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Abstract

We consider the implications of adding a cap to the yield surface for elastic–plastic and
elastic–visco-plastic solids with coupling between deformation, fluid flow and mineral
reactions. For a suitable combination of (low) permeability and strain rate, opening-mode veins
can form in compression. Such behaviour is enhanced by dissolution and by simultaneous
mineral reactions with negative ΔV. These are the opening-mode equivalents of compaction
bands in rocks with high permeability. Stylolite parallel veins are considered as forming in this
way; such veins are commonly the laminated or ribbon-quartz veins associated with intense
gold mineralization. Axial plane veins and melt segregations are in this class also. The addition
of a yield surface cap limits the permissible stress states portrayed by a failure-mode diagram
and has implications for breccia formation. Failure discontinuities that form at the cap require a
decrease in fluid pressure to form as opposed to extension joints and veins that require
an increase in fluid pressure; discontinuities that form at the cap are in orientations that are
commonly interpreted as reactivated early discontinuities. The switching between high fluid
pressure and low fluid pressure, which we callmode-switching, arises from competition between
mineral dissolution and deposition. This is an alternative to the fault-valvemechanism and does
not require fault reactivation or failure at a ‘seal’ linked to seismicity or fault reactivation.
The capped yield surface concept provides a unifying self-consistent approach for vein/breccia
formation and for the kinematics of brittle and visco-plastic rocks.

1. Introduction

This paper is concerned with the various modes of failure that occur in fluid saturated,
elastic–plastic and elastic–visco-plastic rocks. The common way of approaching this topic
for pressure sensitive plastic materials (Sibson, 1981; Cox, 2010) is based on a Mohr–Coulomb
failure criterion with no cap (Borja & Aydin, 2004; see Section 2) on the yield surface. The lack
of inclusion of a cap implies the rock can sustain unlimited compressive and shear stresses
without yielding. Even if a yield surface cap is included (Issen & Rudnicki, 2000) the yield
in compression is considered to be by grain crushing, and compaction bands are the result
(Fossen et al. 2007). Veveakis & Regenauer-Lieb (2015) and Alevizos et al. (2017) have described
situations for capped yield surfaces and fluid saturated rocks where opening-mode displacement
discontinuities can arise in compression for suitable combinations of strain rate and permeability.
The opening-mode behaviour is enhanced by coupling between chemical reactions (especially
those with large negative ΔV or involving dissolution) and deformation (Alevizos et al. 2017).
In this paper we first concentrate on vein systems and extend the framework already established
by the above authors to include coupling between deformation, fluid flow andmineral reactions in
materials with capped yield surfaces. The result is a new interpretation of some classes of veins
that form as opening structures in the compaction field of deformation. These opening-mode
structures are exemplified by the two types of veins shown in Figure 1. In Figure 1a solution
seams or stylolites are shown parallel to the vein margin whereas in Figure 1b stylolites are
normal to the vein boundary. With the assumption that the teeth on stylolites point towards
σ1 (Toussaint et al. 2018), this means that the vein in Figure 1a forms normal to σ1 whereas
that in Figure 1b forms parallel to σ1. The addition of a cap on the yield surface also has impor-
tant implications for failure-mode diagrams (Cox, 2010), fault reactivation (Sibson et al. 1988),
breccias and for kinematic interpretations of vein systems in general. In particular an aseismic
alternative to the fault-valve mechanism (Sibson, 2020), which we call mode-switching, arises.
This paper is concerned with these implications and processes.

Various authors (for instance, Pollard & Segall, 1987; Pollard & Aydin, 1988; Schultz &
Fossen, 2008) have developed terminology to describe displacement discontinuities in brittle
rocks. We extend the spirit of that terminology to describe the kinematics of veins as shown
in Table 1. The term displacement discontinuity is used as a general term to include veins, com-
paction bands, joints, shear zones and faults. In this paper compressive stresses are taken to be
positive. The term yield surface is used as that surface in stress space that defines the change from
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elastic behaviour, inside the surface, to rate independent plastic or
rate dependent visco-plastic behaviour on the surface. The yield
surface can change its position, shape and size as deformation
evolves. The term failure surface refers to the displacement discon-
tinuity that develops upon yielding.

