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Abstract

Fluid turbulence is often modelled using equations derived from the Navier–Stokes
equations, perhaps with some semi-heuristic closure model for the turbulent viscosity.
This paper considers a possible alternative hypothesis. It is argued that regarding
turbulence as a manifestation of non-Newtonian behaviour may be a viewpoint of at
least comparable validity. For a general description of nonlinear viscosity in a Stokes
fluid, it is shown that the flow patterns are indistinguishable from those predicted
by the Navier–Stokes equation in one- or two-dimensional geometry, but that fully
three-dimensional flows differ markedly. The stability of linearized plane Poiseuille
flow to three-dimensional disturbances is then considered, in a Tollmien–Schlichting
formulation. It is demonstrated that the flow may become unstable at significantly lower
Reynolds numbers than those expected from Navier–Stokes theory. Although similar
results are known in sections of the rheological literature, the present work attempts to
advance the philosophical viewpoint that turbulence might always be regarded as a non-
Newtonian effect, to a degree that is dependent only on the particular fluid in question.
Such an approach could give a more satisfactory account of the underlying physics.

2010 Mathematics subject classification: primary 76F02; secondary 76A02.

Keywords and phrases: fluid turbulence, flow stability, nonlinear viscosity, non-
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1. Introduction

It seems fair to state that the understanding and modelling of turbulence still
remains the stand-out unsolved question of fluid mechanics. The problem has
received an enormous amount of attention over the past century, and from some
of the most eminent scholars in the subject, and the literature on the topic is
enormous; consequently, any claim for a new approach to the topic is inevitably risky.
Nevertheless, it remains the case that equations used to describe turbulence often meet
with only mixed success, in that, while being effective for a particular application to
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which they have been tuned, they are considerably less able to model a different flow
situation, for which they have not been explicitly calibrated. In addition, the physical
processes underpinning turbulent behaviour are still not well resolved.

Turbulent flows are inherently difficult and complicated, because they are
unavoidably three-dimensional; additionally, they are fundamentally unsteady, and are
characterized by velocities that fluctuate in an apparently random manner. They also
involve enhanced rotational motion, with eddies appearing at a variety of length scales,
and a cascade of energy down to very small characteristic (Kolmogorov) lengths, at
which energy is dissipated efficiently by viscous effects. These processes are discussed
in detail in the monograph by Davidson [6]. In the modelling of turbulence, it is
generally assumed that the behaviour is described by the Navier–Stokes equations of
viscous flow, and often with the continuity equation appropriate for incompressible
fluids. This approach is articulated in the text by Batchelor [2], for example, and is also
stated as a certainty on the first page of Chandrasekhar’s Lectures on the topic, edited
by Spiegel [32]. The review paper by Eckhardt [8] on open problems in turbulent pipe
flow likewise starts from this premise.

Assuming, then, that the Navier–Stokes equations are indeed the correct model for
fluid flow including turbulence, it is natural to use them to study the transition to
unstable or turbulent flow, from a simple base flow such as shearing flow between
parallel plates. Early work on this problem was carried out by Squire [33], partly
in response to the famous 1895 paper of Osborne Reynolds [27], in which he claimed
that turbulent eddies for flow in a (circular) pipe would occur for a Reynolds number of
about 2000. Squire’s [33] analysis of the Navier–Stokes equations led him to conclude
that fully three-dimensional small disturbances to a simple base shearing flow are more
stable than their two-dimensional counterparts, a result known as Squire’s theorem in
some of the rheological literature (see Larson [17] and Jerome and Chomaz [15]); this
terminology is also used by Drazin and Reid [7, p. 155]. Squire [33] additionally
determined that several simple shear flows remained stable for all Reynolds numbers.
Orszag [22] studied the stability of plane Poiseuille flow for the Navier–Stokes
equation, and carried out an accurate solution of the Orr–Sommerfeld equation
[7, p. 156] that describes the behaviour of small-amplitude disturbances. His methods
were based on the use of series of Chebyshev polynomials and the QR algorithm
for the determination of eigenvalues. He found that plane Poiseuille flow became
(weakly) unstable at a Reynolds number Re = 5772.22, over a very narrow interval
of wavenumbers. Further refinements of this result have since been undertaken, and
some of these are discussed by Drazin and Reid [7].

These stability calculations for simple solutions of the Navier–Stokes equations,
such as plane Poiseuille flow, clearly indicate a large difference between the Reynolds
number at which instability is predicted to occur, and those actually measured in
experiments. As a result, some degree of dissatisfaction with linear stability theory
has arisen. An alternative “stability without eigenvalues” [35] approach has been
sought, in the context of the Navier–Stokes equations. Waleffe [36] has argued that
the transition to turbulence is characterized more by the appearance of large-scale
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coherent structures near the wall, and experimental observation of such fluid behaviour
has indeed been reported by Hof et al. [13]. Purely nonlinear stability analyses have
also been undertaken [5].

