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Abstract

This study investigates the stability and instability of the language control network in bilinguals
using longitudinal resting-state functional magnetic resonance imaging (rs-fMRI) data. We
compared the language control network of Chinese university students majoring in English with
those not, using three other functional networks as controls. Results indicate that the English
major group exhibits reduced stability and increased instability in the language control network
compared with the non-English major group. This suggests that second language (L2) learning
experience may induce adaptive neural changes. Moreover, the coexistence of stability and
instability in the language control network appears less modular in the English major group,
implying a more integrated response to language experience. Notably, these results were not
observed in the control networks. Overall, these findings enhance the understanding of bilingual
language control and the impact of L2 learning on neural plasticity.

Highlights

• This study focused on both the stability and instability of language control network.
• English majors showed reduced stability and increased instability in the network.
• Coexistence of stability and instability was less modular in English majors.
• Results deepen understanding of bilingual language control and neural plasticity.

1. Introduction

In multicultural and multilingual societies, bilinguals are required to switch between languages.
This process requires bilingual language control, which refers to the cognitive abilities that
minimize interference from the non-target language when bilinguals use the target language
(Declerck et al., 2015; Jiao et al., 2025a, b). Previous studies have proposed that language control
processes involve a complex neural network that includes multiple cortical and subcortical brain
regions (Abutalebi &Green, 2016; Green &Abutalebi, 2013; Jiao et al., 2022; Liu et al., 2021a, b, c;
Wang et al., 2016; Wu et al., 2019). A meta-analysis of studies on bilingual language control
identified eight brain regions as part of the language control network: the pre-supplementary
motor area (pre-SMA), left inferior frontal gyrus (IFG), left middle temporal gyrus (MFG), left
middle frontal gyrus, right precentral gyrus (PrCG), right superior temporal gyrus (STG) and
bilateral caudate (Luk et al., 2012). In addition to these regions, the dorsal anterior cingulate
cortex (dACC) and the left inferior parietal lobe (IPL) is also considered important parts of the
language control network (Abutalebi et al., 2013; Abutalebi & Green, 2016; Barbeau et al., 2017;
Branzi et al., 2016; Liu et al., 2021a).

Previous studies have shown that resting-state brain connectomes are stable (Amico & Goñi,
2018; Bari et al., 2019; Cao et al., 2024; Chen et al., 2015; Finn et al., 2015; Kaufmann et al., 2017;
Liu et al., 2018; Munsell et al., 2020; Ravindra et al., 2019; Yeh et al., 2016; Zhang et al., 2022; Zuo
& Xing, 2014). This stability is peculiar, similar to that of a fingerprint, indicating that the brain
connectome is highly variable across individuals (unique) but highly reliable (stable) at different
times in each individual (Dufford et al., 2021). Notably, a high degree of stability is present in the
prefrontal lobe (Finn et al., 2015; Liu et al., 2018; Liu et al., 2020; Yeh et al., 2016; Zhang et al.,
2022). Furthermore, several brain regions in the language control network belong to the
frontoparietal lobe. Therefore, stability may also exist in the language control network. Notably,
many studies have also indicated the stability of the language control network. For example,
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Liu et al. (2021a) found that long-term second language
(L2) learning modified only the functional connectivity strength
between two brain regions of the language control network,
whereas the other five connections remained unchanged. Further-
more, the extended classroom instruction did not modify the grey
matter volume of the left anterior cingulate cortex or caudate, which
are components of the language control network (Liu et al., 2021c).
Therefore, the language control network may be inferred to have a
certain degree of stability; however, this has not been directly tested.

In addition to stability, the brain also demonstrates instability.
Dufford et al. (2021) revealed that the brains of 1-year-old infants
are not as stable as those of adults and proposed that this instability
is due to extensive and significant alterations in the infant’s brain.
Similarly, the language control network is believed to undergo
significant changes during adulthood (Antoniou, 2019). The rep-
resentative theories about the instability of language control net-
works are the dynamic restructuring model (DRM) (Pliatsikas,
2020) and the adaptive control hypothesis (ACH) (Green & Abu-
talebi, 2013). DRM suggests that language learning and switching
experiences lead to dynamic restructuring. The ACH suggests that
the language control network adapts to the L2 learning experience
(Abutalebi & Green, 2016; Green & Abutalebi, 2013). Both DRM
and ACH propose that language experience shapes the language
control network. This proposal is supported by the findings that the
connectome of language control networks is significantly changed
after long-term L2 learning (Barbeau et al., 2017; Kang et al., 2017)
and that both regional brain activity and functional connectivity are
sensitive to L2 experience (Abutalebi & Rietbergen, 2014; Alotaibi
et al., 2023; Baum & Titone, 2014; Bialystok, 2014; Kroll & Chiar-
ello, 2016; Li et al., 2014; Pliatsikas, 2020; Sander et al., 2023; Tu
et al., 2015; Zhang et al., 2023; Zou et al., 2012).

In conclusion, it can be stated that language experience, par-
ticularly L2 experience, exerts an influence on the language control
network. However, this impact does not result in a comprehensive
alteration of the language control network, nor does it lead to
substantial modifications in all its constituent brain regions and
connections. The findings of both Liu et al. (2021a) and Liu et al.
(2021c) indicate that after 1-year’s L2 learning, only a minor
proportion of the language control network showed alterations,
while the majority remained unaffected. For example, in Liu et al.
(2021a), with respect to the four regions in the language control
network, only one demonstrates significant change, while the other
three remain stable. DRM also indicates that only some brain
regions and white matter connections are susceptible to change at
each stage, while others remain unaltered. This may be due to the
fact that the effects of L2 experience are not disseminated to all
connections and brain regions, or it may be that specific connec-
tions and brain regions are more resistant to change. Nevertheless,
it can be concluded that only one part of the language control
network is influenced by L2 experience, while the others remain
unaffected.

The language control networkmay be simultaneously stable and
unstable, and it may seem contradictory to think that a brain
network has two contrasting properties. However, Spear (2013)
proposed that this is possible because there is a balance between
stability and instability in the brain. Specifically, instability indi-
cates that the brain can adapt to new experiences throughout life,
whereas stability indicates that the brain can resist certain changes
to maintain reliable cognition and behavioural patterns. The same
is true for the language control network, which requires a stable
structure to fulfil this function of language control, but also has
instability to accommodate bilingual experiences. Since stability

and instability can coexist in the language control network, under-
standing how they coexist is essential. Fedorenko and Thompson-
Schill (2014) provide valuable insights into two potential coexist-
ence models. The first proposes that distinct functions are achieved
through the combination of a core module and specific peripheral
modules. Each module comprises various nodes (different brain
regions). In the language control network, certain brain regions are
involved in certain functions that lead to perceptual instability,
whereas the others are responsible for maintaining stability in
language control abilities. However, the second model suggests
no modularity in the language network; the entire language net-
work performs its corresponding functions by reorganizing itself
into different patterns. Brain regions within the language control
network adapt to the environment via a specific pattern of con-
nectivity. This pattern must exhibit significant instability, whereas
the other patterns must remain stable to fulfil certain requirements.

