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ABSTRACT. We present new analytical results relating to the growth and evolution of sea ice. It is
noteworthy that thin sea ice plays a central role in the surface heat and mass balance of the Arctic
Ocean. In order to describe these balances, we analyze highly resolved temperature data taken through
the air/sea/ice interface during the transition from an ice-free to an ice-covered Arctic Ocean surface.
Our detailed analysis of the field data is based on the classical model of a mushy layer, which is
modified in order to obtain analytical solutions in explicit form (so, for example, ice thickness and
growth rate, temperature distributions, conductive and latent heat fluxes are determined). Furthermore,
we find that the sea-ice growth is not simply a square-root function of time. It depends on the
temperature variations in the atmosphere and lies between two square-root functions of time for the
maximum and minimum temperatures found during observations. The theory under consideration is in
good agreement with observations.

INTRODUCTION
Young sea ice plays a very important role in the surface heat
and mass balance of the Arctic Ocean. This ice is formed,
for example, due to the divergence of wind stress which
continually produces cracks in the perennial sea-ice cover,
known as leads. These transient fissures attract scientific
attention because they provide a thermal conduit through
which heat- and radiative-transfer processes are enhanced
tremendously, relative to the thick pack ice that surrounds
them. The thermal importance of leads was put in context
by Badgley (1966), who showed that during winter the
atmospheric heat flux from rapidly freezing leads can be
several orders of magnitude larger than over perennial sea
ice. He emphasized the large-scale implications of leads by
arguing that they need occupy only 1% of the area of the
ice cover in order to dominate the heat exchange from the
ocean to the atmosphere. In the Arctic winter, the relatively
warm water in leads is exposed to the cold air above it.
A thin veneer of ice rapidly forms across an exposed lead.
After 1 day’s growth, the ice layer is about 10 cm deep,
which is still thin compared with the surrounding ice,
which is typically several metres thick. The field obser-
vations (The LeadEx Group, 1993) show that the heat loss
through leads can be up to 300Wm–2, or 15 times that
from the surrounding ice. We consider the initial formation

of ice in leads and its growth during the first few days.
Contrary to the theory developed by Wettlaufer and others
(2000), which is based on the balance approaches and
phenomenological considerations, and other papers on this
subject, our theory uses as a source the classical mushy
(skeletal)-layer theory modified by reasonable and verified
physical hypotheses. The analyticity and explicit form of all
dynamic dependencies, obtained from the non-linear
equations of a mushy layer, is the main feature of our
approach. A detailed description of the scientific program
and observations has been given by The LeadEx Group
(1993) and Wettlaufer and others (2000). We will not dwell
on this point in detail. However, we will point out the main
features of the LeadEx experiment field campaign. There
were four main lead deployments during the 6week
experiment. A particularly interesting deployment is ‘lead
3’ which was the largest (approximately 1 km wide) lead.
Deployment at lead 3 began early on the morning of 6 April
1992 and was evacuated 2 days later. We describe obser-
vations from both of the buoys that were deployed late on
the afternoon of 6 April 1992 (buoy 5 was deployed
�2 hours before buoy 6).

At first, for the goals of our theory, we briefly outline the
frontal model and discuss its predictions about sea-ice
dynamics.

FRONTAL APPROACH
Let us now demonstrate how one of the simplest models of
the planar front works in practice. The system under
consideration is shown in Figure 1a: ice and sea water are
divided by the phase transition boundary, h(t ), moving
downwards in the ocean because the ice surface, z ¼ 0, is
cooled with time oscillations. The atmospheric tempera-
ture, Ts(t ), determined at z ¼ 0, will be regarded as
experimentally known. Now, we treat the process as fully
thermally controlled. On this basis, the heat transfer
process is described by the local conservation of heat
within the sea ice

@Ti
@t

¼ ai
@2Ti
@z2

, ai ¼ ki
�ici

, 0 < z < hðtÞ ð1Þ
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Fig. 1. A scheme illustrating the models under consideration:
(a) planar front and (b) mushy layer.
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supplemented by the Stefan condition (a heat balance) at the
planar interface, which is

ki
@Ti
@z

¼ LV
dh
dt

, z ¼ hðtÞ, ð2Þ
where Ti is the temperature, LV is the latent heat released as
the ice fraction increases, ki is the thermal conductivity, �i is
the density and ci is the specific heat capacity of the sea ice.
The ocean is treated as isothermal, which is to say that the
temperature field To ¼ constant, for z � hðtÞ. Analyzing
experimental curves (see Fig. 2), we conclude that the
temperature distribution in the young sea ice can be
regarded as a nearly linear function of the spatial
coordinate z. From the physical point of view, this means
that the temperatures at different depths undergo near-self-
similar change (Fig. 2b and d), with small variations from full
self-similarity. From the mathematical point of view, this
means that Equation (1) takes the form @2Tiðz, tÞ=@z2 ¼ 0.
This is because the temperature relaxation time is many
times less than a characteristic time of the front motion.
Taking into account the latter, we arrive at the linear
temperature profile within the sea ice

