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FRACTION-DENSE ALGEBRAS AND SPACES 

ANTHONY W. HAGER AND JORGE MARTINEZ 

ABSTRACT. A fraction-dense (semi-prime) commutative ring A with 1 is one for 
which the classical quotient ring is rigid in its maximal quotient ring. The fraction-
dense/-rings are characterized as those for which the space of minimal prime ideals 
is compact and extremally disconnected. For archimedean lattice-ordered groups with 
this property it is shown that the Dedekind and order completion coincide. Fraction-
dense spaces are defined as those for which C(X) is fraction-dense. If X is compact, then 
this notion is equivalent to the coincidence of the absolute of X and its quasi-/7 cover. 
/?-embeddings of Tychonoff spaces are re-introduced and examined in the context of 
fraction-density. 

Introduction. Fraction-dense algebras arise naturally in the consideration of quo
tient rings, and they give rise to an interesting class of topological spaces. For 
archimedean Riesz spaces Huijsmans and de Pagter have introduced a similar concept, 
in [HP], which they call almost Dedekind completeness. In fact, what we shall later call 
an absolute l-group coincides, in the context of uniformly complete Riesz spaces, with 
an almost Dedekind complete Riesz space. There is considerable overlap in the alge
braic parts between this article and [HP]. We shall, however not attempt to reconcile 
their terminology with ours. 

Unless further qualified, every ring in this exposition will be commutative, possess 
an identity, and also be semi-prime, in the sense that there are no non-zero nilpotent 
elements. An/-ring is a lattice-ordered ring in which a A b — 0 implies that a A be = 0 
for each c > 0. In ZFC this is equivalent to requiring that the lattice-ordered ring be a 
subdirect product of totally ordered rings. Likewise, all topological spaces are assumed 
to be Tychonoff, unless the contrary is expressly stated. Recall that a Hausdorff space 
is Tychonoff if the cozero-sets (of real-valued continuous functions) form a base for the 
topology. 

All lattice-ordered groups in this article are abelian. Our standard references for this 
theory are [AF] and [BKW]. 

Suppose that A is an/-ring; then qA stands for its classical ring of quotients and QA 
for its maximal ring of quotients. qA should be familiar to the reader; however, let us 
recall some properties of QA. (For further reading we refer the reader to [La], [Ba] and 
[M].) First of all, the term "ring of quotients" should be interpreted as follows: assume 
that A is a subring of the ring B; we say that B is a ring of quotients of A if for each pair 
b], Z?2, with Z?2 7̂  0, there exists an a G A such that ab\ and abi both belong to A and 
ab2 7̂  0. Each ring then has a (unique) maximal ring of quotients; in [La] the subject 
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is treated in full generality, whereas Banaschewski gives a representational construction 
of the maximal ring of quotients of a semi-prime ring; see [Ba]. That is the procedure 
followed in [M] for/-rings, and there it was shown that QA can be given a lattice-ordering 
so that it becomes an/-ring, and contains A as an/-subring. Recall that qA also has a 
natural ordering making it an /-ring; A Ç qA C QA. QA is the A-injective hull of A and 
it is a von Neumann regular ring; that is, for each a G A there is an x G A such that 
a2x — a. 

In considering the fractions in qA, first observe that in each fraction a/b one can 
assume without loss of generality that b > 0; then a/b > 0 precisely when a > 0. From 
this we conclude that A is rigid in qA. (Recall that if// is a lattice-ordered group in which 
G is an /-subgroup, G is said to be rigid in H if for each h G H there is a g G G such that 
î_L _ g±±. t n e Sym|30i j _ stands for "polar", and in any situation, such as this one, of 

inclusion, is understood in the only possible way, namely as denoting polars in the larger 
object.) 

Rigidity for lattice-ordered groups was first introduced in [CM21; it is shown there 
that if G is rigid in H then the contraction map P —» P H G is a homeomorphism from 
Min(//), the space of minimal prime /-ideals of//, as a topological space with the hull-
kernel topology, onto Min(G). Recall the well-known fact that for semi-prime/-rings, 
"minimal prime /-ideal" and "minimal prime (ring) ideal" mean the same thing. 

Now let us recall some of the main points from [M], about the quotient rings of A, qA 
and QA. 

The essence of Banaschewski's description of QA is to cast it as a direct limit of rings, 
each of which is naturally/-ordered. The upshot is that one views each element of QA 
as a function defined on a dense open subset of Min(A), which locally is a quotient of 
elements of A, modulo the appropriate minimal primes. The most concrete illustration of 
this construction—and see LFGL] for details—is that of Q(X) = g(C(X)), the maximal 
ring of quotients of the ring of all continuous real-valued functions defined on a Ty-
chonoff space X. Q(X) consists of the continuous real-valued functions defined on dense 
open subsets of X, with the obvious identifications on common domains. (By contrast, 
q(X) = q(C(X)) is the ring of all continuous real-valued functions defined on cozero-sets 
of X, with the same proviso for identification on common domains of definition.) 

Banaschewski's description of the maximal ring of quotients provides a natural link 
with Bleier's construction of the orthocompletion; see [Bll. (The lattice-ordered group 
G is said to be orthocomplete if it is laterally complete—that is, every subset of pairwise 
disjoint elements has a supremum—and projectable; (please refer to the note at the end 
of the next paragraph.) The orthocompletion of a lattice-ordered group G, denoted by 
6>G, is a lattice-ordered group containing G densely, which is orthocomplete, and such 
that no proper /-subgroup of oG contains G and is orthocomplete.) 

Indeed, for any semi-prime/-ring A, QA contains the orthocompletion oA\ moreover, 
one of the main results of [M] (Theorem 1.5) asserts that QA — q(oA). If A is projectable 
or archimedean then the order of the operators q and o can be reversed; see 1.4 and 
1.8.1 in [M]. Anderson and Conrad show in [AC] that for A = C(X), oA = QA. (Note: 
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A lattice-ordered group G is projectable if for each g G G, G — g1 + g11. In [HP], 
protectable /-groups are called normal.) 

In an off-hand manner it is also asserted in [AC] that for A — C(X), qA — QA. Now 
this is not true, as one sees by taking the space /3N \ N; it has no proper, dense cozero-
sets—see Chapter 6 of [GJ]—and so q(/3N \ N) = C(/3N \ N), whereas the maximal ring 
of quotients is much bigger: since /3N \ N is not extremally disconnected, it has plenty of 
dense open subsets U which are not C*-embedded; any function which belongs to C*(U) 
and cannot be extended continuously to /3N \ N is in Q((3N \ N). 

And so the springboard for this article is the question: when is qA = QA? For reasons 
which we shall not motivate at this juncture, it is more interesting to ask the question: 
when is qA rigid in QA? As we shall presently demonstrate, the example just given is 
one in which qA is not rigid in QA. Let us now proceed to examine /-rings A for which 
QA contains qA rigidly. 