From the more practical aspect of computing turbulent flow in engineering
applications, the most usual approach taken is the one originally suggested by
Reynolds [27]. The fluid velocity vector q is regarded as consisting of a slowly varying
(average) component q̄ and a rapidly fluctuating contribution q′ with expectation value
zero, so that q = q̄ + q′. This is substituted into the Navier–Stokes equations, which
are then averaged in time, to produce the famous Reynolds-averaged Navier–Stokes
equations. Due to the nonlinearity of the system, however, averaged quantities of the
form q′iq

′
j also appear in the system, for which no obvious equation exists. This is

the famous “closure problem” of turbulence, and is reviewed by Sreenivasan [34].
Heuristic arguments based on dimensional analysis are used to model these averaged
quantities in terms of more computationally accessible slowly varying variables; in
more modern “k-epsilon” models of turbulence, these variables are even assumed to
obey their own transport-type equations. This approach is not discussed further here,
but nonlinear models of this type are presented by Speziale [31].

In addition to these pragmatic engineering approaches to the closure problem of
turbulence, there is now a vast literature on statistical theories. The aim is essentially
the same; that is, advanced statistical methods that have their origin in statistical field
theory are used to seek equations that are closed for some property of the flow. An
early text is that of Batchelor [2]. Kraichnan [16] pioneered the use of renormalization
group methods, and these ideas have been developed and extended by Martin et al. [19]
and Jensen [14], for example. Again, the starting point for these investigations is the
incompressible Navier–Stokes equations, which are taken as a satisfactory description
of the fluid behaviour. A comprehensive review of these approaches is given in the
article by McComb [21], and a more recent appraisal of the extensive literature on
these techniques is presented in the text by Davidson [6]. These statistical methods
are not discussed further here, although they have recently been applied to problems in
geophysical flows, in which the underlying behaviour is assumed to be described by a
barotropic vorticity equation closely related to the Navier–Stokes equation. A review
of this work is presented by Frederiksen and O’Kane [10], and Frederiksen [9] has
used this approach to obtain statistical dynamical closures for quasi-geostrophic flows
of interest in oceanography.

In his 1883 paper on what is now known as the Reynolds number, Osborne
Reynolds [26] stated that: “The results of this investigation have both a practical and
a philosophical aspect. . . . The results as viewed in their philosophical aspect were
the primary object of the investigation”. The present paper is written with precisely
the same aims in mind. The focus here is primarily philosophical, with the intention
to examine the alternative hypothesis that turbulence might be regarded as a physical
phenomenon not governed by the Navier–Stokes equations alone, but rather that it
reflects a non-Newtonian constitutive law. It is accepted here that such a hypothesis
will be controversial, and certainly not universally accepted; and the aim, therefore,

https://doi.org/10.1017/S1446181114000224 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181114000224


[4] The transition to turbulent flow 31

is to test whether such a proposition might be capable of producing results of at least
equal value to those currently available through some of the techniques discussed in
this section.

A general nonlinear relation between stress and strain rate is investigated in
Section 2. This leads to a version of the well-known Reiner–Rivlin equations, proposed
by Reiner [24] and referred to by him as providing a theory of “dilatancy”, and then
developed by Rivlin [28, 29]. In that section a key theorem is proved, showing that
the governing equation reduces to one that gives the identical flow patterns to the
Navier–Stokes equations, for two-dimensional flow. Section 4 studies the relationship
between this Reiner–Rivlin type equation and the Navier–Stokes equation in regard to
the generation of vorticity. In fully three-dimensional flow, the Reiner–Rivlin model
has additional nonlinear terms that generate vorticity, and so, if this equation does
indeed provide a model for general turbulence, these extra terms would then largely
be responsible for effects such as vortex stretching in three dimensions. A comparison
is then made of the linearized stability problem in Section 5, for two-dimensional
Poiseuille flow in both the Reiner–Rivlin model and its Navier–Stokes counterpart. It
is found that unstable behaviour may occur for lower Reynolds numbers than predicted
by purely Navier–Stokes theory, dependent on the value of the coefficient of the
second, nonlinear, viscosity term. This is in accordance with results obtained for
highly rheological fluids in the investigations of Wilson et al. [37]. In addition, higher
wavenumber disturbances are more unstable. Finally, an expanded discussion of this
alternative hypothesis concerning turbulence modelling is given in Section 6.

2. Stokes fluids
The approach outlined in this section is well known in rheology, and is presented

in texts such as Aris [1]. Accordingly, only a relatively brief overview is needed here.
It is important to state that exotic rheological behaviour is not of interest here; rather,
the intention is to consider the possibility that, in fully developed turbulent flow of a
quite general fluid, it may not be appropriate to assume the linear (Newtonian) relation
between the stress tensor T and the strain-rate tensor D that underlies Navier–Stokes
theory. Instead, a general nonlinear relationship is needed, to account for the large
strain rates experienced by the fluid in such circumstances. The resulting equation is
then a type of Reiner–Rivlin equation, as discussed by Aris [1].