Therefore, we propose two alternative hypotheses regarding the
coexistence of stability and instability in the language control
network. The first is that the coexistence pattern is modular, with
one set of nodes supporting stability and another set supporting
instability (see Figure 1A). This hypothesis suggests tight inner
connections/edges between nodes within the same set but loose
connections between nodes from different sets. In this case, the
nodes of the language control network can bemodularized into two
clusters, each focusing on a specific feature. The other hypothesis is
that coexistence may not be modular; the entire network imple-
ments language control through a specific connection pattern,
whereas no other connection pattern is involved in language con-
trol. This implies that some connections in the language control
networkmay easily change over time, whereas others remain stable.
In this case, the instability and stability of the network are embodied
by separate connections/edges (see Figure 1A).

In addition, the coexistence pattern of the language control
network may be modulated by L2 experience. Different levels of
L2 experience can lead to different levels of brain remodelling
(Caffarra et al., 2015; Cargnelutti et al., 2022; DeLuca et al., 2024;
Korenar et al., 2023; Kotz, 2009; Połczyńska & Bookheimer, 2021;
Wei et al., 2024). The DRM also suggests that with an increase in L2
experience, instability manifests in three distinct patterns. Notably,
diverse levels of language proficiency elicit varying impacts on the
language control network. L2 experience might influence the bal-
ance between stability and instability in the language control net-
work. An increased bilingual experience may lead to a less stable
network. However, the morphological appearance of the pattern of
higher instability coexisting with lower stability has not yet been
adequately investigated.

In this study, we aim to investigate three primary questions.
First, to what extent does the language control network exhibit
stability and instability? Second, if the language control network
manifests both stability and instability, how do these two properties
coexist within a single network? Third, does bilingual experience
influence the degree of stability and instability, as well as the
coexistence patterns of these properties? To address these ques-
tions, we utilized resting-state functional magnetic resonance
imaging (fMRI) data collected at 1-year intervals. These datasets
are scanned from native-speaking Chinese college students, with
one group majoring in English (exposed to extensive, varied class-
room L2 learning) and another group majoring in non-English
(receiving less frequent and diverse classroom L2 exposure). The
degree of stability and instability within the language control net-
work were quantified first for both groups. Afterwards, we analysed
how stability and instability coexist within the network, exploring

2 Zilong Li et al.

https://doi.org/10.1017/S1366728925000185 Published online by Cambridge University Press

https://doi.org/10.1017/S1366728925000185


whether these properties manifest in modular or non-modular
patterns. In addition, we performed the above analyses on the
dorsal attention network, the default mode network and the whole-
brain network for both groups, aiming to test whether the effect of

L2 experience was specific to the language control network. We
hypothesized that, due to the expansion of L2 classroom learning,
the language control network in the English major group will
demonstrate higher instability, lower stability and lowermodularity

Figure 1. Schematic representation of the two key concepts of this study and the coexistence pattern analysis pipeline. (A) Schematic representation of the two possible coexistence
patterns, with a non-modular schematic on the left and amodular schematic on the right. The dots represent different nodes (brain regions) and the connections between the dots
represent edges (connections) between the nodes. (B) Schematic representation of stability and instability. The left side is stable, and the blue equal sign means that the left and
right sides of the network are consistent. The right side is unstable, and the gradient-collared arrows indicate that there has been an overall change from the pre-session to the post-
session. (C) A pipeline for the analysis of coexistence models. First, the BOLD signals are extracted for each region of interest within the network. The time series are then computed
to obtain the functional connectivity matrix for the different sessions of each subject. The functional connectivity matrix is then employed to obtain the DP value matrix. Two filters
are then used on the basis of the DP values. The upper blue filter is the stability filter, which is responsible for identifying the set of connections that best represents stability, and the
lower blue filter is the instability filter, which is responsible for identifying the set of connections that best represents instability. The results of the filters are then aggregated to
obtain the true coexistence patterns, and calculating themodularity coefficients (Q-values). Finally, the position of theQ-value of the true pattern in the null distribution constructed
from the random pattern is calculated to measure the degree of modularity of the true pattern.
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in coexistence patterns. Conversely, the other three networks would
exhibit no between-group differences due to the specificity of the
effects of L2 experience.

2. Materials and methods

2.1. Participants

The English major group included 26 first-year undergraduate
students majoring in English at South China Normal University
(SCNU). Three participants were excluded because they did not
participate in the post-test session, and another three were excluded
because of poor data quality owing to excessive head movements.
There were only 2 men among the remaining 20 participants, so to
prevent the gender imbalance from affecting the results, we retained
the data of 18 women (mean age = 19.61 years old [standard
deviation (SD) = 1.16]) for the subsequent analyses. The English
major group underwent two fMRI scans for approximately 1 year.
During the year of L2 learning, the participants accessed natural-
istic, varied and immersive L2 learning in real life, different from
traditional L2 learning studies, in which specific training tasks
(phonological/semantic choice tasks) under laboratory conditions
were chosen (Qu et al., 2017; Wang et al., 2017). The average age at
which they started learning English was 7.56 years old (SD = 2.95).
This study was approved by the Research Ethics Committee of
SCNU. All participants signed written informed consent forms
before the experiment and received compensation for their time
during the experiment.

Exactly 39 Chinese college students from the Southwest Uni-
versity Longitudinal Imaging Multimodal (SLIM) (Liu et al., 2017)
were recruited as the non-English major group (mean age:
19.64 years old [SD: 0.97]). Similar to the English major group,
only females were included in the non-English major group. They
were all native Chinese speakers, and none were English majors.
Compared with English majors, non-English majors received less
classroom English learning in 1 year. They only accepted 1–2 h of
weekly English classroom learning, which is far less in quantity and
variety than the approximately 40 h of weekly bilingual learning for
English majors.