Tiðz, tÞ ¼ TsðtÞ þ To � TsðtÞ
hðtÞ z: ð3Þ

The position of the planar sea-ice–ocean interface is found
from condition (2), namely

hðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ki
LV

Tot �
Z t

0
Tsð�Þ d�

� �s
, ð4Þ

where the initial condition of the form h(0) ¼ 0 is taken into
account.

Time series of ice thickness and temperature–time traces
in accordance with expressions (3) and (4) are shown in
Figure 2a and b for buoy 5 by the dash-dotted lines. It is
easily seen that this frontal solution rather poorly describes
experimental data (this line is drawn only for z ¼ 10 cm in
Fig. 2b). To test the validity of expressions (3) and (4) (instead
of the partial differential equation (1) with corresponding
boundary conditions) we demonstrate our numerical solu-
tion of expressions (1) and (2) by the dashed curves in
Figure 2a and b. One can readily see that the dashed and
dash-dotted curves coincide very closely, whereas, as
before, the curves obtained numerically and experimentally
are widely spaced.

Further, if we forget for a minute that the temperature To is
constant, that is, if we consider it as a free time-dependent
parameter, we conclude that an increase in the absolute
value of To decreases the calculated h(t ) for each fixed t, i.e.

Fig. 2. Time series of ice thickness and temperature–time traces for (a, b) buoy 5 and (c, d) buoy 6 at lead 3 in accordance with the LeadEx
experiment and the theory under consideration. The ice–mushy-layer boundary is a good approximation to the data for ’b ¼ 0.5 and
’b ¼ 0.6 (these dependencies are shown by means of function a(t )). Numbers at the curves corresponding to each trace designate the depths
(expressed in centimeters) measured from the ice/atmosphere interface. The curve at z ¼ 0 cm represents the atmospheric temperature (Ts(t ))
at the ice surface. The timescale used by the LeadEx investigators is decimal days of 1992, abbreviated as UT. The time origin in minutes
corresponds to 0221, day 98 UT. Physical properties used in calculations: To ¼ –28C, Lv ¼ 3072� 105W sm–3, ki ¼ 2.03Wm–1 8C–1,
kw ¼ 0.56Wm–1 8C–1, Dw ¼ 1.2� 10–9m2 s–1.
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the front positions, obtained from expression (4), moving h(t )
further from experimental data. On the other hand, the
temperature profiles Ti(z,t ), obtained from expression (3) for
fixed z, approach experimental data for this same increase in
jToj. Decreasing the absolute value of To leads to the opposite
conclusions. It immediately follows that variations in the
temperature To cannot reconcile theory and observations, or,
in other words, the frontal theory does not adequately
describe experimental data. This is apparently due to the fact
that the clear dividing boundary ‘sea-ice–ocean’ of the phase
transition does not exist in natural conditions. In other words,
the phase transition occurs in a layer, filled with the liquid
and solid material, which is ahead of the purely sea ice. Such
a layer is considered below. For now, let us emphasize that
the linear temperature profile (3) is in good agreement with
the frontal model, and perhaps this profile describes most
initial stages of the process.

MUSHY LAYER
Mushy layers are regions of mixed phase (solid and liquid) in
which the solid forms a rigid matrix and the liquid fills its
interstices. We model the process under consideration by a
thermodynamically equilibriummushy layer (see, e.g., Buye-
vich and others, 2001). We consider a semi-infinite region
(z>0) filled with the young sea ice (0 < z< a(t )), the mushy
layer (a(t ) < z< b(t )) and the ocean (z> b(t )). Here a(t ) and
b(t ) represent the sea-ice/mushy-layer and mushy-layer/
ocean-phase transition boundaries (Fig. 1b). As before, our
analysis is based on the assumption of a linear temperature
profile in the sea ice with respect to the spatial co-
ordinate, i.e.