The fluid velocity vector is represented in Cartesian form by the vector q
with components written as (q1, q2, q3) = (u, v,w), and the coordinate variables are
(x1, x2, x3) = (x, y, z). For a fluid of density ρ and subject to body force vector f per
mass, Cauchy’s momentum equation is

ρ
[
∂qi

∂t
+ q · ∇qi

]
= ρ fi +

∂T ji

∂x j
, (2.1)

and may be found in Batchelor [3, p. 137] or Mase [20, p. 128]. Here, summation
over repeated indices is assumed, according to the Einstein convention. From Aris
[1, Section 5.13], the conservation of angular momentum for a nonpolar fluid then
yields the requirement that the stress tensor T is symmetric.
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It is customary to write T = −pI + S, in which the pressure is p, I is the identity
matrix and S is a deviatoric stress tensor (see Mase [20, Section 2.14]). For a Stokes
fluid, it may be assumed that S is an analytic function of the strain-rate tensor D, which
is symmetric and has components

Di j =
1
2

[
∂qi

∂x j
+
∂q j

∂xi

]
. (2.2)

In general, therefore, S can be represented as an infinite series in powers of D,
but a consequence of the Cayley–Hamilton theorem (see Golubitsky and Dellnitz
[11, p. 464]) is that powers higher than the second need not be considered, since D
is a 3 × 3 matrix. Thus a general description of material nonlinearity for a nonpolar
Stokes fluid is encapsulated in a constitutive relation of the type

S i j = Ki jpqDpq + Li jpqDp`D`q. (2.3)

Again, summation over repeated indices is assumed, and the fourth-order tensors K
and L are constants. Following Aris [1], symmetry and isotropy of the deviatoric
stress tensor in equation (2.3), given the symmetry of the quantity D in (2.2), requires
the fourth-order coefficient tensors to take the forms

Ki jpq = λδi jδpq + µ(δipδ jq + δiqδ jp),

Li jpq = σδi jδpq + τ(δipδ jq + δiqδ jp),

in which δi j is the Kronecker delta symbol, having the value 1 if i = j and 0 otherwise.
As a result, the deviatoric stress tensor (2.3) can be written as

S i j = λδi jDkk + 2µDi j + σδi j(Dk`Dk`) + 2τDi`D` j

and is symmetric, in view of the symmetry in equation (2.2).
In Cartesian form, a general equation for fluid flow, that expresses material

nonlinearity in a nonpolar isotropic substance, is therefore derived from the Cauchy
equation (2.1) in the form

ρ
[
∂qi

∂t
+ q · ∇qi

]
= ρ fi −

∂p
∂xi

+ λ
∂

∂xi
(Dkk)

+ 2µ
∂D ji

∂x j
+ σ

∂

∂xi
(Dk`Dk`) + 2τ

∂

∂x j
(D j`D`i). (2.4)

The four constants λ, µ, σ and τ are viscosity coefficients. For an incompressible fluid,
the continuity equation div q = 0 gives Dkk = 0, so that in that case, the second Lamé
constant λ can be set to zero with no loss of generality. The quantity µ is the usual
dynamic viscosity, so that σ and τ measure the extent of material nonlinearity. This
governing equation (2.4) is essentially the well-known Reiner–Rivlin equation.
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3. Viscometric and planar flows

3.1. Viscometric flows In unidirectional flow, the velocity vector q takes the form
(q1, 0, 0) = (u, 0, 0). Only the incompressible flow case is considered here, for which
the continuity equation becomes simply ∂u/∂x = 0. As a result, the full system (2.4)
simplifies very substantially to

ρ
∂u
∂t

= ρ fX −
∂p
∂x

+ µ
(
∂2u
∂y2 +

∂2u
∂z2

)
0 = ρ fY −

∂p
∂y

+
1
2
σ
∂

∂y

[(
∂u
∂y

)2
+

(
∂u
∂z

)2]
+

1
2
τ
[
∂

∂y

(
∂u
∂y

)2
+
∂

∂z

(
∂u
∂z
∂u
∂y

)]
0 = ρ fZ −

∂p
∂z

+
1
2
σ
∂

∂z

[(
∂u
∂y

)2
+

(
∂u
∂z

)2]
+

1
2
τ
[
∂

∂y

(
∂u
∂y
∂u
∂z

)
+
∂

∂z

(
∂u
∂z

)2]
. (3.1)

The first equation in this system (3.1) is now linear, and indeed it is identical to the
same equation obtained from the Navier–Stokes equation in the same geometry. As
a consequence, all the usual unidirectional viscometric flows may be obtained, as
in Batchelor [3, Section 4.2]. However, while the flows are identical, the pressures
are not.

As an illustration, consider the classical two-dimensional Poiseuille flow, in which
impermeable flat plates are present on the two planes z = −H and z = H. There are
no body forces ( fX = fY = fZ = 0) and the fluid is driven through the gap between the
plates by an imposed constant pressure gradient ∂p/∂x = −G. Then the first equation
in the system (3.1) gives the well-known velocity profile

u(z) =
G
2µ

(H2 − z2) (3.2)

(see Batchelor [3, p. 182]). However, the remaining two conditions in (3.1) give the
corresponding pressure

p(x, z) = −Gx +
1
2

(σ + τ)
(G
µ

)2
z2. (3.3)

Flows of this type (3.2) are used experimentally in viscometry, where the fluid
viscosity is calculated based on the measured speeds. For non-Newtonian fluids,
however, calculating the viscosity parameters may be difficult, as discussed by
Shaqfeh [30]. Clearly, from equation (3.3), the pressure in such a fluid rises near
the walls z = ±H, and this may permit measurement of some of the nonlinear viscosity
coefficients.