There was no difference in age (t = �0.099, p = 0.921) and
intelligence levels (t=�0.46, p= 0.649) between the English-majors
and non-English majors. Data on the age of L2 acquisition for the
non-English majors was missing because it was unavailable in the
public database. However, the close rankings of the two compre-
hensive universities in the U.S. News & World Report Best Global
Universities Rankings (Southwest University ranked 667, whereas
SCNU ranked 770) and Shanghai Ranking’s Best Chinese Univer-
sities Rankings (Southwest University ranked 72, whereas SCNU
ranked 79) suggest that student L2 proficiency levels are relatively
similar. Therefore, it is unlikely that the non-Englishmajor group at
one university will have a higher proficiency level than the English
major group at the other university. In addition, English majors are
believed to have greater L2 proficiency than non-English majors.

2.2. Stimuli and experimental design

The English majors underwent two sessions of resting-state scan-
ning within 1 year, once in the first semester of their first year
(i.e. pre-session) and once in the third semester (i.e. post-session).
The non-English major group also underwent two sessions of
scanning within 1 year.

2.3. Imaging data acquisition

Resting-state fMRI scanning lasted for 8 min. During scanning,
English majors were asked to close their eyes, rest, think of nothing
and remain still. MRI images were acquired using a 3 T Siemens
Trio scanner with a 12-channel phase-array head coil at the SCNU.
Functional images were acquired using a T2*-weighted gradient-
echo echo planar imaging (EPI) sequence with the following
sequence parameters: repetition time (TR) = 2000 ms, time to echo
(TE) = 30ms, flip angle = 90°, field of view (FOV) = 204 × 204mm2,
matrix = 64 × 64, slice thickness = 3.5 mm, interslice gap = 0.5 mm
and voxel size = 3 × 3 × 3.5 mm3. High-resolution brain structural
images were acquired for all participants using a three-dimensional
T1-weighted MP-RAGE sequence (TR = 1900 ms, TE = 2.52 ms,
flip angle = 9°, FOV = 256 × 256 mm2, matrix = 204 × 204, slice
thickness = 1 mm and voxel size = 1 × 1 × 1 mm3).

Images of the non-English major group were acquired using a
3 T Siemens Trio scanner with a 12-channel phase-array head coil
at Southwest University. Functional images were obtained using a
T2*-weighted gradient-echo EPI sequence (TR = 2000 ms,
TE=30ms, flip angle = 90°, FOV=220×220mm2,matrix = 64×64,
slice thickness = 3.0 mm, interslice gap = 0.5 mm and voxel
size = 3.4 × 3.4 × 3.0 mm3).

2.4. Imaging data preprocessing

Data were preprocessed using the GRETNA toolbox based on SPM
12 (www.fil.ion.ucl.ac.uk/spm/software/spm12/) (Wang et al.,
2015). The preprocessing steps included (1) removing the first
10 images, (2) slice timing correction, (3) realignment, (4) normal-
ization to MNI space, (5) resampling to 3 mm isotropic voxels,
(6) spatial smoothing with a 6 mm Full Width at Half Maximum
Gaussian kernel, (7) removal of linear drift, (8) regressing out
24-parameter head motion profiles (Friston et al., 1996) and the
global, white matter and cerebrospinal fluid signals and (9) temporal
filtering with frequency of 0.008–0.083 Hz.

In the present study, different scanners with slightly varying
parameters were used for the two groups. To ensure that the
observed group differences are not artefacts of these variations,
additional analyses were used. We used the method provided by
Dietrich et al. (2007) to calculate the signal-to-noise ratio (SNR)
of the two groups to measure the difference in image quality
between the two groups. To more fully observe the SNR differences
between the two groups, we used the poswer264 template to seg-
ment the whole brain. This template divides the whole brain into
264 regions, so we calculated SNRs for all 264 brain regions. After
completing the preprocessing, independent samples t-tests were
performed for each brain region. After Bonferroni correction for
multiple comparisons, there were no significant between-group
differences in the SNRs of all brain regions. We also used the Bayes
factor (BF01) to measure the SNR of the two groups. The alternative
hypothesis was that there was no difference between the two
groups. The mean BF01 value was 3.23, which suggests that sub-
stantial evidence exists to support that there is no difference in SNR
between the two groups. In conclusion, based on the results of the t-
test and Bayes factor, we concluded that there was no difference in
image quality between the two groups.

2.5. Network construction

We selected 12 regions of interest (ROIs) to construct the language
control network. The LeftMFG (BA46), Pre-SMA, Left IFG(BA47),
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Right PrCG, Right Caudate, Left MTG, Left IFG (BA44), Right
STG, Left MFG (BA9) and Left Caudate from a meta-analysis (Luk
et al., 2012), dACC and Left IPL from previous studies (Barbeau
et al., 2017; Green & Abutalebi, 2013; Liu et al., 2021a). dACC and
Left IPL were selected based on two criteria: first, their presumed
association with language control, and second, their documented
involvement in long-term L2 training. All nodes were defined as
spheres with a radius of 6 mm. The mask for the ROIs is based on
the brain mask provided by GRETNA (Wang et al., 2015) toolbox.
The coordinates and names of the brain regions in the language
control network are presented in Table 1.

In addition, to contrast the results with those of the language
control network, we used three other networks, the whole brain
network, the default mode network and the dorsal attention net-
work. The first two networks served as high-stability references
(Finn et al., 2015; Jalbrzikowski et al., 2020; Kabbara et al., 2021).
The dorsal attention network, which possesses a network size that is
comparable to that of the language control network, can exert
control over the effect of the network size. We chose the power264
template (Power et al., 2011) to segment the whole brain to
264 nodes. The default mode network contained 58 nodes and
the dorsal attention network contained 11 nodes. The names and
coordinates of each brain region contained in the default mode
network and the dorsal attention network were defined by
power264 template.

Functional connectivity matrices were analysed using the
GRETNA (Wang et al., 2015) toolbox. The steps of functional
connection network construction are as follows: (1) the BOLD time
series of all voxels within each node was averaged; (2) the inter-
nodal Pearson’s correlation of BOLD time series was computed and
(3) Fisher r-to-Z transformation.

2.6. Analysis of network stability and instability

The previous steps have completed the construction of the func-
tional connectivity network; the next step is to measure the degree
of stability and instability toward the functional network in general.

To comprehensively assess the characteristics of the language
control network, we conducted two distinct analyses: stability
assessment through functional connectome fingerprinting and
evaluation of instability via a classifier approach.