1. Fraction-dense algebras. We say that the semi-prime /-ring A is fraction-dense 
if qA is rigid in QA. If X is a Tychonoff space and A = C(X) then we say that X is 
a fraction-dense space if A is fraction-dense. If qA = QA, A will be called strongly 
fraction-dense; likewise, X is a strongly fraction-dense space if C(X) is strongly fraction-
dense. The reader should notice at the outset that the class of fraction-dense spaces is 
quite extensive; since in a metric space every open set is a cozero-set, it follows that 
QiX) — q(X) for every metric space X. Indeed, every metric space is strongly fraction-
dense. 

Observe as well, that if X is an extremally disconnected space then every (dense) open 
subset is C*-embedded—see lH.6in[GJ]—which implies that q(X) = Q(X) = D(X),the 
/-algebra of all continuous functions/ defined on X with values in the extended reals, and 
for which fin(/) = {x G X : \f(x)\ < oo} is a dense subset of X. Thus, every extremally 
disconnected space is strongly fraction-dense. 

Theorem 1.1, which we shall state presently, gives a number of criteria for A to be 
a fraction-dense/-ring. Before proceeding to it however, let us recall some definitions. 
Now, we already recalled that of projectable lattice-ordered groups; we say that G is 
strongly projectable if G = KL + K11, for each polar subgroup K. (Incidentally, we 
shall denote by P(G) the boolean algebra of all polars of G, and by Pr(G) the sublattice 
generated by the principal polars g11.) 

The reader should bear in mind that strong projectability is indeed a more restrictive 
condition than projectability. There are many examples in the literature; for example, if 
X is a basically disconnected space, then C(X) is projectable, although rarely strongly 
projectable. 

We remind the reader of the definition in [CM1] of a complemented lattice-ordered 
group: G is said to be complemented if for each g £ G there is an h G G such that 
\g\ A\h\ — 0 and |g| W\h\ is a weak order unit. It is proved in [CM1 ] that G is complemented 
if and only if Min(G) is compact. (Compare this with the result for rings in terms of the 
boolean algebra of annihilators in [HJ]. See as well Propositions 4.9 and 4.10 in [HP].) 

From [M] we recall the following: 
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PROPOSITION (0.2 IN [M]). For a semi-prime f-ring A, the following are equivalent: 

(1) qA is von Neumann. 

(2) qA is projectable. 

(3) qA is complemented. 

Indeed, it is not hard to see that A is complemented precisely when qA is projectable. 

Observe as well, that since QA is orthocomplete, it is both strongly projectable and, there

fore, von Neumann. (That a maximal ring of quotients of a semi-prime ring is von Neu

mann is well-known; see [La].) 

Before stating the theorem observe, finally, that G is a complemented lattice-ordered 

group if and only if Pr(G), the lattice of principal polars of G, is a subalgebra of P(G). 

Moreover, in this event Pr(G) is the Stone dual of Min(G). Thus, Pr(G) is complete pre

cisely when Min(G) is extremally disconnected, by the Stone-Nakano theorem; 

(see [Wl], p. 47). (Recall that a space X is extremally disconnected if the closure of each 

open set is open.) Appealing to Theorem 2.7 in [CM1], we see that Min(G) is compact 

and extremally disconnected if and only if every polar of G is principal. 

If A is an/ - r ing then A(l) stands for the convex/-subring generated by 1; we shall 

refer to it as the bounded subring of A. Note that A(l) is rigid in A. 

THEOREM 1.1. Suppose that A is a semi-prime f-ring. Then the following are equiv

alent: 

(1) A is fraction-dense. 

(2) A(l) is fraction-dense. 

(3) A is rigid in QA. 

(4) qA is strongly projectable. 

(5) Min(A) is compact and extremally disconnected. 

(6) Every polar of A is principal. 

(7) qA and QA have the same idempotents. 

PROOF. For any lattice-ordered groups G, H and K, such that G is an /-subgroup of 

H and H is an /-subgroup of K, G is rigid in K if and only if G is rigid in H and H is rigid 

in A'. (See [CM 1].) 

With this in mind it is immediate that (1) and (3) are equivalent. If qA is rigid in QA, 

then since QA is strongly projectable P(QA) = Pr(QA), and therefore the same is true 

for qA. From this it follows that qA is projectable, whence strongly projectable; thus 

(3) implies (4). 

Assuming (4), we have from earlier remarks that A is complemented, and from this 

that Min(A) is compact. As in the previous paragraph, P(qA) = Pr(gA), and the same 

holds for A. Also from comments made before, this means that Min(A) is extremally 

disconnected. Thus, (4) implies (5). 

From what has already been said it is clear that (5) and (6) are equivalent. 

Next we show that (5) implies (1). This follows from the rigidity of A in qA, along the 

lines of previous arguments: Min(gA) is compact and extremally disconnected, whence 

qA is strongly projectable. (So we have actually shown that (4) follows from (5).) Now, 
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QA is the orthocompletion of qA—from Theorem 1.4 in [M]—and this means that the 
contraction map P —-> P Pi qA is a boolean isomorphism from P(QA) onto P(qA), all of 
which means that each principal polar of QA contracts to a principal polar of qA. This 
shows that qA is rigid in QA. 

As we now know that ( 1 ) is equivalent to statements (3) through (6), observe that they 
are all equivalent to (7) because, in a strongly projectable semi-prime/-ring, every polar 
is the principal polar of an idempotent. 

Finally, note thatA(l) is rigid in A, so that their spaces of minimal prime ideals are 
homeomorphic. This implies that (2) is equivalent to the rest, and the proof of the theorem 
is complete. • 

From Theorem 1.1 we have, right away, the following corollary; as usual, /3X denotes 
the Stone-Cech compactification of the space X. 

COROLLARY 1.1.1. A Tychonoff space X is fraction-dense if and only if (3X is 
fraction-dense. 

Observe that, since q(X) = q(C*(X)) and Q(X) = g(C*(X)), we also get that X is 
strongly fraction-dense if and only if (3X is. 

For the next corollary, let us first recall the notion of the absolute of a space, as well 
as the concept of an irreducible map. It will be sufficient for our purposes to present the 
situation for compact spaces. 

Iff: X —+ Y is a continuous surjection (of compact spaces) then/ is said to irreducible 
if Y cannot be obtained as the image under/ of a proper closed subset of X. Here are some 
basic observations about irreducible maps; the proofs may be found in [H] or [BH1]. 
To begin, note that the continuous surjection/: X —-> Y is irreducible if and only if the 
functorially induced embedding C(f): C{Y) —» C(X), by C(f)(g) = g •/ , is an (order)-
dense embedding. Also, recall that if/ is irreducible then the inverse image of a dense 
subset of Y is dense in X. (2.7 (a) in [H].) 