3.2. Planar flows It is instructive now to consider the form of the Reiner–Rivlin
type equation (2.4) in two-dimensional flow geometry, where the velocity components
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are (q1, q2, q3) = (u, v, 0) and there is no dependence on the third coordinate x3. For
incompressible fluids, the continuity equation is simply

∂u
∂x

+
∂v
∂y

= 0,

and as a result, the planar momentum equation (2.4) can be written in the vector form

ρ
[
∂q
∂t

+ q · ∇q
]

= ρf − ∇p + µ∇2q + 2(σ + τ)∇χ, (3.4)

after some considerable algebra. Here, the symbol ∇ is simply the two-dimensional
operator (∂/∂x, ∂/∂y) and similarly for the two-dimensional operator ∇2. In
equation (3.4) the intermediate scalar quantity

χ =
1
4

[
4
(
∂u
∂x

)2
+

(
∂u
∂y

+
∂v
∂x

)2]
(3.5)

has been defined for convenience.
This at once leads to the following result:

Theorem 3.1. In unidirectional and planar flow, the flow patterns predicted by the
Reiner–Rivlin type equation (2.4) are indistinguishable from those obtained from the
Navier–Stokes equation. The additional nonlinear viscosity terms only influence the
pressure in the fluid.

Proof. The key observation is that, in the two-dimensional case (3.4), the additional
viscosity terms only appear as the gradient of the scalar function χ defined in
equation (3.5). Consequently, by defining the effective pressure

Πeff = p − 2(σ + τ)χ, (3.6)

the two-dimensional velocity vector q now satisfies the two-dimensional Navier–
Stokes equation, but with pressure given by (3.6). �

Since the nonlinear viscosity terms only enter equation (3.4) as the gradient of χ,
taking the vector curl immediately gives precisely the same vorticity equation as for
two-dimensional Navier–Stokes flow. This provides an alternative verification of the
first claim in Theorem 3.1.

4. Flow comparison with Navier–Stokes theory

A consideration of the vorticity vector ζ = curl q provides a more focused
comparison of the flow predicted by the Reiner–Rivlin type equation (2.4) with the
corresponding predictions of Navier–Stokes theory. In Cartesian coordinates, the
vorticity may be written

ζi = εi jk
∂

∂x j
qk (4.1)

in which the Levi-Cività symbol εi jk is zero if any of the three subscripts are equal;
it also takes the values 1 if the subscripts are in cyclic order and −1 if these are
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ordered anti-cyclically (see Mase [20, Section 1.16]). Now the curl is taken of the
entire equation of motion (2.4). Recalling that Aris [1, Section 6.2] described the
quantity of algebra required to use a Reiner–Rivlin equation as “appalling”, the task of
taking its vector curl is Herculean, and so only a summary is given here. It is relatively
straightforward to derive the vorticity equation in the form

ρ
[
∂ζi

∂t
+ (q · ∇)ζi − (ζ · ∇)qi

]
= µ∇2ζi +

1
2
τεi jk

∂

∂x j

[
∂qm

∂x`

∂

∂xm

(
∂q`
∂xk

)
+
∂qm

∂x`

∂

∂xm

(
∂qk

∂x`

)
+ (∇2q`)

∂q`
∂xk

+
∂q`
∂xm

∂

∂xm

(
∂q`
∂xk

)
+ (∇2q`)

∂qk

∂x`
+
∂q`
∂xm

∂

∂xm

(
∂qk

∂x`

)]
. (4.2)

It follows after a great deal of algebra that the first and the fourth terms in the
coefficient of τ in equation (4.2) are each separately zero. There are now no further
apparent simplifications to this difficult vorticity equation, and after a great deal more
algebra it may be expressed in the final form

ρ
[
∂ζ

∂t
+ (q · ∇)ζ − (ζ · ∇)q

]
= µ∇2ζ +

1
2
τ
[ 3∑

j=1

∇(∇2q j) × ∇q j

]
+

1
2
τ∇ ×

[ 3∑
j=1

∂q
∂x j

(∇2q j)
]

+ τ∇ ×
[ 3∑

j=1

(∇q j · ∇)
∂q
∂x j

]
. (4.3)

Although complicated, this vorticity equation preserves the traditional advantage that
the terms involving pressure disappear, as a result of a vector identity, so that the
vorticity equation (4.3) focuses purely on aspects of the flow. In addition, the terms
involving the second nonlinear viscosity coefficient σ in equation (2.4) also vanish,
since they are pure gradient terms and are eliminated by the vector curl operation.
Thus the parameter σ in (2.4) only affects pressure, and might therefore be set to zero
without serious loss of generality.

When the flow is two-dimensional, so that q3 = 0 and ∂/∂x3 ≡ 0, there is only the
single nonzero component ζ3 in the vorticity function (4.1). In that case, it is again
pertinent to observe that all the terms in (4.3) involving the second vorticity coefficient
τ become precisely zero, so that the standard scalar vorticity equation

∂ζ3

∂t
+ (q · ∇)ζ3 =

µ

ρ
∇2ζ3

for the single component ζ3 is recovered (see Batchelor [3, p. 268]). This is consistent
with Theorem 3.1. Thus the additional nonlinear viscosity terms in (4.3) involving the
parameter τ only have an effect when the flow is fully three-dimensional, and perhaps
even account for the additional vorticity observed in turbulent flow behaviour.
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5. Stability of plane Poiseuille flow

In this section, a classical Orr–Sommerfeld stability analysis is undertaken, to see
the effect of the additional nonlinear viscosity terms in equation (2.4) on fully three-
dimensional small disturbances to a simple basic flow. In order to make the volume of
algebra manageable, the background flow is taken to be a steady-state unidirectional
solution of the viscometric type.