The classical view of the origin of fracturing associated with
vein formation (Bons et al. 2012) employs the Mohr–Coulomb
yield envelope and the concept of effective stress: the material
yields when the Mohr stress circle touches the yield surface; this
happens when the fluid pressure is increased (Fig. 2a). Although
this approach has been and continues to be extremely useful, there
are limitations:

• The initial stress difference, (σ1 − σ3), has to be small (less than
the cohesion) for the increase in fluid pressure, Pf, to produce a
new effective stress state that touches the yield envelope at the
tension cut-off so that pure extension fractures can form.
Here σ1 and σ3 are the maximum and minimum principal
stresses with compressive stress taken to be positive.

• If σ3= lithostatic load= ρgh, then increasing the fluid pressure to
lithostatic may not result in the effective stress circle touching the
yield surface at the tension cut-off (Fig. 2a). In general it touches
before reaching the tension cut-off resulting in opening-mode
shear fracture. Here, ρ is the rock density, g is the acceleration
due to gravity and h is the distance below the surface of the Earth.

• The yield surface is not bounded for increasing normal stress. In
fact as indicated above, Figure 2a implies that the material can

sustain infinite normal and shear stresses without yielding. In
order to address the last dot point a ‘cap’ is added to the yield
surface as indicated in Figure 2b.

The structure of this paper is as follows. In Section 2 we discuss
capped yield surfaces and the planar failure discontinuities pre-
dicted by classical approaches. In Section 3 failure modes in the
capped region of the yield surface are considered for deformations
coupled with fluid flow and mineral reactions; the concept of cnoi-
dal waves is introduced. Section 4 considers the resulting implica-
tions for various vein types. Section 5 considers the significance of a
capped yield surface for failure-mode diagrams (Cox, 2010) whilst
Section 6 considers the orientations of these failure modes and
shows that failure at the cap produces discontinuities in orienta-
tions otherwise interpreted as reactivated features. Section 7 con-
siders concepts of fault reactivation/fault-valve models and
introduces the concept ofmode-switching. Section 8 discusses axial
plane structures such as veins and melt segregations whilst a dis-
cussion of breccias is included in Section 9. Section 10 is a general
discussion and conclusions are drawn in Section 11.

2. Capped yield surfaces

The classical Mohr–Coulomb failure criterion is open ended in the
sense that the material can support an infinite normal or mean
stress at an infinite shear stress without yielding as shown in
Figure 2a. Real materials are not like this, and both the upper values

Fig. 1. Two different types of veins. (a) Laminated quartz vein in relatively impermeable metamorphosed pelitic host rock. Solution seams and stylolites are parallel to vein
boundary. Bendigo, Australia. Reprinted from Chace (1949). (b) Stylolites normal to vein boundary in limestone.

Table 1. Kinematic framework for displacement discontinuities associated with veins in brittle rocks

Displacement state

Displacement mode Compression Extension

Opening Veins parallel to solution seams and stylolites (as in Fig. 1a) Crack-seal veins (Bons et al. 2012)
Open space veins
Stylolite normal veins (as in Fig. 1b)

Shearing Closing shear vein (Eichhubl et al. 2010) Opening shear vein (Bons et al. 2012)

Closing Compaction bands (Issen & Rudnicki, 2000) Closing vein (No known example)
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of shear stress and normal stress that can be supported without
yielding are capped (Schofield & Wroth, 1968; Dimaggio &
Sandler, 1971; Fossum et al. 1995; Wong et al. 1997; Olsson,
1999; Fossum & Fredrich, 2000). A model for such capped yield
surfaces is shown in Figure 2b. The various modes of yielding
are shown in Figure 4b. An alternative way of portraying the yield
surface, applicable both to pressure sensitive brittle materials and
to rate sensitive visco-plastic materials is Figure 3 in mean stress,
shear stress space. This latter way is the dominant way of portray-
ing stress states at yield in the mechanics literature, but we restrict
ourselves initially to the use of Mohr-space except to point out in
the Discussion that Cox-failure-mode diagrams (Cox, 2010) are a
special case of Figure 3.

