) is given by the

isomorphism class of the ramification divisor of the cover X → X/σ, and

in all cases but A4, this is an irrational curve. This shows that the bira-

tional transformations τ described in Examples 1.3.1–E3 are not conjugate

to elements in Aut(P2). Finally, by comparing this invariant together with

the order of the transformation, we conclude that all examples determine

different conjugacy classes.
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7.2. Proof of Theorem F

Let (P2, τ) be one of the pairs listed in Examples 1.3.1–E4 and (X,σ)

denote its minimal resolution of indeterminacy. We recall that, excluding

the de Jonquières involutions, X is a Del Pezzo surface and the resolution

of (P2, τ) is given by the blowup of P2 along Σ.

Proposition 7.2.1. The correspondence NFC is surjective.

Proof. Let C be an hyperelliptic curve of genus g ≥ 1 (with abuse of
language, among hyperelliptic curve we include here also elliptic curves).
Let g1

2 be a pencil of degree 2 on C, and let p1, . . . , pg ∈ C be g distinct
points such that pi + pj 6∈ g1

2 for all pairs i, j (for g = 1 this condition is
empty). The morphism defined by the linear system |g1

2 + p1 + · · · + pg|
maps C to a plane curve of degree g + 2 with an ordinary multiple point q
of multiplicity g as unique singularity. This shows that NFC is surjective
for the case of de Jonquières involutions of degree d ≥ 3.

For the remaining cases, since NFC(τ) is the isomorphism class of the
ramification divisor of f : X → X/σ, the claim is clear by Proposition C
except when τ is as in Example E2. For this case, we have to check that
any three-canonical model C ⊂ P4 of a curve of genus 2 lies on a cone over
a rational twisted cubic. Let W be the linear subspace of |3KC | spanned
by the image of the triple embedding of |KC | in |3KC |. Then the linear
projection π : PH0(3KC)∗ = P4

99K W ∗ = P3 maps C two–to–one onto a
rational twisted cubic. The required cone is then obtained by taking the
closure of π−1π(C).

Proposition 7.2.2. The correspondence NFC is injective.

Proof. Let τ be a de Jonquières involution of degree d ≥ 3 and C ∈ P2

its fixed curve. Let ν : F1 → P2 be the blowup at the singular point p of C
and C0 = ν−1

∗ C. The fibers of F1 cut on C0 a g1
2 , and C0 ∩E is a set of g

distinct points p1, . . . , pg. Clearly pi + pj 6∈ g1
2 for all pairs i, j and ν|C0

is
the morphism defined by |g1

2 +p1 + · · ·+pg|. Then τ is uniquely determined
by C0 ∩ E. Let pg+1 be another point of C satisfying pi + pg+1 6∈ g1

2

for all i = 1, . . . , g + 1. After a suitable elementary transformation we
can reduce to the case where C0 is embedded in F1 in such a way that
C0 ∩ E = {p2, . . . , pg+1}. In this way, by performing further elementary
transformations on F1, we can produce a birational link between two any
de Jonquières involutions those fixed curves have isomorphic normalization
C0.
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Let now τ be one among Examples 1.3.2–E4. In all cases, the iso-
morphism class of X depends bijectively on the configuration in P2 of the
points of Σ up to linear action on P2, and the cover X → X/σ is uniquely
determined by its branch divisor up to isomorphism of X/σ. To conclude,
it remains to check that the four different coverings over P2 of the Fermat
cubic of P3 determine conjugate cyclic subgroups of Bir(P2). This is clear,
since such coverings are transformed one into the other by automorphisms
of X.
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