2.6.1. Functional connectome fingerprinting for stability
assessment
We utilized functional connectome fingerprinting, a method that
leverages the unique patterns of brain connectivity to identify
individuals (Bari et al., 2019; Dufford et al., 2021; Finn et al.,
2015; Ravindra et al., 2019). The more unique the connectome
pattern is, and the less this unique pattern changes over time, the
easier it is to recognize the connectome pattern of an individual
participant, and the more accurate the connectome fingerprinting
will be. Fingerprinting thus provides an index of the network’s
resistance to change over time, serving as a proxy for stability. A
schematic of the connectome fingerprinting is shown on the left
side of Figure 1B.

Fingerprinting was implemented through the following steps:
(1) selecting one participant and computing the Pearson correl-
ation to connectivity networks between this participant in the
pre-session and all other participants in the post-session. If
two networks from the same participant have the highest correl-
ation coefficient, this participant’s identification is successful;
(2) calculating the accuracy of everyone and then adding them
up to get a total accuracy (the accuracy of pre-post session);
(3) computing another total accuracy after switching the pre-
and post-session (the accuracy of post–pre session), and then
computing the average value between the accuracy of pre–post
session and the accuracy of post–pre session as the fingerprinting
accuracy and (4) permutation testing: randomizing the index of
the participants in pre-session and computing the total accuracy.
This permutation test was repeated 1000 times. Statistical signifi-
cance was defined as the percentage of the accuracy distribution
higher than the original accuracy.

To further verify whether there is a difference in the fingerprint-
ing accuracy between the English majors and the non-English
major groups, we also tested the difference in their accuracy. First,
the connections of the English major group and the non-English
major group are mixed together and then reallocated back to the
original matrix after being randomly disrupted. Then the connec-
tome fingerprinting accuracy was calculated separately for the
English majors and the non-English major groups after the per-
mutation to get two accuracy rates, and finally the absolute value of
the difference between these two accuracy rates was kept. A total of
1000 random permutations were performed, these 1000 differences
form a random distribution. Finally, the rate at which the random
distribution is higher than the original difference is calculated as the
statistical significance.

The language control network, the dorsal attention network, the
default mode network and the whole brain network all performed
these calculations.

2.6.2. Network classifier for detecting instability
In the present study, we selected the classification accuracy of a
Support Vector Machine (SVM) as an indicator of instability. This
is because SVM fulfil the requirement of ‘the opposite of stability’.
Specifically, high stability, as measured using fingerprinting,
implies significant interindividual variability, which remains stable
over time. In contrast, instability implies small individual differ-
ences that vary significantly over time. The SVM can construct a
hyperplane, separating the participants at different sessions in two
places. The further the participants at different time points are from
the hyperplane, the higher the classification accuracy. Therefore,
when there is a difference between the pre- and post-sessions and
the individual differences within the pre- and post-sessions are

Table 1. Node coordinates of language control network in MNI space

Node Coordinate

Left middle temporal gyrus (L_MFG, BA46) (�48, 49, 27)

Pre-supplementary motor area (Pre_SMA) (2, 4, 64)

Left inferior frontal gyrus (L_IFG, BA47) (�33, 25, �13)

Right precentral gyrus (R_PrCG) (46, �5, �29)

Right Caudate (17, 10, 11)

Left middle temporal gyrus (L_MTG) (�54, �43, �11)

Left inferior frontal gyrus (L_IFG, BA44) (�52, 21, 4)

Right superior temporal gyrus (R_STG) (55, �19, �8)

Left middle frontal gyrus (L_MFG, BA9) (�44, 8, 31)

Left Caudate (�11, 22, �7)

Dorsal anterior cingulate cortex (dACC) (0, 6, 44)

Left inferior parietal lobe (L_IPL, BA40) (�54, �53, 36)
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small, SVM has the best classification effect and the highest accur-
acy. A schematic of the SVM is shown on the right side of Figure 1B.

The specific process of using classifiers in the present study is as
follows. The pre-session was labelled �1, whereas the post-session
was labelled 1. Because of the small number of participants, leave-
one-out cross-validation was used to evaluate the generalizability of
the model (Tang et al., 2018). First, a participant’s pre- or post-
session data were employed as a test set, and then the model was
trained using the remaining data. After obtaining the model, we
tested whether it could correctly predict whether the test set
belonged to the pre- or post-sessions. Analogously, each partici-
pant’s pre- and post-session data were used as a test set to verify
whether the model could successfully predict the pre- and post-
sessions. The final success percentage was used as classification
accuracy. Our classifier was based on the LIBSVM toolbox (Chang
& Lin, 2011), with a linear kernel and otherwise default parameters.
The permutation was repeated 1000 times to obtain a p-value for
accuracy.

Additionally, the differences in classification accuracy between
the English-majors and non-English-major groups were evaluated
by permutation analysis. The permutation method and p-value
calculations are consistent with Section 2.6.1.

The language control network, the dorsal attention network, the
default mode network and the whole brain network all performed
these calculations.

2.7. The coexisting pattern analyses

This study evaluated the stability using connectome fingerprinting
and instability using classifiers. While the aforementioned analysis
addresses the network as a whole and is unable to answer the
question of how stability and instability coexist in a single network.
It is as if knowing that 60% of someone’s hair is black and 40% is
white is not the same as knowing the pattern of co-existence of the
two colours. Because it’s possible that the back of the person’s hair is
completely black and the rest of the hair is white, or it is possible
that the person has a full head of long black hair, but dyed the ends
white, so each hair is also 60% black and 40% white. Similarly, the
coexistence of stability and instability in a network cannot be deter-
mined by simply knowing the degree of stability and instability.

To study the coexistence patterns of stability and instability, it is
first necessary to identify the two parts of the network that embody
stability and instability. Our idea is to filter two connection sets
from the whole network, the first one represents the stable part of
the network and the other one represents the unstable part, and
then determines whether the coexistence mode is modular or non-
modular based on the morphology of the two sets.

Hence it is necessary to find the two connection sets that can
represent stability and instability. Specifically, in the measure of the
entire network earlier in this study, we used connectome finger-
printing to measure the stability of the entire network, so we also
used connectome fingerprinting to find the set of connections that
best represents stability. The connection set with the highest fin-
gerprinting accuracy is considered the most stable connection set.
Similarly, the connection set with the highest classification accuracy
was considered to represent instability.

To filter faster, we employed the Differential Power (DP) algo-
rithm. A set of connections containing a high proportion of con-
nections with high DP values is more likely to exhibit stability,
whereas a set of connections containing a large number of con-
nections with low DP values is more likely to exhibit instability.

Filtering using DP values is 25 times faster than exhaustive
methods.

After filtering out the two connection sets, it is necessary to
measure the degree of modularity of the coexistence patterns. In
this study, to provide a more intuitive measure of the degree of
modularity of coexisting patterns, computer simulations were used
to generate a null distribution. In this way, the position of the real
coexisting patterns in the null distribution can be used as an
intuitive indicator of the degree of modularity of the coexisting
patterns.