The velocity components and the pressure are expanded as

u(x, y, z, t) = U0(z) + εu1(x, y, z, t) + O(ε2),

v(x, y, z, t) = εv1(x, y, z, t) + O(ε2),

w(x, y, z, t) = εw1(x, y, z, t) + O(ε2),

p(x, y, z, t) = P0(z) + εp1(x, y, z, t) + O(ε2).

(5.1)

Here, U0(z) is the flow speed of the background unidirectional flow in the x-direction,
and P0(z) is the corresponding pressure for this flow. The dimensionless parameter ε
is a small constant.

These perturbation expansions (5.1) are substituted into the Reiner–Rivlin type
equation (2.4) and the incompressible continuity equation div q = 0, and only terms
of first order in the parameter ε are retained. The continuity equation gives

∂u1

∂x
+
∂v1

∂y
+
∂w1

∂z
= 0. (5.2)

The three components of the linearized momentum equation (2.4) are lengthy, as is to
be expected in view of the complicated nature of this system. They may be simplified
to some extent using the linearized continuity condition (5.2), and the x-component
gives

ρ
[
∂u1

∂t
+ U0(z)

∂u1

∂x
+ U′0(z)w1

]
= −

∂p1

∂x
+ µ∇2u1 + (σ + τ)U′0(z)

[
∂2w1

∂x2 +
∂2u1

∂x∂z

]
− τU′′0 (z)

∂v1

∂y
+

1
2
τU′0(z)

[
∂2w1

∂y2 −
∂2v1

∂y∂z

]
. (5.3)

The y-component of the momentum equation linearizes to

ρ
[
∂v1

∂t
+ U0(z)

∂v1

∂x

]
= −

∂p1

∂y
+ µ∇2v1 + σU′0(z)

[
∂2w1

∂x∂y
+
∂2u1

∂y∂z

]
+

1
2
τU′′0 (z)

[
∂u1

∂y
+
∂v1

∂x

]
+

1
2
τU′0(z)

[
∂2w1

∂x∂y
+ 2

∂2v1

∂x∂z
+
∂2u1

∂y∂z

]
, (5.4)
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and the final z-component of momentum gives the linearized equation

ρ
[
∂w1

∂t
+ U0(z)

∂w1

∂x

]
= −

∂p1

∂z
+ µ∇2w1 + (σ + τ)U′0(z)

[
∂2w1

∂x∂z
+
∂2u1

∂z2

]
+ (σ + τ)U′′0 (z)

[
∂w1

∂x
+
∂u1

∂z

]
+

1
2
τU′0(z)

[
∂2u1

∂y2 −
∂2v1

∂x∂y

]
. (5.5)

These four equations (5.2)–(5.5) thus describe stability of the unidirectional flow.
It is now assumed that Tollmien–Schlichting type disturbances [7] are made to the

basic flow, with sinusoidal perturbations in the lateral y-direction and in the direction x
of propagation. Accordingly, the flow variables are expressed in the forms

u1(x, y, z, t) = û1(z) exp[i(kx + γy − ωt)],
v1(x, y, z, t) = v̂1(z) exp[i(kx + γy − ωt)],
w1(x, y, z, t) = ŵ1(z) exp[i(kx + γy − ωt)],
p1(x, y, z, t) = p̂1(z) exp[i(kx + γy − ωt)].

(5.6)

At this point, it is appropriate to nondimensionalize the resulting equations, using
some typical length scale H and speed scale S . For the two-dimensional Poiseuille
flow (3.2), the length H corresponds to half the distance between the horizontal plates
above and below the fluid, and the speed scale can conveniently be set to S = GH2/µ as
a measure of the effect of the driving pressure gradient G. Thus the base flow in (5.1)
in these dimensionless variables would become U0(z) = 1

2 A(1 − z2) over −1 < z < 1.
This gives rise to the five dimensionless parameters

K = kH, Γ = γH, Ω = ωH/S ,
Re = S Hρ/µ, F = ρH2/τ,

(5.7)

that are pertinent to this system. The first two parameters K and Γ are wavenumbers,
and are real numbers. The third quantity Ω is a dimensionless frequency, and is in
general complex. If its imaginary part is negative, then the disturbances (5.6) decay
with time and so the flow is stable; however, if Im{Ω} > 0 then the flow is unstable.
The fourth constant Re in (5.7) is the usual Reynolds number that measures the inverse
viscosity µ, and the additional viscosity coefficient F similarly gives a dimensionless
measure of the inverse of the second viscosity coefficient τ. In the rheological
literature, it often proves convenient to define an alternative dimensionless parameter
Wi = (τ/µ)S/H known as the Weissenberg number (see Poole [23]). This gives a
measure of the ratio of elastic to viscous forces. The parameter F in the system (5.7)
can then be expressed as F = Re/Wi. Here, however, the parameter F will be
retained, since it gives a pure dimensionless representation of the nonlinear viscosity,
independently of the Reynolds number. Finally, a third dimensionless constant should
also be introduced, to account for the coefficient σ in the equations (5.3)–(5.5);
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however, it will be seen that eliminating the pressure term p̂1(z) in this system also
cancels off the parameter σ, in accordance with the full vorticity equation (4.3).