3. Failure modes in the capped region

Failure in the capped region of the yield surface is commonly con-
sidered as comprising closing-mode, planar compaction bands
normal to σ1. Compaction bands were first discussed from a
mechanics point of view in Olsson (1999) and Issen & Rudnicki
(2000), although hints were made in Vardoulakis & Sulem

(1995); the literature until recently has considered a decrease in
porosity within a localized layer as the only form of failure in
the so called ‘compactional regime’ (see Figs 3, 4b). The idea that
compaction bands exist has co-existed with a large number of field
studies (see Fossen et al. 2007 for a review) where compaction
bands have been documented in initially high porosity sandstones.
However, recently, it has been suggested (Veveakis & Regenauer-
Lieb, 2015; Regenauer-Lieb et al. 2016; Alevizos et al. 2017) that
such behaviour is not the only form of yield and the inverse is also
possible where the yielding layer constitutes an increase in poros-
ity. Thus, the deformation in the unstable layer is dilatant rather
than compactive so that dilatant instabilities form as layers normal
to the maximum compressive stress. If the deformation is coupled
to fluid flow and dissolution/mineral reactions then opening-mode
veins can form normal to compression (Alevizos et al. 2017).

To give some physical insight into this counter-intuitive behav-
iour we note that natural examples of opening-mode veins formed
in compression (Fig. 1a) occur typically within altered chlorite-rich
rocks derived through hydrothermal alteration of mafic or sedi-
mentary rocks. A common mineral reaction involved here is:

3 tremolite þ 2 clinozoisite þ 10 CO2 þ 8H2Oþ 10O2

! 3 chloriteþ 10 calciteþ 6 quartz

This reaction is exothermic and has ΔV=þ4.45 %, but if quartz
and calcite are removed in solution (to be deposited in the vein)
the effective decrease in volume is −41.9 %. Thus, if reactions
(including dissolution) such as this proceed during deformation
with stress states at the cap part of the yield surface, opening-mode
discontinuities are easily accommodated by the decrease in volume
generated by the alteration/dissolution reactions. A selection of
these mineral reactions is given by Haack & Zimmermann
(1996, table 1) where large ΔV’s are reported for reactions involv-
ing no removal of quartz.

The formation of these opening-mode discontinuities in com-
pression arises from competition between the fluid diffusivity
and the deformation diffusivity in the compression direction.
If the fluid diffusivity exceeds the deformation diffusivity then
opening-mode discontinuities form; otherwise closing-mode com-
paction bands form. Veveakis & Regenauer-Lieb (2015) showed
that the development of opening-mode instabilities normal to

Fig. 2. Uncapped and capped yield surfaces. (a) The classical Mohr–Coulomb failure criterion. Failure occurs when the pore pressure is increased by Pf so that the Mohr stress
circle touches the yield surface. The form of the yield surface implies the normal stress can increase indefinitely without resulting in yield. (b) In order to define an upper limit to the
normal stress that a material can sustain, a ‘cap’ is added to the classical yield surface. The material can now yield by increasing the fluid pressure and by decreasing the fluid
pressure. Similar behaviour is discussed by Rudnicki (2000) and Bésuelle & Rudnicki (2004). The material can also yield by keeping the fluid pressure constant and increasing (σ1−
σ3) as in Figure 4a. Stress states with primes are effective stresses.

Fig. 3. Model of a capped yield surface (after Aydin et al. 2006). Capped yield surface
in mean stress – shear stress space with deformation modes shown. n is the normal to
the failure surface in the material; m is the incremental strain rate vector. The orien-
tation of the potential surface, the slope of which is tan−1 (dilation angle) is marked in
each sector of the yield surface. The dilation angle is the anglemmakeswith the shear-
ing plane.
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compression is described by a reaction diffusion equation involv-
ing the diffusion of the fluid pressure, the volumetric plastic strain
rate and the mass balance arising from mineral reactions. The sol-
ution to this reaction diffusion equation involves elliptical func-
tions, sn and cn, where sn and cn refer to the elliptical sn- and
cn-functions, which are the elliptical equivalents of the circular
sine- and cosine-functions (Schwalm, 2015). The patterning of
opening discontinuities in compression is expressed as cnoidal
waves (Veveakis & Regenauer-Lieb, 2015). A detailed elaboration
of the theory behind failure at the capped region is Cier et al. (in
press) where the acoustic tensor is used to define the conditions for
bifurcation from the homogeneous to the localized state.