Now, for a given compact space let R(X) denote the boolean algebra of regular closed 
sets. This is a complete algebra; its Stone dual, EX, is therefore an extremally discon
nected space. Viewing EX as the space of ultrafilters on R(X), we have a natural map 
ex: EX —> X which assigns to the ultrafilter a the unique point of X common to all its 
members. (For further details see [Wl] or fPW]. EX is sometimes called the Gleason 
space of X; it was first studied by A. Gleason in [Gl]. In this study the extremally discon
nected spaces are cast as the projective spaces, and EX as the "projective cover" of X.) 
We shall refer to EX as the absolute (space) of X. 

Finally, note that the stipulations on/: E^X that/ be irreducible and E be extremally 
disconnected, characterize the absolute of X, in the following sense: If/ and E have the 
stated properties, then there is a homeomorphism g: EX —̂  E such that fg = ex. Any 
map/: E^ X which is irreducible, out of an extremally disconnected space E is said to 
realize the absolute of X. 

Now to the second corollary of Theorem 1.1. Let J(A) denote the Jacobson radical of 
A. It will also be most convenient to suppose that A satisfies the bounded inversion prop
erty: a > 1 implies that a— 1 exists; this property is satisfied by C(X), for any space X. 
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It is well-known that a semi-prime /-ring A satisfies the bounded inversion property pre
cisely when each maximal ideal of A is an /-ideal. It then follows that the space Max (A) of 
maximal ideals of A, relative to its hull-kernel topology, is Hausdorff. Max (A) is always 
compact; we refer the reader to Lemma 0.0 in [M].) 

Now let 6A stand for the (continuous) map which assigns to each minimal prime ideal 
P the maximal ideal 6A(P) containing it; this map is well-defined because the prime l-
ideals of A form a root-system—see [BKW]—which is to say that no two incomparable 
primes contain a third prime. 6 A is a continuous surjection of Min(A) on Max (A). 

COROLLARY 1.1.2. Suppose that A is a semi-prime f-ring satisfying the bounded 
inversion property, and that J (A) = 0. Then A is fraction-dense ifand only if'Min(A) and 
SA realize the absolute 6>/Max(A). 

PROOF. The sufficiency is obvious from the theorem. As to the necessity, all that 
must be verified is that 6A is irreducible. Every closed subset of Min(A) is of the form 
V(C) = {P G Min(A) : P Ç C}, where C is an intersection of minimal primes. If 
<5A[^(Q] = Max(A), then each maximal ideal of A contains C; since J(A) — 0 this 
implies that C = 0, and so V(Q = Min(A). • 

Note that every archimedean/-ring with bounded inversion has trivial Jacobson rad
ical. (See [M], the discussion preceding 3.9.) The converse is false, as evidenced by any 
non-archimedean ordered field. 

Before proceeding to examine fraction-dense spaces more closely, a comment is in 
order on the heels of Corollary 1.1.2. Let us assume that A stands for a semi-prime/-ring 
with the bounded inversion property. 

Since QA is von Neumann, we have that Max(gA) = Min(QA). On the other hand, in 
QA every polar is principal, and the algebra is orthocomplete, which means that Max(gA) 
is extremally disconnected. 

Next, if B is any/-subring of A (also with the bounded inversion,) consider the map 
6: Max(A) —> Max(B) which assigns to a maximal ideal M of A the unique maximal ideal 
of B which contains the contraction M Pi B. As shown by Scott Woodward, and soon to 
appear in his University of Florida dissertation, this is a continuous surjection of Max (A) 
on Max(#). So let us consider this map 6A: Max(gA) —-> Max(A). 

PROPOSITION 1.2. Let A be an f-ring satisfying the bounded inversion, for which 
J(A) = 0. Then the map 6A: Max(QA) —> Max(A) realizes the absolute o/Max(A). 

PROOF. Once again, the only matter left to settle is the irreducibility of 6A- SO let 
us suppose that 6A[K] — Max (A), for some closed set K. Thus, every maximal ideal N 
of A contains a contraction M H A, for some M G K. Since J(A) — 0 it follows that 
f]{MHA : M G K} = 0; putting it differently, (fl^O HA = 0. Since QA is an A-essential 
extension of A—after all, QA is the A-injective hull of A—this implies that f] K — 0; this, 
together with the assumption that K is closed, gives the conclusion that K = Max(QA). • 

Proposition 1.2 has the following appealing corollary. There are some details which 
need checking; we leave this to the reader as an exercise. 
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COROLLARY 1.2.1. Suppose that A is an j -ring with bounded inversion and J (A) = 
0. Then the following are equivalent. 

(1) Max (A) is extremally disconnected. 
(2) A is strongly projectable. 
(3) A and QA have the same idempotents. 
(4) A is fraction-dense and 6 A is a homeomorphismfrom Min(A) onto Max(A). 

We shall proceed now to a more detailed study of fraction-dense spaces. Recall that 
the two principal classes of fraction-dense spaces we have already mentioned, namely, 
metric spaces and extremally disconnected spaces, are, in fact, strongly fraction-dense. 
As far as we know every fraction-dense space is strongly fraction-dense; although it is 
unlikely that this implication should hold in general, we have yet to discover a counter
example. 

By contrast, observe that if A is the/-algebra of all real sequences with finite range, 
then qA = A, while QA is the algebra of all real sequences. A is rigid in QA, so that A is 
fraction-dense, but not strongly fraction-dense. 

2. Fraction-dense spaces. We shall begin this section with an introduction to the 
notion of covers of topological spaces. We have already mentioned irreducible maps. 
Now recall that a continuous map is perfect if it is a closed mapping and the inverse 
image of every singleton set is compact; evidently, if the spaces in question are compact, 
then every continuous map between them is perfect. Now, if / : Y —» X is a perfect, 
irreducible surjection, we say that the pair (Y,f) is a cover of X. For a comprehensive 
discussion of the theory of covers we refer the reader to [H]. Much of the deep work on 
this subject has been done by Vermeer; [VI] and [V2] have much to recommend them. 

Let us consider the lattice COV(X) of all covers of X. First, recall that two covering 
maps/: Y —> X and g: Z —> X are said to be equivalent, if there is a homeomorphism 
h\Y —> Z such that gh — f. Such a map is unique. Modulo this equivalence relation 
one can then order COV(X), the collection of all covers of X, as follows: with the same 
designations for/ and g as before, we say that (Y,f) > (Z, g) if there is a continuous map 
h: Y -* Z such that gh = f. We note that (Y,f) > (Z, g) and (Z, g) > (Y,f) together imply 
that/ and g are equivalent. (See [H] for details; if (Y,f) > (Z, g) then the map h is perfect 
and irreducible and unique with respect to making gh — / . ) Under this partial ordering, 
COV(Z) is a complete lattice, in which the least element is (X, 1*), while (EX, ex) is the 
largest element. The suprema in COV(X) can be described by means of pullbacks; see 
[H]. 