Tiðz, tÞ ¼ TsðtÞ þ C1ðtÞz, 0 < z < aðtÞ, ð5Þ
where C1(t ) is a time-dependent function. This expression
is based on observations by The LeadEx Group (1993) (see
also Wettlaufer and others, 2000) and aforementioned
discussions.

By analogy, by reason of self-similarity, the temperature
profile within the mushy layer is considered as a linear
function of z, i.e.

Tmðz, tÞ ¼ T1ðtÞ þ zT2ðtÞ, aðtÞ < z < bðtÞ, ð6Þ
where time-dependent functions T1(t ) and T2(t ) are found
below (gradients of distributions (5) and (6) are different).
From the physical point of view, the temperature linearity
means that the relaxation time of the temperature field is not
only less than a characteristic time for growth of the mushy
layer, but also less than the time of variation of solid fraction
in the mushy layer. What is more, the question of why
expression (6) approximately satisfies the classical heat-
transfer equation

�mcm
@Tm
@t

¼ @

@z
kmð’Þ @Tm

@z

� �
þ LV

@’

@t
ð7Þ

is discussed below. Here ’ is the solid fraction, �m is the
density, cm is the heat capacity and km is the conductivity of
the mushy layer.

The transport of solute takes the form (we use the Scheil
equation to describe the mass transfer in a mush (Kerr and
others, 1990))

@

@t
ð1� ’ÞCm½ � ¼ 0, aðtÞ < z < bðtÞ, ð8Þ

where Cm is the brine salinity (integration gives the Scheil

formula known in metallurgy). Formula (8), which assumes
that the salinity of the mushy layer is independent of time,
has been frequently applied by a number of investigators
(see, e.g., Scheil, 1942; Kerr and others, 1990). It is a good
approximation for the impurity redistribution during the
crystal growth for a wide range of experimental conditions
(e.g. Flemings, 1974). Within the mushy layer the local
salinity of the liquid phase and the local temperature are
related to one another through the phase diagram for sea ice
(e.g. Weeks, 1994). For the range of salinities used here, the
salinity-dependent freezing point is expressed by the linear
phase diagram

Tm ¼ �mCm, aðtÞ < z < bðtÞ, ð9Þ
where m is the liquidus slope.

The boundary conditions applied at the sea-ice/mushy-
layer interface are (Worster, 1986)

’ ¼ ’a, Ti ¼ Tm, z ¼ aðtÞ, ð10Þ

LV 1� ’að Þ da
dt

¼ ki
@Ti
@z

� ki’a þ kw 1� ’að Þ½ � @Tm
@z

,

z ¼ aðtÞ, ð11Þ

Cm 1� ’að Þ da
dt

¼ �Dw 1� ’að Þ @Cm

@z
, z ¼ aðtÞ, ð12Þ

where ’a ¼ ’a(t ) is the solid fraction at z ¼ a(t ), and kw
and Dw are the thermal conductivity and diffusion co-
efficient, respectively, of the pure water. The thermal proper-
ties of the mush are assumed to be volume-fraction-weighted
averages of the properties of the individual phases, so
that kmð’Þ ¼ ki’þ kwð1� ’Þ (see, e.g., Buyevich and
Alexandrov, 2005).

Further, we have the boundary conditions imposed at the
interface between the mushy layer and the relatively warm
isothermal ocean (To ¼ const.)

’ ¼ ’b, Tm ¼ To, z ¼ bðtÞ, ð13Þ

LV’b
db
dt

¼ ki’b þ kw 1� ’bð Þ½ � @Tm
@z

, z ¼ bðtÞ, ð14Þ

where ’b is the solid fraction at z ¼ b(t ), and To is the
constant temperature of the sea water determined for
z � bðtÞ. It must be emphasized that the mass-balance
condition at z ¼ b(t ), analogous to the boundary condi-
tion (12), is absent within the framework of our model. This
is because some variations in the temperature gradient at
z ¼ b(t ) on the mush side of the interface (constant
temperature in the ocean) lead to corresponding variations
in the brine salinity gradient at z ¼ b(t ) and, therefore, to
variations in the mushy-layer thickness in accordance with
the criterion for constitutional supercooling (this condition
holds for the mushy layer and its boundaries), which is

@Tm
@z

¼ �m
@Cm

@z
:

Physically, a decrease in the temperature within the oceanic
boundary layer causes a crystallization process, which is in
progress until the local salinity attains its equilibrium value
for a given temperature.