The condition required to form dilatant bands in compression
is that a critical value of a parameter, λ, is exceeded:

� ¼ mechanical diffusivity
fluid diffusivity

¼ "ׄn�

kp=n
H2�crit

where "ׄn is the strain rate in the loading direction, μ is the fluid

viscosity, k is the permeability, p=n is the volumetric effective mean
stress and H is a length scale in the compression direction. As an

example, if "ׄn = 10−10 s−1, μ= 10−3 Pa s, k= 10−18 m2, p=n = 50MPa
and H = 100 m, then λ = 20. In the theory developed by Alevizos
et al. (2017), λcrit= 13 (Fig. 5) and the number of discontinuities is
0:26

ffiffiffi
�

p
= 1.2 so that quite widely spaced (relative to H) opening-

mode discontinuities are expected. We note that Cier et al. (in
press) have modifications to this result. Thus, in a given system,
dilatant compressive layers are favoured by (1) high strain rates,
(2) low permeability and (3) low volumetric effective mean
stresses, and are therefore expected in relatively impermeable pel-
ites whereas compaction compressive bands are expected in per-
meable arenites. The development of dilatant compressive layers
is a play-off between the rate of deformation, and/or the rate of
volumetric strain arising from mineral reactions, and the rate at
which fluid can be supplied to the dilating site. The spacing
between dilatant compressional bands is inversely related to λ
(Fig. 5a–d). In Figure 5a–d there is no coupling between deforma-
tion/fluid flow and mineral reactions or dissolution so that the dis-
continuities have zero thickness.

Although the spacing between cnoidal discontinuities is
described by λ, the thickness is controlled by the coupling between
fluid flow and chemical reactions including dissolution (Stefanou

& Sulem, 2014; Alevizos et al. 2017). Now a parameter η, defined by

η ¼ chemical diffusivity
fluid diffusivity is the controlling factor. η is temperature and

fluid pressure dependent so that the behaviour of the system
depends on the heat balance involving the relative rates of exother-
mic deformation and exothermic/endothermic mineral reactions
such as mineral precipitation/dissolution or melt crystallization/
production. An example is shown in Figure 5e, f where there is cou-
pling between deformation/fluid flow andmineral reactions or dis-
solution and the discontinuities are wide.

In summary,

• In fluid saturated rocks with a cap on the yield surface, some
veins form at sites where compressive dilatant bands develop
whilst fluids deposit quartz and carbonates in these dilating
layers. Solution seams within these layers remove material
from the system. Such veins are normal to the principal com-
pression (Fig. 1a) as opposed to extensional veins that form
parallel to the principal compression (Fig. 1b). The space
occupied by the opening-mode vein is offset by mineral reac-
tions with negative ΔV and/or by dissolution in the matrix
between veins.

• According to Alevizos et al. (2017), the spacing between these
discontinuities is defined by λ whereas the thickness of the
resulting layers is defined by η (Fig. 5e, f).

• Opening-mode compressional veins form in relatively imper-
meable lithologies whereas closing-mode compaction bands
form in relatively permeable lithologies.

4. Laminated veins and crack-seal veins

The best candidates for dilatant compressional veins are the
laminated veins characteristic of orogenic gold deposits
(Fig. 1a). These almost invariably have stylolites and/or solution
seams parallel to the vein margins confirming that σ1 was normal
to the veins at the time of formation of the stylolites. Stylolite par-
allel laminated quartz veins are known from around the world.
Some examples are given by Ferguson & Gannett (1932; crinkly
veins, California, USA), Chace (1949; Bendigo, Australia), Hough
et al. (2010;Walhalla, Australia) and Cheong et al. (2000; Nevada,
USA). The best candidates for classic crack-seal extension veins
are those commonly observed in massive sandstones and lime-
stones (Fig. 1b) and their metamorphosed equivalents (Bons et al.
2012).