The forms (5.6) are substituted into the governing equations (5.2)–(5.5), and yield a
system of four ordinary differential equations for the four quantities û1, v̂1, ŵ1 and p̂1.
It follows at once from the continuity equation (5.2) that the quantity û1 may be
eliminated by means of the relation

û1 =
i
K

dŵ1

dz
−

Γ

K
v̂1. (5.8)

The pressure variable p̂1 is then likewise eliminated from the remaining three
momentum equations by cross-differentiation. This gives two differential equations
for the two variables v̂1 and ŵ1. The first equation is

K(K2 + Γ2)U0(z)v̂1 + iKΓ

[
U′0(z)ŵ1 − U0(z)

dŵ1

dz

]
+

1
Re

[
i(K2 + Γ2)

(d2v̂1

dz2 − (K2 + Γ2)v̂1

)
+ Γ

(d3ŵ1

dz3 − (K2 + Γ2)
dŵ1

dz

)]
+

1
2F

U′0(z)
[
iKΓ

(d2ŵ1

dz2 + (K2 + Γ2)ŵ1

)
− 2K(K2 + Γ2)

dv̂1

dz

]
−

1
2F

U′′0 (z)K
[
iΓ

dŵ1

dz
+ (K2 + Γ2)v̂1

]
= Ω

[
−iΓ

dŵ1

dz
+ (K2 + Γ2)v̂1

]
. (5.9)

The second of these differential equations is

K2
[
ΓU0(z)ŵ1 + iU′0(z)v̂1 + iU0(z)

dv̂1

dz

]
+

1
Re

K
[
iΓ

(d2ŵ1

dz2 − (K2 + Γ2)ŵ1

)
−

(d3v̂1

dz3 − (K2 + Γ2)
dv̂1

dz

)]
+

1
2F

U′0(z)
[
Γ(−K2 + Γ2)

dŵ1

dz
+ iΓ2(K2 + Γ2)v̂1 − Γ

d3ŵ1

dz3 − i(Γ2 + 2K2)
d2v̂1

dz2

]
−

1
2F

U′′0 (z)K2
[
Γŵ1 + 3i

dv̂1

dz

]
+

1
2F

U′′′0 (z)
[
i(Γ2 − K2)v̂1 + Γ

dŵ1

dz

]
= ΩK

[
Γŵ1 + i

dv̂1

dz

]
. (5.10)

These two linear equations are the equivalent of the Orr–Sommerfeld equation in
classical viscous stability theory [7].

Attention now turns to the specific problem of assessing the stability of the
two-dimensional Poiseuille flow solution of (2.4), for which the speed component
in the x-direction is U0(z) = 1

2 A(1 − z2), as the nondimensionalized equivalent of
equation (3.2). There are rigid walls on the planes z = ±1, and so all three velocity
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components must be zero there, according to the usual no-slip boundary condition. In
view of the reduced continuity condition (5.8), there are thus six boundary conditions

v̂1 = ŵ1 = ŵ′1 = 0 on z = ±1 (5.11)

to be satisfied. This problem is solved here using a spectral method.
When analysing the stability of this flow for the regular Navier–Stokes equation by

means of its Orr–Sommerfeld equation, Orszag [22] expanded the solution variables
as series in Chebyshev polynomials. Here, however, the two solution functions v̂1 and
ŵ1 are expressed in terms of trigonometric basis functions, in the forms

v̂1 =

∞∑
n=1

An sin(nπ(z + 1)),

ŵ1 =

∞∑
n=1

Bn[1 − cos(nπ(z + 1))].
(5.12)

The second of these equations has been chosen so that both the function ŵ1 and its
first derivative are zero at z = ±1 in accordance with the boundary conditions (5.11).
Notice that these eigenfunction modes (5.12) are symmetric. It is also possible to
set up similar expansions involving odd functions, and this has been done in this
investigation, but turns out to give essentially identical results; in addition, Orszag
[22] points out that, for the regular Orr–Sommerfeld equation, the symmetric modes
are the most unstable. Thus, only the symmetric case (5.12) is considered further here.