A series of analyses were performed to detect the coexistence
pattern of stability and instability in the language control network.
First, a DP matrix is calculated and then two filters are made based
on the DP values. The filters find the connected set of stability and
instability and finally the actual results obtained are compared with
the simulated results to measure the modularity of the coexistence
pattern (see Figure 1C). The language control network, the dorsal
attention network, the default mode network and the whole-brain
network were subjected to the above analyses.

2.7.1. The stability and instability filters
This step is comprised of three distinct components: the DP ana-
lysis and the two filters. The DP analysis is tasked with constructing
the DP matrix, which serves as an index for the filters. The stability
filter is responsible for identifying the set of connections that
represent stability, while the instability filter is responsible for
identifying the set of connections that represent instability.

2.7.1.1.Differential power analysis The DP analysis was imple-
mented using custom code. We have largely maintained the algo-
rithm of Finn et al. (2015) but adapted it slightly according to the
data features in the present study to prevent infinite DP values. The
steps for the DP analysis are as follows.

(1) Computing consistency of edges.

XR1 and XR2 indicate two normalized functional network
matrices from pre- and post-session, respectively. ⅈ and j indicate
two different subjects, ⅇ indicates edge andM is the total number of
edges in one network. φii indicates a vector of correspondence
when the subject subscript is matched, whereas φij and φji indicate
vectors of correspondence when subscript is unmatched. The spe-
cific formula is as follows:

φii ⅇð Þ=XR1
i ⅇð Þ∗XR2

i ⅇð Þ,e= 1,2,3,⋯,M

φij ⅇð Þ =XR1
i ⅇð Þ∗XR2

j ⅇð Þ,e= 1,2,3,⋯,M, i≠ j

φji ⅇð Þ =XR1
j ⅇð Þ∗XR2

i ⅇð Þ,e= 1,2,3,⋯,M, i≠ j

(2) Computing empirical probability.
If φii ⅇð Þ is equal to φij ⅇð Þ or φji ⅇð Þ, edge ⅇ does not help to

distinguish an individual from others. Therefore, an edge contrib-
utes to fingerprinting if it satisfies the following conditions only:

φii eð Þ > φij eð Þ, and φii eð Þ > φji eð Þ, i≠ j
Based on the above conditions, we use an empirical probability

Pi ⅇð Þ to qualify the DP:

Pi ⅇð Þ =
φii ⅇð Þ < φij ⅇð Þ
���

���þ φii ⅇð Þ < φji ⅇð Þ
���

���
� �

2 n�1ð Þ
where n denotes the number of participants. The lower the Pi ⅇð Þ,
the better the edge ⅇ distinguishes the subject i. Because the next
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step is logarithmic conversion, if Pi ⅇð Þ of a certain subject is zero,
the outcome of the next step will be positive infinite. When n is
relatively small, a positive infinity appears easily and covers the DP
of the others. Extreme value makes subsequent analysis meaning-
less; therefore, we set a minimum of Pi ⅇð Þ minPi ⅇð Þ½ � to avoid
positive infinity. To ensure minPi ⅇð Þ does not interfere with the
analysis, its specific value must stratify the following conditions:

0 < minPi ⅇð Þ < 1
2 n�1ð Þ

If the two groups have different numbers of participants, the
group with the lower number of participants will have a more
generous range of minPi ⅇð Þ, so the group with the higher number
of participants should be used to determine the minPi ⅇð Þ. Hence,
the minPi ⅇð Þ should be lower than 0.13(1/39). We chose 0.01 as
the minPi ⅇð Þ.

(3) Logarithmic conversion.
The total DP of a certain edge across all subjects is defined by the

DP measure as follows:

DP eð Þ=
X
i

� ln Pi ⅇð Þð Þf g

Finally, a DP matrix of the edges was constructed.

2.7.1.2.The instability filter The instability filter was imple-
mented using custom code based on the partial functions of SPM
12 and LIVSVM (Chang & Lin, 2011) toolbox. The steps for this
filter are as follows.

(1) Constructing network masks with different sparsity.
The process involves creating masks with varying sparsity based

on decreasing DP values for subsequent analysis. Starting with the
DPmatrix from the original network, edges are removed based on a
percentage threshold (m%), with the remaining edges marked as
1 and removed ones as 0. This binarymatrix represents amask for a
specific sparsity level. The vector m contains different sparsity,
sorted from highest to lowest, including the screening process’s
start, end and step size.

For instance, anm value of 15 indicates that the top 15%of edges
with the highest DP values are removed, retaining 85% of lower DP
edges. Conversely, an m value of 70 removes the top 70%, leaving
30%. TheMonte Carlo method is used to determine the probability
of unsuccessful network formation due to edge removal. For the
language control network, simulations showed a 99.999994%
chance of network formation with 9% connections retained,
increasing to 100% with 11%.

To preserve network information, a median value of 10% was
chosen as the endpoint form%, ensuring the final mask retains 10%
of the lowest DP connections. Similar calculations led to the selec-
tion of 10% for the dorsal attention network and 1% for the default
mode and whole brain networks.

The stable filter retains a consistent connection proportion.
For the language control and dorsal attention networks, m ranges
from 10 to 90. For the default mode and whole brain networks, m
ranges from 1 to 99. Due to computational limitations, step sizes
for m were adjusted: 1 for the language control and dorsal
attention networks, and 0.1 for the default mode and whole brain
networks.

Using these parameters, 81 masks were created for the language
control and dorsal attention networks, and 981 masks for the
default mode and whole brain networks, each representing a dif-
ferent level of sparsity.

(2) Classifier.
In the previous step, we completed the creation of masks for

different DP sparsity, in this step, themasks are used to calculate the
classification accuracy for different sparsity.

The initial step involves utilizing the initial value of the mask for
m. This entails performing a dot product between all the functional
connectivity matrices of each participant and the mask. This pro-
cess yields a set of connections with a DP value below a specified
threshold in the functional connectivity network. Subsequently, the
functional connectivity matrix with a mask applied is computed in
precisely the same manner as in Section 2.6.2, utilizing identical
parameters and steps. This resulted in the classification accuracy
corresponding to the first value of m. In the case of the language
control network, this entailed the removal of connections in the
initial 10% of DP values, with the remaining 90% retained, before
calculating the classification accuracy for that specific set of con-
nections. Similarly, the aforementioned calculations were per-
formed for all values of m subsequently. This enabled the
classification accuracy of the connection set with varying degrees
of sparsity to be determined. Ultimately, the set of connections with
the lowest number of connections and the highest classification
accuracy is deemed to exemplify instability.