Fig. 4. A realistic yield surface with curved boundaries. (a) Yield by increasing (σ1 − σ3). The material yields at σ1= σ1y (the orange circle). (b) The various modes of yielding: pure
extension fracture, extension plus shearing, compaction plus shearing and pure compaction.
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Fig. 5. Spacing of dilatant compression bands as a function of λ. (a–d) The critical value of λ is between 12 and 13 in these examples. The figures are plots of the effective stress
against the normalized spacing, ξ/H. After Veveakis & Regenauer-Lieb (2015). (e, f) Plots of porosity against ξ/H after Alevizos et al. (2017). In (e) chemical reactions do not con-
tribute to a volume change whereas in (f) they do.
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The notion of dilatant compressional veins is quite new and
much needs to be understood. At present the theory is one-dimen-
sional and so only planar layers are predicted at periodic spacings.
A three-dimensional theory with permeability a function of posi-
tion would produce non-periodic spacings, more than one set and
perhaps non-planar layers. Finally, much more field and micro-
structural work is needed in parallel with theoretical work whilst
shedding the blinkering associated with the classical concepts in
Figure 2a. Independently of the theoretical development of this
subject we rely on the worldwide observation, mainly from hydro-
thermal gold deposits, of laminated veins parallel to solution seams
and stylolites to support the notion that opening-mode veins can
form at high angles to compression.

5. Implications of a cap for failure-mode diagrams

In order to explore the implications of a yield surface cap for the
failure-mode diagrams proposed by Cox (2010) we follow
Reiweger et al. (2015) who developed a Mohr–Coulomb yield sur-
face with an elliptical cap for snow. Elliptical caps in sandstone

(Fig. 6a) are supported by the experimental work of Wong et al.
(1997). The equation for the cap is written:

τcap ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ þ σtð Þ2

σc þ σtð Þ2
s

where b ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σc þ σtð Þ2

σc þ σtð Þ2 � K
tanϕ

� �
2

vuut

This corresponds to an ellipse with centre at (−σt, 0), major axis,
σc þ σtj j, and minor axis, b, as shown in Figure 6a. The maximum
normal stress the material can sustain without collapsing is σ = σc
and the maximum shear stress the material can sustain without yield-
ing is τcap= K. Both σc and K are material parameters that are inde-
pendent of each other, except that since σt is generally small, σc >K ;
having set their values, along with σt, b is defined. In addition,
σc þ σtð Þ> K

tanϕ must always be true for b to be real. The position

of the cap for various values of σc and K is shown in Figure 7a using
the parameters given by Cox (2010). The suggested upper and lower
bounds for the cap in Figure 6c, d are prompted by the experimental
ranges of σc and K reported byWong et al. (1997). These are ≈200 to
≈400MPa for σc and ≈150 to ≈250MPa for K.

Fig. 6. Mohr–Coulomb failure criteria with elliptical cap. (a) Construction following Reiweger et al. (2015). (b) The standard Cox-failure-mode diagram with the additional failure
modes arising from a cap. Calculations to define the cap are in the Appendix. (c) The Cox-failure-mode diagram with failure modes for reverse, strike-slip and normal faults
indicated. The addition of a cap can severely limit the extent of the failure modes. Cap_low corresponds to σc= 100 MPa and K= 75 MPa; Cap_high corresponds to
σc= 200 MPa and K= 175 MPa. (d) The generic Cox-failure-diagram with the caps in (c) added using the constitutive parameter values of Cox (2010). Initial stress states marked
as X, Y and ‘reactivated stress states’, A, B, can be outside the yield surface and not possible for the assumed constitutive parameters and the low_cap position.
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A limitation of the Cox-failure-mode diagram is that a stress
state with coordinates ( σ1 � σ3ð Þ; �) gives no information on
the value of σ1 þ σ3ð Þ unless some assumption is made regarding
the value of σ3. This means that if σ1 � σ3ð Þ, the diameter of the
Mohr circle, is given then there is no information of the position of
the Mohr circle on the normal stress axis in normal stress – shear
stress space. Thus, the fluid pressure required to move the Mohr
circle so that it just touches the yield surface is not defined by
the Cox-failure-mode diagram. This pressure is given by