Now suppose that Ĉ is a class of topological spaces. (One need not assume that the 
spaces are Tychonoff, but we shall continue to do so.) We say that %^ is a covering 
class if for each space X there is a least element (Y,f)—where/: Y —> X is perfect and 
irreducible—with F G %^. If such a minimum cover exists we speak of the 9^-cover of 
a space X, and denote it %X. 

Thus, if E is the class of extremally disconnected spaces, then every space X has a 
£-cover, namely EX, the absolute space. Let QF denote the class of quasi-F spaces; (X is 
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quasi-/7 provided every dense cozero-set is C*-embedded.) Various contributions to the 

literature have discussed the quasi-F cover: [DHH], [HVW1], [HP] and [ZK]. 

Recall that any irreducible m a p / : Y —> X induces, by way of the assignment A —> 

/ [A] , a boolean isomorphism between the respective algebras of regular closed sets; (see 

[PW], 6.5(d)(3).) Also, P(C(X)) is isomorphic to R((5X): pX is, after all, homeomorphic 

to Max(C(X)\ and then the (boolean) isomorphism in question is defined by assigning 

to a polar P of C(X) the set of maximal ideals containing P. Under this assignment the 

principal polars are associated with the closures of cozero-sets. 

We are now ready for the first result of this section. 

PROPOSITION 2.1. A space X is fraction-dense if and only if every regular closed 

subset ofX is the closure of a cozero-set ofX. Also, X is fraction-dense if and only if 

every regular open set ofX densely contains a cozero-set. 

PROOF. Since X is fraction-dense if and only if every polar of C(X) is principal, 

it follows that X is fraction-dense if and only if every regular closed set of (3X is the 

closure of a cozero-set of f3X. However, it is easily seen that the latter condition holds 

for (3X precisely when it does for X. m 

Following [BH1], we shall say that the perfect, irreducible m a p / : Y —> X is sequen

tially irreducible if for each cozero-set W Ç Y there is a cozero-set V Ç X such that W 

and/—1(10 bave the same closure. This notion is called Z*-irreducible in [HVW1] and 

ou\-irreducible elsewhere. As is demonstrated in [HVW1], Theorem 2.13, the quasi-F 

cover (K, <j>) of a space X is characterized by Y being a quasi-F space and the covering 

map (/>: Y —• X being sequentially irreducible. (The unpublished result is originally due 

to F. Dashiell.) 

From Theorem 2.4 in [BH1] we conclude the following: 

PROPOSITION 2.2. Suppose thatf: Y —> X is a perfect, irreducible map. Then f is 

sequentially irreducible if and only if the induced embedding C(f): C(X) —> C(Y) is a 

rigid embedding. 

PROOF. According to 2.4 of [BH1], / is sequentially irreducible if and only if the 

contraction map P —+ P H C(X) sends countably generated polars to countably gen

erated polars. However, in C(X) every countably generated polar is principal: if P = 

{f\,h ' ' '}LL, m e n w e m a v> without loss of generality, suppose that t he / n are positive 

and bounded. Lett ing/ = E«e/v// /2n , we obtain that P — fLL. m 

As an immediate corollary of this proposition and Theorem 1.1 one gets: 

COROLLARY 2.2.1. Iff: Y —> X is a perfect, sequentially irreducible map, and X is 

fraction-dense then so is Y. 

Next, let us recall the following definition: a space X is cozero-complemented if for 

each cozero-set U there is a cozero-set V which is disjoint from U and such that the union 

is dense inX. Then observe that, since any fraction-dense/-ring is complemented, every 

fraction-dense space is cozero-complemented. 
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Now let us recall the following notion from [HVW2]: X is a cloz-space if every com
plemented cozero set has an open closure. The authors show that every quasi-/7 space is a 
cloz-space, and that the converse is true for strongly zero-dimensional spaces, but not in 
general. Moreover, the class of cloz-spaces is a covering class. We now get, immediately 
from Proposition 2.1 and Corollary 2.2.1 : 

PROPOSITION 2.3. Each fraction-dense cloz-space X is extremally disconnected. 
Moreover, if Y is fraction-dense then its cloz-cover, quasi-F cover and absolute all coin
cide. 

NOTE. For every fraction-dense space X, QFX — EX. The converse is false: let X be 
the space of all ordinals less than the first uncountable ordinal, endowed with the order 
topology. By 3.15 in [HVW1], EX = QFX; however, X is not fraction-dense: /3X is its 
one-point compactification, by adjoining the first uncountable ordinal, which is a P-point 
in f3X. As we shall see presently, a fraction-dense compact space (in a universe without 
measurable cardinals) has no non-isolated P-points. 

For compact spaces the converse is true: 

PROPOSITION 2.4. If X is a compact space then X is fraction-dense if and only if 
QFX = EX. 

PROOF. Again note that every countably generated polar of C(X) is principal. Also, 
all we are required to prove is the sufficiency: if EX — QFX, then by Theorem 2.16 in 
[HVW], Min(C(X)) is compact. By Lemma 3.20 in [HVW], Min(C(X)) is extremally 
disconnected. It now follows from Theorem 1.1 that C(X) is fraction-dense. • 

For the remainder of this section we shall assume that all spaces are compact. We shall 
also assume that, henceforth, all/-rings satisfy the bounded inversion property. 

Let us now turn to some more "intimate" properties of fraction-dense spaces. We need 
a few definitions before proceeding. Recall that a point/? G Xis an almost P-point if every 
zero set containing p has interior. We say that/? is an F-point if Op = {f G C(X) : Z(f) 
is a neighborhood of p} is a prime ideal. For aesthetic reasons we call p G X a quasi-F 
point if, under the covering map </>*: QFX —> X, cj>~l{p} is a singleton. It is easy to see 
that X is a quasi-F space if and only if each of its points is a quasi-/7 point. 

Let us first record the following lemma. Note that if A is an/-ring and M G Max (A) 
then 0(M) stands for the intersection of all the minimal prime ideals of A which are 
contained in M. If B is an /-subring of A then 0: Max (A) —> Max(#) is the canonical 
surjection of spaces of maximal ideals. 

LEMMA 2.5. Suppose that B is an f-subring of A. Then if B is rigid in A, O(0M) = 
H{0(N) HB : ON = 0M}} andifONt = OM (i = 1,2) with N{ \\ N2, then 0(N\)nB \\ 
0(N2) H B. 