The aforementioned calculations were performed for the language
control network, the dorsal attention network, the default mode
network and the whole-brain network, according to the correspond-
ing m value. All values of m were considered in these calculations.

2.7.1.3.The stability filter The stability filter was employed using
custom code based on the partial functions of SPM 12 and previ-
ously described codes (Finn et al., 2015).

The steps for this filter are somewhat similar to those for the
instability filter and are as follows:

(1) Constructing network masks of different sparsity.
The majority of the steps involved in the construction of masks

are analogous to those employed in the instability filter, with the
exception of the manner in which the initial m% of connections
with DP values is treated. In particular, the instability filter neces-
sitates a lowDP value, thereby resulting in the removal of the topm
% of connections with the highest DP value and the retention of the
remainder. Conversely, the stability filter requires a high DP value,
which consequently entails the retention of the top m% of connec-
tions and the removal of the remaining ones.

(2) Fingerprinting.
First, a specific mask is applied to the functional connectivity

matrix, which is precisely the same step as the instability filter.
Subsequently, the identical calculations outlined in Section 2.6.1 on
the functional connectivity matrix with the mask applied must be
performed to ascertain the fingerprint identification accuracy.
Similarly, after applying masks corresponding to all values of m,
the accuracy of fingerprint recognition is obtained for the set of
connections corresponding to different sparsity. Ultimately, the
connection set exhibiting the highest fingerprinting accuracy and
comprising the fewest connections is deemed to represent the
stability.

The aforementioned networks, namely the language control
network, the dorsal attention network, the default mode network
and the whole brain network, were all subjected to the aforemen-
tioned process.

2.7.2. Morphological coexistence pattern analysis
We conceptualize stable and unstable connection sets as two dis-
tinct communities within a network. In the network matrix, stable
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connections are marked ‘1’, unstable ones ‘2’ and those not belong-
ing to either are ‘0’. This categorization divides the connections into
two communities: Community 1 for stability and Community 2 for
instability. The modularity algorithm then calculates a modularity
coefficient (Q-value) to assess the separation of these communities
(Newman, 2004).

To assess the modularity of the actual coexistence pattern, we
generated a null distribution. This was done by randomly selecting
connections from the network and assigning them to two commu-
nities, with the rest being coded as ‘0’. This random assignment
simulates the distribution of connections across one million ran-
dom networks. The Q-values from these networks form the null
distribution.

In our study, the modularity of the actual coexistence pattern is
determined by its Q-value’s position within the null distribution.
Modularity is quantified as the percentage of Q-values in the null
distribution that is lower than the Q-value of the actual pattern.
Modularity degree is expressed as a percentage for clarity and to
enable comparison across networks of varying sizes. Percentages
provide a more intuitive measure of modularity levels, allowing
for a straightforward division into ‘low’, ‘medium’ and ‘high’
regions based on the null distribution. This contrasts with the
Q-value, which lacks a consensus on what constitutes high or low
modularity.

3. Results

3.1. Results for the test of stability and instability

In the language control network, fingerprinting accuracy was sig-
nificantly higher in the non-English major group at 51.72%
(p < 0.01) compared with the English major group at 36.11%
(p < 0.01), with a significant difference between groups (p < 0.01).
Classification accuracy was non-significant for both groups, with
50% for English majors (p = 0.44) and 27.59% for non-English
majors (p = 1). But the difference between the two groups is
marginally significant (p = 0.052).

For the dorsal attention network, fingerprinting accuracy was
high and not significantly different between groups (p = 0.24), at
61.11% (p < 0.01) for English majors and 67.95% (p < 0.01) for
non-English majors. Classification accuracy was also not signifi-
cantly different from chance for both groups (p = 0.37), with
33.3% (p = 1) for English majors and 44.87% (p = 0.76) for non-
English majors.

In the default mode network, fingerprinting accuracy was
perfect for English majors at 100% (p < 0.01) and very high for
non-English majors at 94.87% (p < 0.01), with no significant
difference between groups (p = 0.33). Classification accuracy
was non-significant for both groups (p = 0.37), with 11.11%
(p = 1) for English majors and 29.48% (p = 1) for non-English
majors.

In thewhole-brain network, fingerprinting accuracy was 88.89%
(p < 0.01) for English majors and 95.24% (p < 0.01) for non-English
majors, with no significant difference (p = 0.32). Classification
accuracy was 11.11% (p = 1) for English majors and 32.05%
(p = 0.99) for non-English majors, with no significant difference
between groups (p = 0.38).

In summary, significant differences in accuracy were observed
only in the language control network between English majors and
non-major groups, with no such differences in other networks.
These results are depicted in Figure 2A.

3.2. Results of the morphological coexistence pattern analysis

The first is the filtering results for the language control network. For
the English majors, 30% of connections with the lower DP have the
highest classification accuracy (58%), and 58% of connections with
higher DP has the highest fingerprinting accuracy (64%) (see in
Figure 2B). For the non-English majors, 10% of connections with
lower DP have the highest classification accuracy (62%) and 58% of
connections with higher DP has the highest fingerprinting accuracy
(57%) (see in Figure 2C).

The analysis of coexistence patterns within the language control
network indicates that both the stability and instability connection
sets for English majors encompass all brain regions, whereas only
the stability set for non-Englishmajors does so. The Englishmajors’
coexistence pattern modularity coefficient (Q = 0.1592) surpasses
26.84% of the computer-simulated random patterns, whereas the
non-English majors’ (Q = 0.174) exceeds 67.44%, with a group
difference of 40.6%. According to the criteria of ‘high, medium and
low’ modularity, the English majors fall into the ‘low modularity
area’, while non-English majors are in the ‘high modularity area’.
The modularity coefficients for the null distribution of both groups
are depicted in Figure 2D.

In the dorsal attention network, the English majors’ coexist-
ence pattern modularity (Q = 0.1346) is >4.5% of the random
patterns, and the non-Englishmajors’ (Q= 0.13457) is 4.41%, with
a minute group difference of 0.09%, both classified as low modu-
larity. For the default mode network, the English majors’ pattern
(Q = 0.2254) exceeds the random patterns at 98.2%, and the non-
English majors’ (Q = 0.2251) at 98.0%, with a negligible difference
of 0.2%, both in the high modularity region. Finally, the whole
brain network’s coexistence pattern modularity for English
majors (Q = 0.237) exceeds the random patterns by 96.72%, and
for non-English majors (Q = 0.235) by 93.35%, with a group
difference of 3.37%, both in the high modularity region. The
degree of modularity for the coexistence patterns of each network
is detailed in Figure 2E.