Pcritical
f ¼ σ1 þ σ3

2
� cotϕ

2
σ1 � σ3ð Þ � 2cð Þ

Lcritical ¼
Pcritical
f

�gh
¼ 1
�gh

σ1 þ σ3
2

� cotϕ
2

σ1 � σ3ð Þ � 2cð Þ
� �

where ρ is themean rock density, g is the acceleration due to gravity
and h is the depth below the surface.

Lcritical is plotted on Figure 7b for h= 10 km depth. This means
that it may not be possible, depending on the value of σ1 þ σ3ð Þ, to
move an arbitrary initial stress state such as X and Y to positions D
and C on the yield surface in Figure 6d by the indicated changes in
Λ as shown in that figure.

In the Appendix we derive the expression for Pf at failure in
terms of σ1 � σ3ð Þ and the optimally oriented failure plane, θ, as

Pf ¼
1
2

σ1 � σ3Þ 1þ cos 2�ð Þ þ σ3 þ σtð Þ
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� a� cð Þ σ1 � σ3ð Þ2

4K2 sin22�

r

where a ¼ σc þ σtð Þ2 and c ¼ K
tanϕ

� �
2
.

Figure 7a shows a plot of Lv ¼ Fluid pressure
Vertical stress against σ1 � σ3ð Þ for

various values of σc and K. One sees that the permissible stress
states can be severely restricted compared to failure-mode dia-
grams with no cap.

6. Orientations of failure surfaces

In uncapped models of yield, the angle, θ, between the normal to
the failure surface and the maximum compression axis, σ1, is given
by half the angle between the σN-axis and the line connecting the
centre of the Mohr circle to the point of intersection of the Mohr
circle with the yield surface (Fig. 8a, left side). In this case 2θ is
always greater than 90° and so the failure surface is inclined at less
than 45° to σ1. In Figure 8a (left) 2θ is 120° and so the failure surface
is inclined at 30° to σ1 and has a reverse sense of movement. The
same general rule holds for a capped yield surface (Fig. 8a, right)
except that now 2θ is always less than 90° and the failure surface is
inclined at greater than 45° to σ1. In Figure 8a (right) 2θ is 45° and
so the failure surface is inclined at 67.5° to σ1 and has a reverse
sense of movement if σ1 is horizontal. This orientation and the
associated reverse sense of displacement have been interpreted
as inconsistent with Andersonian fault mechanics (Anderson,
1905, 1951) and hence necessitates reactivation of pre-existing
faults (Sibson, 1985; Sibson et al. 1988; Cox, 2010). However,
one can see that this geometry is an intrinsic result arising from
failure at the cap of the yield surface and does not necessarily imply
reactivation.

An additional important result follows from the geometry of the
cap. If this cap is elliptical then for a critical radius, r, of the Mohr
circle whose radius of curvature matches that of the ellipse and that
just touches the cap at σc (θ= 0°) there is just one failure surface
normal to σ1. All smaller Mohr circles (Fig. 8b) result in θ= 0°. The
critical radius for an elliptical cap is r ¼ b2

a where 2a, 2b are the
major and minor axes of the ellipse. Thus, the angle between