The solution forms (5.12) are now substituted into the two equations (5.9) and
(5.10). The first equation (5.9) is multiplied by the odd basis functions sin(kπ(z + 1)),
k = 1, 2, 3, . . . , and integrated over the interval −1 < z < 1. Similarly, the second
one (5.10) is multiplied by even functions cos(kπ(z + 1)) and integrated. Quadratures
involving products of the quadratic function U0(z) with two trigonometric terms are
evaluated exactly, to retain accuracy. The calculations are straightforward, although
lengthy. The series (5.12) are truncated to N terms, for numerical purposes, and
eventually a large matrix system of linear algebraic equations is obtained, in the form[

M(1) M(2)

N(1) N(2)

] [
A
B

]
= Ω

[
(K2 + Γ2)I −iΓZ

iKZ −KΓI

] [
A
B

]
. (5.13)

In this system, each of the quantities M(1), M(2), N(1) and N(2) is an N × N constant
matrix, with elements derived from the Fourier analysed equations (5.9) and (5.10).
The symbol I represents the N × N identity matrix and Z = diag(kπ), k = 1, 2, . . . ,N,
is a diagonal matrix. The symbols A, B are each vectors of the first N coefficients
An, Bn, n = 1, 2, . . . ,N, in the representations (5.12).

The system of linear equations (5.13) is a block generalized eigenvalue problem,
with eigenvalues Ω. These determine the stability of the flow, as explained above; if
any eigenvalue has Im{Ω} > 0 then the flow is unstable. This system (5.13) is solved
here using the implementation of the QR generalized eigenvalue routine encoded in the
MATLAB function eig. The process is fast and accurate, and results with N = 135
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Figure 1. Eigenvalue distribution in the complex plane, for the symmetric modes in the pure Navier–
Stokes equation. The Reynolds number is Re = 4000 and the pressure gradient creates speed amplitude
A = 2. Results are shown for both wavenumbers K = Γ = 1, and there are N = 135 modes in each variable.

modes may be obtained in a few minutes of computer time. The equivalent system
to (5.13), for the Navier–Stokes equation, has also been derived and solved numerically
in the same way, and there is no need to detail that process further here.

Figure 1 shows the eigenvalues in the complex Ω-plane, computed for the Navier–
Stokes stability problem with Reynolds number Re = 4000. The base flow is U0(z) =
1
2 A(1 − z2), and the amplitude parameter has been set to A = 2 so that the maximum
speed at z = 0 is U0(0) = 1. The number of Fourier modes in equation (5.12) for each of
the two quantities v̂1 and ŵ1 has been taken to be N = 135, so that (5.13) is a 270 × 270
block generalized eigenvalue problem. In this diagram, both wavenumbers have been
taken to be K = Γ = 1. All the eigenvalues have the property Im{Ω} < 0, although in
some instances the imaginary part of the eigenvalue is small. As a result, this flow
is (marginally) stable, as is to be expected with this value Re = 4000 of the Reynolds
number.

In Figure 2 two further solutions of the Navier–Stokes equations are also
investigated. These have the same Reynolds number Re = 4000 as in Figure 1, but
now their wavenumbers have been increased. Thus in Figure 2(a) the wavenumbers are
K = Γ = 10 and in Figure 2(b) the eigenvalues are shown for wavenumbers K = Γ = 50.
In both cases, all the eigenvalues have the property Im{Ω} < 0, so that these two
solutions are stable; however, as the wavenumbers are increased, the imaginary part
of the least stable eigenvalue decreases, so that the flows actually become more stable.
This is evident in comparing the eigenvalue distribution for the two situations in
Figure 2 with that in Figure 1.
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Figure 2. Eigenvalue distribution in the complex plane, for the symmetric modes in the pure Navier–
Stokes equation. The Reynolds number is Re = 4000 and the pressure gradient creates speed amplitude
A = 2. Results are shown for (a) wavenumbers K = Γ = 10 and (b) wavenumbers K = Γ = 50. There are
N = 135 modes in each variable.

The situation corresponding to Figure 1 is examined in Figure 3, for the Reiner–
Rivlin type equation (2.4). The Reynolds number is again Re = 4000, and in both these
diagrams the wavenumbers have been set to K = Γ = 1. For the results in Figure 3(a),
the second viscosity parameter has the value F = 4000. All the eigenvalues have
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Figure 3. Eigenvalue distribution in the complex plane, for the symmetric modes in the Reiner–Rivlin type
equation. The Reynolds number is Re = 4000, the pressure gradient creates speed amplitude A = 2 and
the two wavenumbers are K = Γ = 1. Results are shown for nonlinear viscosity parameter (a) F = 4000,
and (b) F = 400.

Im{Ω} < 0 and so the flow is stable; in fact, there is no appreciable difference between
this result and the eigenvalue distribution in Figure 1 obtained for the pure Navier–
Stokes equation. In this case, then, the additional nonlinear viscosity terms have
no effect on the stability properties of the flow. In Figure 3(b), however, the second
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Figure 4. Eigenvalue distribution in the complex plane, for the symmetric modes in the Reiner–Rivlin
type equation. The Reynolds number is Re = 4000, the pressure gradient creates speed amplitude A = 2
and the nonlinear viscosity parameter is F = 400. Results are shown for wavenumbers (a) K = Γ = 10,
and (b) K = Γ = 50.