PROOF. Clearly O(0M) Ç 0(N) n £, for each N G Max(A) such that ON = OM. 
Conversely, if P G Min(fl) and O(0M) ÇPQ0M, then for some Q G Min(A), QHB = P 
(by rigidity), and such a Q must lie between N and O(N), for some TV so that ON = OM. 
We leave the incomparability argument to the reader. • 
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In the final part of the following proposition, as elsewhere, (NMC) designates that it 
is assumed that no measurable cardinals exist. For the relevance of this to P-points in an 
extremally disconnected space, we refer the reader to Chapter 12 of [GJ]. 

PROPOSITION 2.6. Suppose that X is a (compact) space. Then 
(a) Every almost P-point is quasi-F. 
(b) Every F-point is quasi-F. 
(c) IfX is fraction-dense then every quasi-F point is an F-point. 
(d) (NMC) Every almost F-point in a fraction-dense space is isolated. 

PROOF, (a) From 3.11 in fHVW1 ]. 
(b) Once again, </>*: QFX —• X denotes the covering map. It is sequentially irreducible, 

so that C((/>): C(X) —> C(QFX) is rigid. Now apply Lemma 2.5. 
(c) If p G X is a quasi-F point then <j>~x{p) = {q}. By Lemma 2.5, Op = Oq n C(X). 

Now, since Oq is prime in C(EX), it follows that Op is likewise prime in C(X). Hence, p 
is an F-point. 

(d) It is well-known that in an extremally disconnected space of non-measurable car
dinality every P-point is isolated. The same proof—see [GJ] or [PW], for example—can 
be used to show that every almost P-point is isolated. (This has already been observed 
in [Lv].) 

Now, by 3.11 in [HVW1], if X is fraction-dense and/? G X is almost P, then </>~{{p} 
is a singleton, which is also almost P. But this inverse-image is then isolated, making p 
isolated as well. • 

NOTE. If one does not assume anything about cardinalities, then Proposition 2.6 (d) 
can be put as follows; (recall that/? G X is a C*-point if X{p} is C*-embedded in X.) In 
a compact fraction-dense space X every non-isolated almost F-point is a C*-point. We 
shall obtain this as Corollary 4.2.3. 

The preceding proposition raises the following question: If every almost F-point of 
X is isolated, does it follow that X is fraction-dense? The answer is no, but the example 
prompts a second, stickier question, which we shall state presently. 

Once again, let X stand for the space of all ordinal numbers less than the first un
countable ordinal. All the points of X are isolated, except the limit ordinals, which are 
G^-points, and hence not almost F. Of course, X is not compact; so we can—and do— 
rephrase the question: (notice, by the way, that X is cozero-complemented; and recall 
that any fraction-dense space has this property.) 

QUESTION 2.6.1. IfX is compact, cozero-complemented and every almost F-point 
is isolated, is X fraction-dense? 

In perfect analogy to the fraction-dense case one can establish the result which fol
lows. We state a version for spaces first, followed by the generalization to/-rings. It 
should be noted that Theorem 2.16 in [HVW1] shows that if X is cozero-complemented 
then its basically disconnected cover and its quasi-F cover coincide; our result shows 
that the canonical map 0X: Min(C(X)) —• Max(C(X)) = X real izes this identity. 
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The proofs of the next two results are very similar to those of Corollary 1.1.2, and are 
therefore left to the reader. 

PROPOSITION 2.6.2. Suppose that X is compact and cozero-complemented. Then 
(1) The canonical map 9x'Min(C(X)) —> Max(C(X)) = X realizes the basically 

disconnected cover ofX. 
(2) Ox is sequentially irreducible, and hence QFX = BDX = Min(C(X)\ 

PROPOSITION 2.6.3. Suppose that A is a semi-prime f-ring with bounded inversion, 
which in addition satisfies: (a) J{A) — 0, (b) A is complemented and (c) Pr(A) is a-
complete. 

Then Min(A) is basically disconnected and the canonical map 6A'- Min(A) —> Max(A) 
realizes Min(A) as both the basically disconnected cover as well as the quasi-F cover of 
Max(A). 

In connection with the question in Question 2.6.1 and our earlier work on fraction-
dense spaces, it should be clear that if X is compact, cozero-complemented and every 
almost P-point is isolated then its basically disconnected cover has this last property as 
well. Moreover, X is fraction-dense if and only if BDX = QFX is extremally discon
nected. Therefore Question 2.6.1 can be reduced to: 

QUESTION 2.6.4. Is there a compact, basically disconnected space in which every 
almost P-point is isolated, which is not extremally disconnected? 

The question can be reduced even more. Observe, the following, which can easily be 
derived from results in [HJ]. 

PROPOSITION 2.6.5. Suppose that A is a complemented f -ring. Then every non-
minimal prime ideal of A contains a regular element. 

COROLLARY 2.6.6. IfX is a compact cozero-complemented space, then every almost 
P-point is a P-point. 

PROOF. If p £ X is almost P then the maximal ideal Mp = {f G C(X) : f(p) = 0} 
contains no regular elements. By Proposition 2.6.5, it must be minimal; hence Mp — Op, 
and by 4L in [GJ], p is a P-point. • 

In particular, in any basically disconnected space an almost P-point is already a P 
point. So Question 2.6.4 is equivalent to: 

QUESTION 2.6.7. Is there a compact, basically disconnected space in which every 
P-point is isolated, which is not extremally disconnected? 

The answer is yes, and here is an example: of a basically disconnected space which is 
not extremally disconnected and has no P-points. Going back to Question 2.6.1, where 
the succession of questions got started, we see that it is answered in the negative. 

Consider the boolean algebra 2R of all subsets of the real numbers, modulo the a-
ideal M of all meager subsets. It is shown in [Si], 21G and 21H, that 2R/Mis cr-complete 
but not complete. Its Stone dual is, therefore, basically disconnected, but not extremally 
disconnected. We proceed to show that it has no P-points. 
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Let Ston(#) denote the Stone dual of the boolean algebra B. We think of Ston(#) as the 
space of ultrafilters of B\ the clopen set of all ultrafllters which contain b G B is denoted 
by //. Now observe the following points about Stone duality: 

(a) The boolean epimorphism of B onto B/J, where / is an ideal of the boolean algebra 
B, induces an embedding of Ston(B/J) in Ston(Z?) which identifies the former with the 
complement in Ston(B) of U{*' : x G J}. (See [Si], p. 29.) 

(b) The epimorphism B —* B/J preserves countable suprema and infima of and only if 
7 is a (7-ideal. Moreover, this occurs precisely when the dual map Ston(Z?/7) —* Ston(Z?) 
has the property that if a subset E of Ston(Z?) which is nowhere dense as well as an 
intersection of countably many clopen sets, then its inverse image is a nowhere dense 
set. (See [Si], 22.3.) 