Integrating Equation (8) and taking into account expres-
sions (6), (9) and (13), we come to the solid-phase
distribution within the mushy layer (a similar form of ’ is
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deduced by Wettlaufer and others, 2000):

’ðz, tÞ ¼ 1þ To ’b � 1ð Þ
T1ðtÞ þ zT2ðtÞ : ð15Þ

Substitution of expressions (5), (6), (9) and (15) into the
boundary conditions (10–14) gives

’aðtÞ ¼ 1þ To ’b � 1ð Þ
TsðtÞ þ C1ðtÞaðtÞ , ð16Þ

C1ðtÞ ¼ LV 1� ’að Þ
ki

da
dt

þ ’a þ K 1� ’að Þ½ �T2ðtÞ, K ¼ kw
ki

,

ð17Þ

TsðtÞ þ C1ðtÞaðtÞ ¼ To þ T2ðtÞ aðtÞ � bðtÞð Þ, ð18Þ

T2ðtÞðbðtÞ � aðtÞÞ � To½ � 1� ’að Þ da
dt

¼ Dw 1� ’að ÞT2ðtÞ ð19Þ

T2ðtÞ ¼ LV’b

�

db
dt

, � ¼ � ’bð Þ ¼ ki’b þ kw 1� ’bð Þ, ð20Þ

T1ðtÞ ¼ To � bðtÞT2ðtÞ: ð21Þ
As is seen from expression (16), if we suppose ’a ¼ 1, it
immediately follows that ’b ¼ 1, that is, the mushy layer is
entirely filled with the sea ice (frontal model). In view of the
fact that we seek an alternative solution (’a 6¼ 1), like
factors, 1 –’a, can be cancelled from both sides of Equa-
tion (19).

Combining expressions (16), (18) and (20), we find the
solid fraction at the ice/mushy-layer interface in the form

’aðtÞ ¼ 1þ To ’b � 1ð Þ
To þ LV’b

�
db
dt aðtÞ � bðtÞð Þ : ð22Þ

Eliminating T2(t ) from expressions (19) and (20), we have

ðaðtÞ � bðtÞÞ LV’b

�

db
dt

þ To

� �
da
dt

¼ �DwLV’b

�

db
dt

: ð23Þ

In view of the fact that the interfaces move relatively slowly
(The LeadEx Group, 1993; Wettlaufer and others, 2000), we
arrive at the linear differential equation connecting a(t ) and
b(t ) (neglecting the term proportional to (da/dt )(db/dt )).
Integrating this equation in view of the initial conditions
a(0) ¼ b(0) ¼ 0, we get

aðtÞ ¼ �DwLV’b

To�
bðtÞ ð24Þ

(a(t )/b(t ) ¼ 0.071 for the physical parameters under con-
sideration and ’b ¼ 0.5). We choose these initial conditions
because a characteristic time of observations (The LeadEx
Group, 1993) is many times higher than a time of mushy-
layer initiation.

Substituting C1(t ) and T2(t ) from expressions (17) and (20)
into condition (18), eliminating ’a(t ) by means of formu-
la (22), we obtain the non-linear differential equation
containing functions a(t ) and b(t ):

LVToð’b � 1Þ ð1� K Þ’b

�

db
dt

� 1
ki

da
dt

� �
aðtÞ

¼ To � TsðtÞ � LV’b

�
bðtÞ db

dt

� �
ðaðtÞ � bðtÞÞ LV’b

�

db
dt

þ To

� �
:

ð25Þ
Further, substituting the term in square brackets from
Equation (23) into Equation (25), taking into account

Equation (24), we come to the linear differential equation
for b2(t ):

I
2
db2

dt
¼ To � TsðtÞ,

where

I ¼ LV’b

�
1�DwLV’b

To�
LVDw

kiTo
þ 1� K

� �
ð’b � 1Þ

� �
:

After integration of this equation (b(0) ¼ 0), we find the
mushy-layer/ocean interface

bðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
I

Tot �
Z t

0
Tsð�Þ d�

� �s
: ð26Þ

Expression (26) shows that the interfaces a(t ) and b(t ), as
would be expected, become self-similar (Worster, 1986) if
the ice surface temperature Ts is constant. If the temperature
Ts undergoes different time variations, the interfaces a(t ) and
b(t ) lie between two self-similar regimes, which correspond
to the maximum (Tmax) and minimum (Tmin) ice surface
temperatures measured in experiments. So, for example, for
the mushy-layer/ocean interface, we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
I
To � Tmaxð Þt

r
� bðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
I
To � Tminð Þt

r
:

Thus, the non-linear problem under consideration is solved
analytically (explicit form of solutions is given by expres-
sions (5), (6), (9), (15), (17), (20–22), (24) and (26)). Let us
especially emphasize that the solution depends on one free
parameter ’b (this value cannot be found in the context of
the theory under consideration). The solid fraction ’b must
be found semi-empirically (when one of the functions found
theoretically is compared with experiments). Then all of the
other functions will be completely known for any depths and
times.