(inverse) viscosity coefficient has been reduced to F = 400. The consequence is that
the flow is now (marginally) unstable, since there is a single eigenvalue with positive
imaginary part at about Ω = 0.2422 + 0.0563i. This is clearly a case in which the flow
is destabilized by the presence of the additional nonlinear viscosity terms.
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The effect of wavenumber on these flows is investigated in Figure 4. Here, the
same two sets of wavenumbers K = Γ = 10 and K = Γ = 50 as in Figure 2 have been
used, with the same Reynolds number Re = 4000. However, in Figure 4 the Reiner–
Rivlin equation (2.4) is involved, with second viscosity parameter F = 400. Both these
flows are now unstable, since both of them clearly have eigenvalues with Im{Ω} > 0.
Furthermore, the imaginary parts of these eigenvalues actually increase as K and Γ

are increased; thus these solutions become more unstable as the wavenumber is made
larger. This is precisely the opposite effect to that encountered with the pure Navier–
Stokes equation, as illustrated in Figure 2.

6. Discussion and conclusions

This paper takes a slightly unconventional, philosophical approach to the question
of turbulence, since it advances the hypothesis that turbulent behaviour might be a
manifestation of non-Newtonian material nonlinearity in the fluid. The consequences
of this hypothesis for classical-type transition-flow stability analyses have been
investigated. It has been found here that a general nonlinear relation between the
stress tensor and the strain-rate tensor can indeed cause simple viscometric-type flows
to become unstable at lower Reynolds numbers than suggested by pure Navier–Stokes
theory, and this is in accordance with calculations [37] in the rheological literature.
Furthermore, such a nonlinear relationship between stress and strain rate may cause
higher wavenumber disturbances to become more unstable, in direct contrast to the
results from Navier–Stokes theory. The simplest nonlinear relation between stress and
strain rate is assumed here, and is purely algebraic, so that time derivatives of the rate
of strain tensor (as in [25]) are not considered.

A second interesting consequence of this nonlinear Reiner–Rivlin type model in
equation (2.4) is summarized in Theorem 3.1, which states that the equation produces
flow patterns that are identical to those predicted by the Navier–Stokes equations,
except in three-dimensional flow. For the conventional Navier–Stokes equation,
“Squire’s theorem” [33] shows that two-dimensional perturbations to a flow must be
more unstable than a comparable three-dimensional disturbance. Clearly, however, the
nonlinear viscosity model in equation (2.4) must be exempt from Squire’s theorem, by
virtue of Theorem 3.1. Thus, a planar perturbation to a simple flow in a Reiner–
Rivlin fluid at a moderately low Reynolds number will be stable, since it reduces
in that case to a Navier–Stokes flow; however, a fully three-dimensional small-
amplitude disturbance to that same flow may well be unstable, and particularly if high
wavenumbers are involved.

As discussed in Section 1, it is customary to assume that turbulence is described
by the Navier–Stokes equations, and this is often stated without further discussion.
However, these famous equations are predicated on the Newtonian assumption of
a linear relationship between stress and strain rate, analogously to Hooke’s law in
elasticity. While this is appropriate for laminar flows, where local strain rates are
small to moderate in size, it may possibly be insufficient for turbulence, precisely
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because in that case local strain rates are large. Philosophically, there is thus an
inherent contradiction involved in assuming the universal validity of the Navier–
Stokes equations in circumstances where local strain rates are high, such as occurs in
turbulence. In effect, this contradiction is tacitly acknowledged in practical turbulence
models such as k-epsilon theory [31] for example, since they involve a momentum
equation that looks at least superficially like a type of rheological equation, while
nevertheless stating that Navier–Stokes theory still applies.

Of course, the Navier–Stokes equations are nonlinear, and able to produce all
the complex structures associated with chaos theory. The question is then whether
this chaotic behaviour alone is sufficient to describe turbulence, and this relationship
is discussed by McComb [21]. He urges caution about the over-reliance on low-
dimensional chaos as a full explanation for turbulence. Indeed, it may be timely to
question again the continued use of simple averaging techniques, introduced in 1895
by Osborne Reynolds [27], combined with semi-heuristic models [4] to cope with
the problem of closure. Such an approach would not be entertained in analysing a
canonical chaotic system such as the Lorenz attractor [12], for example; in that case,
while it might be possible to select a closure model that could give an orbit with similar
statistical properties to the true solution, it nevertheless seems highly unlikely that the
precise intricacies of the true Lorenz attractor would be reproduced faithfully.

If the present hypothesis is true, that turbulence is a result of the nonlinear relation
between fluid stress and strain rate, then it follows that Reynolds number alone does
not give a complete description of when such behaviour can be expected. This is
already known to be true in highly rheological fluids, and Larson [18] shows an
example of polymer flow apparently exhibiting turbulence at Reynolds number 10−15.
In this view, then, turbulence as commonly encountered in water is a phenomenon
lying on a continuum of behaviours that includes such exotic structures formed in
polymers.

This hypothesis also raises many other questions. If it is indeed the case that the
transition to turbulence is more complicated than a linearized stability analysis such
as in Section 5 would suggest, and large-scale nonlinear structures are also involved
[13, 36], then it is of interest to know their detailed behaviour in a system such as
equation (2.4). Additionally, since the unstable transition flows for the Reiner–Rivlin
type fluid presented in Figure 4 possess many eigenvalues with positive imaginary
parts, for which the frequencies do not occur as integer ratios, these eigenvalues might
trigger a rapid passage to chaotic behaviour through high-dimensional quasi-periodic
orbits. Finally, detailed numerical solutions of (2.4) in practical flow situations are
also of interest. These questions await future research.
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