Now, let's apply (a) and (b) to the canonical map 2R —• 2R/M. First, Ston(2R) = (3Rd, 
where Rd denotes the discrete space of reals. Then, the dual map Ston(2R/M) —> (3Rd 

maps onto a subspace of (3Rd \ Rd. Since M is a a-ideal this embedding also satisfies 
the property highlighted in the second sentence of (b). Since the cardinality of Rd is 
non-measurable the space is real-compact. (See [GJ], 12.2.) This means that if p G 
Ston(2R/M) then, viewing it in (3Rd \ Rd, there is a zero-set Z of (3Rd which contains 
p and lies in (3Rd \ Rd. The trace of Z upon Ston(2R/M) is then a nowhere dense G/,-set 
containing p. Thus, p cannot be a P-point. 

Some familiar classes are not covering classes; for example, the class of all F-spaces 
and the class of all zero-dimensional spaces. (See [H], 9.3 and 9.4. Recall that X is an 
F-space if every cozero-set is C*-embedded.) To conclude this section we show that 
the class of fraction-dense spaces also is not a covering class. Moreover, every compact 
space X is the infimum in COV(X) of fraction-dense covers. 

Let D stand for a discrete space of cardinality u\, and assume that it is well-ordered: 
D = {d\,d2,.. •}. For each countable ordinal a, let D(a) — {dfl : p < a} and D = 
D(a) U D'{a) be the obvious partition of D. Clearly f3D is the disjoint union of (3D(a) 
and (3D'(a). 

Now let L(a) be the space obtained from (3D by identifying all the points in (3D(a) \ 
D{oc). Let D = DU {2}, where all the points of D remain isolated, and the basic neigh
borhoods of A are the subsets with countable complement in D. It is well known that XD 
is a P-space, so that (3\D is basically (but not extremally) disconnected. Then observe: 

(a) In COV\(3\D) the spaces L{a) form a chain 

f3D>-> L(a\) > • • • > L(a2) > • • • ; (with a] < a2). 

(b) The infimum of the L(a) is (3XD, and each L(a) is fraction-dense. (Note: each L(a) 
is homeomorphic to the disjoint union aN U (3D. Any disjoint union of fraction-dense 
spaces is fraction-dense.) 

(c) The L(a) are in fact strongly fraction-dense; thus, strong fraction-density is not a 
covering property either. 

The example just exhibited shows in fact that fraction-density is not preserved under 
an infimum of a chain. We have not been able to decide whether the infimum of two 
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fraction-dense spaces in COV(X) is fraction-dense. This question amounts to asking, 
by Proposition 2.2, whether the following is true: if C(Y\) and CiYi) are both rigid/-
subalgebras of C(Y), then is the intersection rigid in C(Y)1 Even though we cannot answer 
this question, it is easy to find examples of a pair of rigid/-subrings the intersection of 
which is not rigid. In C(N) let A\ be the subalgebra of sequences with finite range, and 
A2 = C(aN), the convergent real sequences. Both are rigid in C(N), while A\ H A2, 
the algebra of eventually constant sequences, is not. The next proposition establishes 
the stronger assertion made earlier, concerning the non-covering property of fraction-
density. 

PROPOSITION 2.7. (NMC) Every compact space X is the infimum in COV(X) of 
strongly fraction-dense covers. 

PROOF. Suppose that X is compact and EX is its absolute. Let E(p, q) stand for the 
space obtained from EX by identifying two of its points, p and q. Let ex'. EX —> X be the 
canonical irreducible surjection, and consider all pairs of points for which exip) = ex(q). 
It should be clear that all such E(p, q) are covers of X and that X is the infimum of them. 

Now, ifp^q yet exip) — exiq) then neither one can be isolated, and so not a P-point 
either, since we are assuming that there are no measurable cardinals. On the other hand, if 
neither p nor q is a P-point, then it is not difficult to verify that Eip, q) is strongly fraction-
dense; indeed, every continuous real-valued function defined on EX can be obtained as 
a quotient of functions which vanish at both/? and q, but not on a neighborhood of either 
of them. This says that qiEX) = q{Eip,q)}, which is sufficient to show that Eip,q) is 
strongly fraction-dense. • 

In [HW] the authors consider spaces X for which CiX)/P is a valuation ring, for each 
prime ideal P of C(X). i n view of the fact that this condition generalizes the F-space 
condition, and that fraction-dense F-spaces are extremally disconnected, it is reasonable 
to ask whether spaces with the above valuative condition which are also fraction-dense 
are necessarily extremally disconnected. 

The answer is no; using the same argument as in the second paragraph of the preceding 
proof one can show that the space X obtained by identifying two non-isolated points of 
f3N is fraction-dense; it is not an F-space, and hence not extremally disconnected. On 
the other hand, it is not hard to verify that CiX)/P is a valuation ring, for every prime 
ideal P. 

3. Coincidence of completions. /-Rings with bounded inversion are divisible, as 
lattice-ordered groups. In addition, conditions (5) and (6) of Theorem 1.1 suggest how to 
define "fraction-density" for (abelian) lattice-ordered groups; let us suppose that G is an 
arbitrary abelian lattice-ordered group, and say that it is absolute if Min(G) is compact 
and extremally disconnected. This is the concept, which in the context of archimedean 
Riesz spaces, is called almost Dedekind complete in [HP]. The reader should note the 
overlap between Theorem 4.7(H) in [HP] and the equivalence of (5) and (6) in our The
orem 1.1. 
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We choose to proceed directly from the archimedean /-group, via the Yosida embed

ding to achieve Theorem 3.3, which is essentially Theorem 4.11 in [HP]. The only extra 

assumption made in the sequel is that G is divisible. 

If G has an order unit w, let Yos(G, u)—or Yos(G), if the unit is fixed or otherwise 

understood—denote the set of values of u; that is, the set of all prime /-ideals of G which 

are maximal with respect to excluding u. Yos(G) is a compact, Hausdorff space relative 

to its hull-kernel topology; as is customary—see [BH1] or [BH2], for example—we shall 

refer to this space as the Yosida space of G. Let us now examine the relationship between 

the absoluteness of G and covers of Yos(G). 

Let us begin by recalling the notion of an (order) essential extension of a lattice-

ordered group. Suppose that G is an /-subgroup of the lattice-ordered group / / ; then H 

is an essential extension of G if each non-trivial /-ideal of H has a non-trivial intersec

tion non-trivial intersection with G. If G is archimedean then it has a (unique) maximal, 

archimedean essential extension, denoted eG\ see [C] for details. Here we add but one 

more observation about eG: it is /-isomorphic to D(X), where X is the Stone-dual of 

P(G).) 