Fig. 7. (a) The cap plotted on a Cox-failure-mode diagram for various values of σc and K. Comparisonwith thediagrams proposed in Cox (2010) shows that thepermissible region on the
failure-modediagramwhere stress states canbebelowyield canbe restricted for somevalues of the capparametersσc andK. (b) Themaximumvalue ofΛ that results in failure for a given
value of (σ1 – σ3) and of (σ1 þ σ3). For the same value of (σ1 – σ3), at A and B, but different values of (σ1 þ σ3), different values of Pf and hence Λ result in yield.
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the failure surface and σ1 moves rapidly between ~60° and 90° as
the diameter of theMohr circle becomes smaller (Fig. 9). A detailed
discussion of this variation in θ is given by Rudnicki (2004). Fig-
ure 9 supports a common observation in natural examples that fail-
ure surfaces are either normal to compression or at an angle of 60–
70° to the compression axis, with angles in the range <90° to >60°
rare. The same is true at the tensile end of the yield surface (if the
yield surface is rounded) where failure surfaces in natural examples
tend to be parallel or at 30° to the compression axis. Rarely, hybrid
failure surfaces are reported with a small angle between the failure
surface and σ1 (Price & Cosgrove, 1990).

7. Implications for the fault-valve model

Cyclical and coupled changes in stress and fluid pressure states,
with associated transitory fluid flow events during seismic
cycles, are referred to as fault-valve behaviour (Sibson, 2020).
Intrinsic to such a concept is the seismic cycle so that the whole
process is driven by tectonic forcing and depends on failure
defined by open-ended yield surfaces. Thus, in Figure 2a a seis-
mic event is identified with an increase in fluid pressure causing
the Mohr circle to touch the yield surface. The concept also
involves episodic breaching and sealing of an ‘impermeable seal’
as fluid pressure increases and decreases. Here we explore the
implications of adding a cap to the yield surface. This enables
a different model to be developed that is driven by coupled
deformation–chemical processes, requires no ‘seal’ and that is
only incidentally related to seismic processes. We label this
model the mode-switching process; we emphasize, seismicity is
not crucial to this process.

Historically (Sibson, 1985), the fault-valve model depends on
the geometry of the gold mineralized system at Val d’Or in
Canada (Fig. 10, left-hand side). A steeply dipping mineralized
zone comprising laminated quartz veins is identified with a
reverse fault that is episodically cross-cut by opening-mode
crack-seal veins. Recently, Cowan (2020) has pointed out that
the mineralized zone is a shear zone occupying the steep dipping
limb of a fold. Since the ‘fault’ does not have the geometry to be
expected from Andersonian fault mechanics (Anderson, 1905,
1951; Scholz, 1989), Sibson (1985) proposed that the fault
was a reactivated early normal fault. Episodic increases in fluid
pressure are then responsible for episodic reactivation and asso-
ciated seismic events. However, the introduction of a cap on the
yield surface prompts a completely different model (Fig. 10,
right-hand side), which we explore below.

7.a. The mode-switching model

We consider a vertical two-dimensional section through a region of
the upper crust where brittle mechanisms in concert with pressure
solution and fluid transport/deposition of dissolved materials are
the essential modes of deformation (Wintsch & Yi, 2002; Gratier
et al. 2013). Fluid is injected into the base of this region at a

Fig. 8. Orientations of failure surfaces associated with a capped yield surface. θ is the angle between σ1 and the normal to the failure surface. (a, left) 2θ for failure on the
uncapped yield surface. The angle between the failure surface and σ1 is always less than 45°. (a, right) 2θ for failure on the capped yield surface. The angle between the
failure surface and σ1 is always greater than 45°. (b) Failure on the cap for various values of the Mohr circle diameter. Once the radius of curvature, r, of the Mohr circle
matches that of the ellipse, θ drops to zero and remains at zero for all smaller Mohr circles. Note that this same argument follows for the tensile end of the yield surface if it is
elliptical.

Fig. 9. Angle between the normal to the failure surface and σ1 for cap failure as the
diameter, (σ1 − σ3), of the Mohr circle increases at the compressive end of the yield
surface. For a range of diameters, this angle is zero, and at a critical diameter, the
angle rapidly increases to ~30°. The value of the critical diameter depends on the
shape of the cap and on the constitutive parameters of the material (Rudnicki,
2004).
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constant Darcy velocity, V̂ , and the fluid pressure or fluid flux is
fixed at the top of the region. Then, inverting the normal way of
expressing Darcy’s law (Phillips, 1991; Zhao et al. 2008, pp. 7–15),
we write