In conclusion, the language control network shows a consider-
able difference in coexistence patterns between English and non-
English majors, with English majors displaying lowmodularity and
non-Englishmajors’ highmodularity. The dorsal attention network
is characterized by lowmodularity, while the default mode network
and the whole brain network exhibit high modularity, with small
between-group differences.

4. Discussion

The present study employed rs-fMRI to delve into the stability and
instability of the language control network, with a particular focus on
comparing the differences between Chinese university students
majoring in English and those not. Our findings indicate that the
language control network of the English-major group demonstrated
lower stability and higher instability compared with the non-English
major group. In addition, the English major group showed less
modularity than the non-English major group in terms of coexisting
patterns of stability and instability in the language control network.
These two distinct differences were not observed in the other three
networks, suggesting that L2 learning experience may extensively
influence the function of the language control network. These results
not only offer new insights into the neural mechanisms of language
control in the bilingual brain but also highlight the potential role of
L2 learning in shaping the language control network.
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4.1. Stability and instability in the language control network

This section delves into three critical dimensions of the language
control network: stability, instability and a comparative analysis of
these aspects between English majors and non-English major
groups.

4.1.1. Stability in the language control network
The study’s findings on the stability of the whole brain in healthy
adults align with prior research, confirming the high stability of
the resting-state functional network (Finn et al., 2015; Liu et al.,
2018; Ravindra et al., 2019). The whole brain fingerprinting

Figure 2. The results of the calculationof the stability and instability of eachnetwork; the filteringprocessof the languagecontrolnetworkand the specific filtering results; thedegree of
modularity of the coexistence patterns of each network. (A) The results of the stability and instability tests for the four networks are presented herewith. **p < 0.01; n.s. indicates a non-
significant result. (B) The results of the filtering process applied to the language control network for the group of Englishmajors. The red and blue lines in the line graph represent the
accuracy rates associatedwith connection sets of varying sparsity. The connection set corresponding to the red region exhibits the highest classification accuracy,while the connection
set corresponding to the blue region demonstrates the highest fingerprinting accuracy. The connections corresponding to the red and blue regions are illustrated in the brain below
each one. Thematrix at the bottom illustrates the coexistence of stability and instability, with blue indicating stability and red indicating instability. The brain images were generated
using the BrainNet Viewer software (Xia et al., 2013). (C) Filtering results of the language control network for the English major group. (D) The degree of modularity in the coexistence
patterns of language control network in the Englishmajors and non-Englishmajor groups. The grey area represents the null distribution,which comprises themodularity coefficients of
the coexistence patterns that have been randomly simulated by the computer. The solid lines demarcate the position of the Englishmajor group, while the dashed lines demarcate the
position of the non-Englishmajor group. (E) The degree of modularity of the coexistence patterns of the individual networks in the English and non-English groups are illustrated. This
study measures the degree of modularity using the position of the modularity coefficients in their respective null distributions.
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accuracy for the two groups was 88.89% and 95.24%, fitting within
the 80%–95% range reported previously. The default mode net-
work’s stability is comparable to the whole brain, highlighting its
individualistic and stable nature. Notably, the language control
network’s stability, at 36.11% and 51.72%, is significantly lower,
suggesting it is less stable than the whole-brain and default mode
networks. However, it is not as low as the infant whole brain’s
stability, which is only 26.6% (Dufford et al., 2021), indicating a
moderate stability for the language control network. The number
of nodes in the dorsal attention network is similar to that of the
language control network. However, the fingerprinting accuracy
in the former is 1.47 times higher than that in the latter. This
suggests that the language control network’s stability is not solely
node-dependent. Overall, the language control network exhibits a
moderate degree of stability.

4.1.2. Instability of the language control network
While the classifiers in this study did not yield significant results,
this does not imply a lack of meaningful insights. It is crucial to
clarify that the random levels for classification accuracy and fin-
gerprint recognition accuracy are distinct measures. The random
level for fingerprint recognition, at 5.56% (1/18) and 2.56% (1/39),
is inversely related to the number of participants. In contrast, the
random level for classification accuracy is 50%, based on the
number of scans to be classified.

The leave-one-out cross-validation method, a staple in machine
learning for small datasets, plays a pivotal role here. This method
isolates a single participant’s pre- or post-session for testing while
training on the remaining data. It is particularly sensitive to indi-
vidual differences. If there are substantial individual variations, the
isolated test data may significantly deviate from the trained model,
potentially leading to classification accuracies that fall below the
random level. This scenario is exacerbated when the differences
between pre- and post-sessions are minimal, increasing the likeli-
hood of individual classification failures.

The classification accuracy obtained through leave-one-out
cross-validation is thus an inverse indicator of fingerprint recogni-
tion accuracy. The greater the individual differences and the smaller
the test differences, the higher the fingerprint recognition rate and
the lower the classification accuracy. The antagonistic relationship
between these two metrics was confirmed with a Spearman correl-
ation coefficient of�0.76 (p = 0.03), underscoring the antagonistic
relationship between stability and instability.

In essence, the non-significant classification accuracies in this
study can be attributed to the algorithmic properties of leave-one-
out cross-validation and its sensitivity to individual differences.
Despite this, the higher classification accuracy of the language
control network in the English major group, compared with other
networks, suggests a greater degree of instability or change follow-
ing a year of bilingual training.

4.1.3. Differences between English major and non-English major
groups.
The study identified significant differences in the language control
network between English major and non-English major, with fin-
gerprinting differences being statistically significant and classifica-
tion accuracy showing marginal significance. The other three
networks did not exhibit notable intergroup differences. Our ana-
lysis ruled out image quality as a factor, as there were no significant
differences in the SNR between groups. Given the similarity in age,
intelligence and education level among the female participants, the
differences in the language control network are likely not due to

these variables. The distinct findings for the language control
network, in contrast to the whole-brain network, suggest that the
observed differences are specific to language control and not a
reflection of broader brain network differences. The lack of differ-
ences in the default mode and dorsal attention networks indicates
that the observed differences in the language control network are
not driven by resting-state monitoring or network size.

In conclusion, the differences in the language control network
are likely due to the specific demands of language control training.
Englishmajors, having receivedmore extensive L2 training, showed
adaptive changes in their language control networks, leading to
increased instability and decreased stability. This suggests that the
greater language control exercised by English majors results in
more pronounced changes in brain regions and connections, a
finding supported by existing research (Abutalebi & Rietbergen,
2014; Barbeau et al., 2017; Bialystok, 2014, 2021; Kroll & Chiarello,
2016; Li et al., 2014; Liu et al., 2021a; Pliatsikas, 2020; Tu et al., 2015;
Zou et al., 2012).