On the other hand, let's observe the following; assume that G is a complemented 

lattice-ordered group. For each g G G the basic open set u(g), consisting of all the 

minimal primes of G which exclude g, is compact-open, and u(g) is homeomorphic to 

M i n ( ^ x l ) = Min(G(g)), where G(g) denotes the /-ideal generated by g. Therefore, if 

G is absolute, then so is (g), and u(g) is the absolute of Yos(G(g),g), while the map 

6g\ u(g) = Min(G(g)) —> Yos(G(g),g), assigning the minimal prime /-ideal P <G u(g) 

to the value of g in G(g) containing P Pi G(g), realizes the absoluteness of u(g) and is 

sequentially irreducible. (The proofs mimic the ones for/-rings completely.) 

Thus: 

PROPOSITION 3.1. Suppose that G is an absolute abelian l-group. Then for each 

g G G, Yos(G(g),g] is a fraction-dense space. 

For the remainder of this article, let us suppose that G is a divisible archimedean 

lattice-ordered group. We recall the notion of ^-convergence and the associated 

^-completion; (see [DHH], [HP] or [Pa] for details.) We say that a sequence (gn) in G 

o-converges to g if there is a decreasing sequence (vn) of positive elements such that 

inf„ vn — 0 and \gn — g\ < vn. The o-Cauchy condition is defined analogously, and we 

say that G is o-complete if every o-Cauchy sequence converges. 

We shall not recall the precise definition of o-completion here, save to recollect that 

if X is any compact space then C(QFX) is the o-completion of C{X)\ (Theorem 3.9b 

in [DHH].) Recall as well that C(EX) and C(BDX) are, respectively, the Dedekind and 

Dedekind a-completions of C(X). Clearly, X is fraction-den se if and only if all three of 

these completions coincide. Now let us proceed to generalize this. 

LEMMA 3.2. Suppose that G is an archimedean lattice-ordered group. If G is abso

lute and o-complete then it is Dedekind complete. 
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PROOF. Clearly G is Dedekind complete if and only if each G(g) is Dedekind com
plete. Since the absoluteness and the ^-completeness of G imply the same for each G(g), 
we may assume without loss of generality that G has a strong order unit u. 

The Johnson-Kist-Yosida embedding—see Chapter 7 of [LZ]—then puts G in 
C(Yos(G)); from Proposition 3.1 we have that Yos(G) is fraction-dense. 

Now it is well-known that an o-complete /-group is uniformly complete. This ob
servation, together with the one that G is uniformly dense in C(Yos(G))—becau >e G is 
divisible—implies that G = C(Yos(G)). Since G is ocomplete Yos(G) must be a quasi-/7 

space—Theorem 3.7 in [DHH]—which implies that Yos(G) is extremally discoi nected, 
by Proposition 2.3, and hence G is Dedekind complete. • 

We now have the following theorem; compare with Theorem 4.11 of [HP]. 

THEOREM 3.3. Suppose that G is a (divisible) archimedean lattice-ordered group 
with order unit. If G is absolute then its o-completion and Dedekind completion coincide. 
The converse is true provided Pr(G) is a-complete. 

PROOF. Consider H, the ^-completion of the absolute lattice-ordered group G. Since 
H lies between G and eG and G is rigid in eG, it follows that G is rigid in //, whence 
H is absolute. By Lemma 3.2, H is Dedekind complete, and obviously the Dedekind 
completion of G. 

Conversely, if the o-completion and the Dedekind completion of G coincide and Pr(G) 
is cr-complete, then, in the language of [BH1], this common completion K lies in aG, the 
largest a/cd-extension of G, and because Pr(G) is a-complete, and countably generated 
polars correspond under the contraction map P —> P D G, it follows that G is rigid in 
K. However, if G is rigid in its Dedekind completion it should be obvious that Min(G) 
is extremally disconnected. In addition, as G has an order unit K does too, which makes 
Min(G) compact, proving that G is an absolute lattice-ordered group. • 

One might be able to relax the cr-completeness of Pr(G) in Theorem 3.3; however, it 
cannot be discarded altogether. If A is the/-ring of all eventually constant sequences of 
real numbers, then Pr(A) is not a-complete and A is not fraction-dense—not absolute, 
as a lattice-ordered group. However, the 6>-completion of A coincides with its Dedekind 
completion; namely, C(0N). 

4. 7?-embeddings. Proposition 2.2 suggests the following definition: suppose that 
F is a dense subspace of the Tychonoff space X. The embedding induces an inclusion of 
/-algebras C(X) Ç C(Y), by restriction of functions. We say that Y is R-embedded in X if 
this inclusion if rigid. Note that this concept is precisely what is called 2?-embedded in 
[HVW1]: for each cozero-set V in Y there is a cozero-set W in X such that V and WRy 
have the same closure in Y. As observed in [HVW1], if Y is a dense subspace of X, then 
if Y is C*-embedded in X then it is also /^-embedded in X. The concepts of' z- embedding: 
every zero-set of y is the contraction of a zero-set of X, stands in between C*-embedding 
and /^-embedding. Let us collect the basic facts about /?-embeddings in the following 
proposition, which is quite easy to prove from what has gone before. 
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PROPOSITION 4.1. Suppose that Y is a dense subspace ofX. Then the following are 
equivalent. 

(a) Y is R-embedded in X. 
(b) The induced inclusion ofC(X) in C(Y) is rigid. 
(c) The induced inclusion ofC*(X) in C*(Y) is rigid. 
(d) The Stone extension of the embedding, (5Y —> (3X, is sequentially irreducible. 

A space Y is said to be absolutely R-embedded if it is /^-embedded in any space con
taining it densely. In 3.7(b) of [HVW1] it is shown that every weakly Lindelôf space is 
absolutely /^-embedded; the proof employs the fact that a cozero-set of a weakly Lindelôf 
space is weakly Lindelôf, which is shown in [CHN]. This proves half of Theorem 4.2, 
coming up shortly. (X is weakly Lindelôf if every open cover of X has a countable subfam
ily, the union of which is dense in X.) Recall, from 6J of [GJ] that a space X is absolutely 
C*-embedded—that is, X is C*-embedded in any subspace containing it—precisely when 
X is almost compact, which is to say that \f3X\X\ < 1. 

As to absolute z-embeddedness, we refer the reader to [B], [B1H] and [HaJ]: X is 
absolutely z-embedded if and only if X is almost compact or Lindelôf. 

For fi-embeddedness we have the following theorem. 

THEOREM 4.2. A Tychonojf space X is absolutely R-embedded if and only if X is 
almost compact or weakly Lindelôf. 

By the remarks already offered, the sufficiency follows. Before proving the necessity 
in the theorem we need a couple of lemmas, including a special case of the theorem: 

LEMMA 4.2(A). Suppose thatX is locally compact. Then X is R-embedded in aX, the 
one-point compactification ofX, if and only ifX is almost compact or weakly Lindelôf. 

PROOF. AS the sufficiency has already been proved, we move on to the necessity. 
Recall that X is open in aX, and observe that V = Vf HX where V is a cozero-set of 

aX if and only if X \ V is a compact G^-set or else V is an open a-compact set, that is 
to say, a countable union of compact sets. We leave the vérification of this remark to the 
reader. 