We have been interested to compare the mushy-layer
theory with the frontal analogue. If we formally put ’b ¼ 1
(the mushy layer is entirely filled with the sea ice), it is easy
to see that expression (26) transforms to expression (4), ’a(t )
and ’ðz, tÞ ! 1, and T1(t ) and C1(t ) ¼ T2(t ) become Ts(t )
and (To –Ts(t ))/h(t ), respectively. In other words, our analy-
tical solutions for the mushy layer transform to their
analogues for the planar front.

Figure 2 demonstrates how the theory under consider-
ation agrees with experimental data (see The LeadEx Group,
1993; Wettlaufer and others, 2000). The free parameter ’b is
chosen in such a manner that one of the functions found
theoretically would approximate its experimental analogue
(it is easily seen from Figure 2 that all of the other values
found theoretically are in good agreement with observations
for this value of ’b). All of the curves plotted for two values
of ’b essentially differ from the frontal solutions and
properly describe the solidification dynamics of ice-thick-
ness and temperature fluctuations.

The solid fraction at the sea-ice/mushy-layer interface as a
function of time is shown in Figure 3. An important point is
that ’a and ’ (’b � ’ � ’a) undergo only insignificant time
and spatial variations (a rapid growth of ’ occurs only in the
early stages of the process, �100min, when a thin ice cover
appears). Taking into account the latter and the fact that the
temperature relaxation time is many times smaller than a
characteristic time of the front motion, we conclude that
Equation (7) can be approximated by means of equation
@2Tmðz, tÞ=@z2 ¼ 0. Now, it is easily seen that the linear
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temperature profile (6) exactly satisfies this equation and
approximately describes the heat balance in the form of
Equation (7). The mass-balance equation in the form of
Equation (8) follows from expressions (6) and (9).

It is important to keep in mind that the sea-ice/ocean
interface in nature does not divide pure ice and freezing
ocean, and divides the mushy layer with a high content of
ice (’ � 0.5–0.9; Fig. 3) and sea water free of ice. The sea-
ice/mushy-layer interface, a(t ), lags behind the mushy-layer/
ocean interface, b(t ), by virtue of the fact that the process of
ice formation is hampered within the mushy layer with a
high content of ice (all of the impurities rejected by the ice
lattice are initially retained within the interstices of a layer of
sea ice).

Let us pay attention to the conductive heat flux released
to the atmosphere from the sea-ice/atmosphere interface at
z ¼ 0. Within the framework of the model under considera-
tion, this flux can be written in the form JCðtÞ ¼ kiC1ðtÞ. This
flux stems from the latent heat flux and other factors. Let us
write down the mean latent heat flux as

JLðtÞ ¼ LV
bðtÞ � aðtÞ

Z bðtÞ

aðtÞ
’ðz, tÞ dz db

dt
� da

dt

� �
:

In view of insignificant rates of change of a(t ) with time
(Fig. 2a and c), the term connected with the motion of this

boundary is omitted. Figure 3 demonstrating time variations
of the fluxes shows that JC(t ) and JL(t ) lie close to each other.
The residual heat flux J(t ) ¼ JC(t ) – JL(t ) (see Fig. 3), within the
framework of the model under consideration, is connected
with the heat release to the atmosphere. In order to explain
the latter it is necessary to say that the residual flux is
significant only during initial stages of the process (Figure 3
illustrates its dynamics hereafter, where the flux drops and
oscillates in the vicinity of J ¼ 0). In other words, the role of
J makes itself evident during essential variations in the solid
fraction. It should be noted that the heat flux J(t ) decreases
when the atmospheric temperature goes down and, as a
consequence, when the mushy layer increases most rapidly
(these instants of time are shown by slight crests of b(t ) in
Figure 2a and c). The total oceanic heat flux differs from the
residual flux J(t ) because some additions (e.g. the turbulent
oceanic heat flux at the underside of the ice, and the solar
radiation heat flux reflected from the ice cover) appear in
nature. Some of these factors can be analyzed in the spirit of
this paper. Let us emphasize in conclusion that the heat flux
JC(t ) (or JL(t )), obtained theoretically on the basis of
experimental data, approximately represents the total heat
flux per unit area lost in solidification of leads.
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