In the two scans of this study, English majors studied English
for 40 hours per week, including speaking, writing, dialogue,
reading, speech, translation, debate and the study of historical
and literary masterpieces of British and American countries.
According to the curriculum of the school to which the group of
non-English majors belongs, most of the non-English majors
receive only 1 or 2 h of public classes per week, and the public
English classes available to the students of this school are not
comprehensive, but include only a part of English training, such as
only vocabulary, writing or reading. In conclusion, since the data
for the non-English major group in this study came from a public
database, and information on their age of L2 acquisition, daily use
and L2 proficiency was not collected, it is not possible to directly
ensure that there is a significant difference between the English
and non-English major groups in terms of L2 experience and
proficiency, but based on the content of their core curriculum, it
is assumed that accepting the existence of a difference between the
two groups may be more reasonable than denying the existence of
a difference between the two groups.

Overall, there was a moderate degree of stability and instability
in the language control network, with greater instability for English
majors and greater stability for non-English majors, a difference
that may be due to the longer and more varied L2 training received
by the English major group.

4.2. Morphological coexistence pattern

Stability and instability have been discussed in the previous section,
but the metrics corresponding to the two properties do not reflect
how the two properties coexist in a network, that is how a network
can be both stable and unstable at the same time.

The results show that both the whole-brain network and the
dorsal attention network exhibit a high degree of modularity in
their patterns of coexistence, and that the differences between the
English majors and non-English major groups are small. This
suggests that the connections occupied by stability and instability
in these two networks constitute two sharply delimited modules. In
other words, stability and instability each occupy two parts of the
brain, and these two parts overlap less. This could mean that only a
very small number of brain regions changed in both networks, with
themajority remaining stable. The pattern for the dorsal attentional
network was quite the opposite, with the dorsal attention network
showing very low modularity in its coexistence pattern, and much
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lower than the language control network. This implies that the
dorsal attention network occupied a large number of brain regions
for each of stability and instability. Thismay indicate that the dorsal
attention network employs not a pattern in which some brain
regions remain stable while others change, but rather a pattern of
activity in which some patterns of connectivity throughout the
network are responsible for change while others remain stable.
The language control network, on the other hand, differed consid-
erably between the English majors and non-English major groups:
the non-English major group was more modular and the English
major group was less modular. This apparent difference between
groups was not observed on the other three networks. This implies
that the pattern of coexistence of stability and instability in language
control changes with L2 experience. The coexistence pattern in the
non-English major group tended to show stability in most brain
regions and instability in a few, whereas the English majors tended
more to show stability in one connectivity pattern and instability in
the other. We suggest that this may be suggestive of the process by
which L2 experience influences language control networks, espe-
cially functional networks.

The L2 learning of non-English majors is less in quantity and
quality. This is similar to the initial exposure stage in the DRM.
The DRM suggested that a specific part of the node was first
affected by L2 experience during the initial exposure stage. The
present study found that instability in non-English majors did not
involve all language control network nodes. In contrast, instabil-
ity in English majors involved all nodes rather than part of the
nodes. This may indicate that the influence of L2 experience is
not limited to certain brain regions but to all nodes of the
language control network. Synthesizing the coexistence patterns
in the language control networks of English and non-English
majors, we propose a hypothesis regarding the impact of class-
room L2 learning on the language control network. The mech-
anism through which L2 learning affects the language control
network may be similar to the gradual construction of multiple
expressways. The brain regions are similar to many cities. For
non-English majors, the year they received less L2 learning may
be similar to the initial stages of building a highway network.
During the initial stages of expressway construction, only a few
cities are connected by expressways. For English majors, the
situation is similar to the later stages of an expressway network
construction project. In the later stages of expressway construc-
tion, specific highways are connected to all cities. However, not
every city is directly connected; some cities are only indirectly
connected to other cities because of construction costs or other
reasons. Initially, only a few connections in certain brain regions
were affected by L2 learning. Eventually, some connections in
each brain region were affected. Therefore, the stable and
unstable parts shared some nodes in non-English majors, whereas
they shared all nodes in English majors. If we think of the nodes
as chemical elements and the connections as bonds, the stable
and unstable parts are similar to a pair of isomers in chemistry
(compounds with identical chemical formulae but different struc-
tures) (Regalado et al., 2013).

This result is inconsistent with that of the DRM. In the DRM,
only a few specific brain regions change at each stage. This
disparity may be due to the complex mapping of changes in
brain function and structure. The DRM focused on the dynamic
restructuring of gray and white matter, whereas we focused on
the functional connectome. Complex mapping between brain
structure and functional connectivity may be responsible for this
inconsistency.

4.3. The temporal complexity of the language control network

Tononi et al. (1994) proposed that a brain network is complex when
neither segregated nor integrated. The more balanced the two
features are, the higher the complexity of the network as a whole
(Bassett & Gazzaniga, 2011; Marshall et al., 2016). Integration and
separation, as well as stability and instability, are at the two ends of a
continuum. Therefore, we can preliminarily propose ‘temporal
complexity’ using analogy with morphological or spatial complex-
ity. Specifically, the brain network is a temporal complex that is
neither stable nor unstable. In the present study, the language
control network of English major may be considered to have high
temporal complexity. However, the present study is only a prelim-
inary exploration and does not provide very strong evidence. The
temporal complexity of brain remains to be further explored.

4.4. Limitations

First, the present study had a small sample size. This may have
weakened the generalizability and robustness of our results and
conclusions. Second, learning for over 1 year was affected by many
irrelevant variables. Randomization and other methods were used
to eliminate interference; however, there is no guarantee that
classroom L2 learning was the only independent factor. A meth-
odological limitation of this study is the lack of direct measurement
and control over participants’ second-language experience and
proficiency. This omission may have introduced additional vari-
ability, complicating the interpretation of true sources and mech-
anisms behind group differences in stability and instability. We
acknowledge this and aim to address it in future studies by incorp-
orating direct assessments of second-language experience and pro-
ficiency or employing more sophisticated control methods.

5. Conclusions

This study shows the coexistence of stability and instability in the
language control network. Specifically, the language control net-
work exhibited a moderate level of both stability and instability,
with these properties coexisting in a non-modular fashion. Notably,
English majors exhibited a more significant non-modularity com-
pared with non-English majors.
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