Now we show that the cozero set V of X and the contraction V' D X, where V' is a 
cozero-set of aX, have the same closure in X precisely when either X\ V is compact or else 
V densely contains an open <j-compact set. The sufficiency is clear from our preceding 
remark. As to the necessity, suppose that clx V = clx( V'PlX), where V and V' are cozero-
sets in X and aX respectively. Then clx V contains the open a-compact set V' n X. Now 
V — UnFn, where the Fn are closed in X, and V Pi X = UnKn, with each Kn compact. 
Since each Fn H Km is compact and V D Un,mFn D Km = VD {V PlX), which is dense in 
V since V is open. Thus, if X \ V is not compact, V densely contains an open cr-compact 
set. 

IfX is not almost compact we have, by 6J.(1) in [GJ], that X possesses two disjoint 
zero-sets Z\ and Z^ which are non-compact. By our remarks in the foreogoing, each of 
these densely contains a a-compact set, say K\ and K^ respectively. Now, X = (X \ Z\ ) U 

https://doi.org/10.4153/CJM-1993-054-6 Published online by Cambridge University Press

file:///f3X/X/
https://doi.org/10.4153/CJM-1993-054-6


FRACTION-DENSE ALGEBRAS AND SPACES 993 

(X \ Zi) and densely contains K\ U K^ (which is a cr-compact set); since cr-compact sets 

are Lindelôf, it follows that X is weakly Lindelôf, and the proof of the lemma is done. • 

LEMMA 4.2(B). For a space X the following are equivalent. 

(1) X is weakly Lindelôf. 

(2) For each open subspace Y, such that X Ç Y Ç j3X, there is a subspace W Ç 7, 

dense in (3X, which is an open a-compact set. 

(3) For each open subspace Y, such that I Ç F C j3X, there is a subspace W Ç Y, 

dense in f3X, which is a cozero-set in j3X. 

(4) Each open subspace Y, such that X Ç Y Ç f3X, is weakly Lindelôf 

We leave the proof to the reader. In addition, Lemma 4.2(b) should be compared to 

the result of Smirnov [Sm] which gives that X is Lindelôf if and only if condition (3) 

of the lemma holds with the added stipulation that X Ç W. Finally, observe that in the 

lemma, as in Smirnov's result, f3X can be replaced by any compactification of X. 

Now let us conclude the proof of Theorem 4.2. That is, we show that if X is absolutely 

/^-embedded but not almost compact, then it is weakly Lindelôf. 

Suppose that Y is an open subspace of (5X, with X Ç Y Ç (3X. We may suppose that 

Y too is not almost compact; furthermore, Y is absolutely /^-embedded as well, because 

rigid containment is transitive. As Y is locally compact, we have by Lemma 4.2(a) that 

it is weakly Lindelôf. Now apply Lemma 4.2(b). • 

We record a summary of the special situation for locally compact spaces in a corollary. 

Observe that that the stipulation that X not be almost compact is necessary: the ordered 

space of all ordinals less than the first uncountable ordinal is almost compact, yet its point 

at infinity is a P-point. 

COROLLARY 4.2.1. Suppose thatX is locally compact but not almost compact. Then 

the following are equivalent. 

(1) X is weakly Lindelôf. 

(2) X densely contains an open a-compact set. 

(3) The point at infinity in aX is not an almost P-point. 

(4) X is absolutely R-embedded but not absolutely C* -embedded. 

A space which satisfies the countable chain condition (ccc) obviously is weakly Lin

delôf—see 3.6(b) in [HVW1]—and so if X satisfies ccc it follows that X is absolutely 

/^-embedded. 

According to 3P(3) in [PW], a space satisfies the ccc precisely when every open sub-

space is weakly Lindelôf. (Compare with the proof of Proposition 3.6(a) of [HVW1], 

which shows that X is weakly Lindelôf precisely when every cozero-set of X is weakly 

Lindelôf.) Recall as well Proposition 2.1 : a space X is fraction-dense precisely when 

every regular open set densely contains a cozero-set. From this it should be reasonably 

clear that 
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COROLLARY 4.2.2. A compact space X is fraction-dense if and only if every regular 

open set ofX is weakly Lindelôf. 

It might be worthwhile to put Corollary 4.2.2 another way, for emphasis: If X is com

pact then EX = QFX if and only if every regular open subset is weakly Lindelôf. 

Let us recall here the remark made following Proposition 2.6, and record the corollary 

promised then. 

COROLLARY 4.2.3. IfX is compact and fraction-dense and p G X is a non-isolated 

almost-P point, thenp is a C*-point. 

We also derive, with little additional effort: 

PROPOSITION 4.3. A space which satisfies the ccc is strongly fraction-dense. 

PROOF. If every open subset of X is weakly Lindelôf then every dense open subset 

contains a dense cozero-set. Hence q(X) — Q(X), proving that X is strongly fraction-

dense. • 

Note, as well, that a Tychonoff space X is fraction-dense if and only if every dense 

open subspace is /^-embedded in X. (Recall that Q(X) is the direct limit of C(V), where 

V ranges over all dense open subsets of X; so if every dense open subset is 7?-embedded, 

then C(X) is rigid in Q(X), and X is fraction-dense by Theorem 1.1. The converse is 

trivial.) 

We should also mention the following: as we remarked after Corollary 1.2.1, we do 

not know of any examples of fraction-dense spaces which are not strongly fraction-dense. 

By Proposition 4.3, such a space must fail the ccc. 

Our final proposition (for locally compact spaces) is a summary of many of the results 

in this section. We leave the details of the verification to the reader. 

PROPOSITION 4.4. For a locally compact space X the following are equivalent. 

(a) X is absolutely R-embedded and fraction-dense. 

(b) aX is fraction-dense. 

(c) Every compactification ofX is fraction-dense. 

Moreover, if there are no measurable cardinals, then the above are equivalent to 

(d) X is weakly Lindelôf and fraction-dense. 

(e) X contains a dense, open o-compact set, which is fraction-dense and R-embedded 

in aX. 

(f) X contains a dense, R-embedded a-compact, fraction-dense space. 

(Recall that a a-compact space is a countable union of compact spaces.) 

PROOF. The equivalence of (a), (b) and (c) should be clear from Lemma 4.2(a) and 

Theorem 4.2, and the observation that if f3X and aX are fraction-dense then so is each 

compactification of X. As to the final conditions, recall Proposition 2.6(d): without mea

surable cardinals every almost P-point is isolated in a fraction-dense space. Thus if X 

is fraction-dense and almost compact (but not compact), then the point at infinity in aX 

cannot be almost P, whence X is weakly Lindelof, according to Lemma 4.2(b). • 
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