�fluidg �rPfluid ¼ �V̂
K

whererPfluid is the gradient in fluid pressure,K is the permeability,
μ and ρfluid are the fluid viscosity and density, and g is the accel-
eration due to gravity. If a part of the region has permeability,

K1 and fluid pressure gradient, rPfluid
1 , and the permeability

changes, by precipitation or dissolution, to K2, whilst V̂ remains
constant in order to satisfy mass continuity, then, for constant μ
and g (Zhao et al. 2008; Hobbs & Ord, 2015, pp. 386–8), the fluid

pressure gradient changes to rPfluid
2 given by

rPfluid
2 ¼ K1

K2
rPfluid

1 þ �fluidg 1� K1

K2

� �

Hence, if K1= 0.1K2, then rPfluid
2 ¼ 0:1rPfluid

1 þ 0:9�fluidg. Thus,

if rPfluid
1 is lithostatic (1.7 × 104 Pa m−1) then rPfluid

2 is 1.07 × 104

Pa m−1, which is just above a hydrostatic gradient (104 Pa m−1).
Here we assume ρrock= 2700 kg m−3 and g= 10 ms−2. The princi-
ple is illustrated in Figure 11a, b where, as an example, we take a
block 30 m high.

The essence of the mode-switching model is shown in
Figure 11c, d. An antiform is shown composed of material with
permeability, K5. This is embedded in material with permeabil-
ity, K4, with K5 < K4. In Figure 11c a fault with permeability K3

cuts the hinge of the antiform and K3> K4> K5. Fluid is injected
at the base of the model with fixed Darcy velocity, V̂ , and leaves
at the top with the same velocity. The fluid stream lines
are shown in yellow and the fluid pressure contours in black.

In Figure 11c the stream lines are focused into the fault and
the fluid pressure gradient in the gap in the low permeability
layer is decreased by dissolution relative to the surrounding
material. In Figure 11d the permeability in the gap and the fault
below the antiform is decreased by precipitation. The stream
lines now are deflected around the position of the fault and
the pressure gradient in the gap is now increased relative to
the surroundings. This increase in fluid pressure results in dis-
solution by pressure solution and the permeability increases
returning the situation to Figure 11c. The cycle then repeats
driven by the imposed deformation. Although this model is
not fully coupled, in that the dissolution/precipitation proc-
esses, and hence permeability changes, are not explicitly
modelled, the model captures the essence of a fully coupled
model. A fully coupled model is the subject of another paper
in preparation.

The process known as pressure solution consists of dissolution
of material at places where the Helmholtz energy arising from
strain is high and transfer of that material is into a nearby fluid.
The thermodynamics of the process was first discussed by Gibbs
(1876) and elaborated upon by Kamb (1961), Cahn (1989) and
Sekerka & Cahn (2004). Gibbs pointed out that the solution
becomes supersaturated and, given the opportunity, precipitates
on some other kinetically favourable surface (Frolov & Mishin,
2010). The process of transport of material from strained sites to
deposition sites is known as solution transfer. The driving force
for the dissolution process is the increased strain energy of the
material expressed as the Helmholtz energy density, ψ. There
have been various attempts to derive a constitutive law for mate-
rials undergoing deformation by pressure solution (see Gratier
et al. 2013, table 2.3 for examples) assuming various geometrical
and physical models for the process but, independently of the
precise physics, dimensional analysis suggests that such a con-
stitutive law for one dimension and isothermal small elastic
strains is of the form

Fig. 10. Interpretation of the Sibson (2020)
model of Val d’Or geometry in terms of a
mode-switching model. Adapted from Sibson
(2020).
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or,

"ׄ ¼ A tð Þ tð Þ
G

k tð Þ ¼ A tð Þ σ tð Þ"
G

k tð Þ (1)

Here we have written the Helmholtz energy density as the prod-
uct of stress and strain. An expression in terms of the elastic
moduli for a general stress state is given by Houlsby & Puzrin
(2006, p. 78). Equation (1) is of the same form as derived by
Rutter (1976), Paterson (1995) and Shimizu (1997, 1995) and
others (Gratier et al. 2013, table 2.3) except that those authors
assumed that only one component of the stress contributes to
the energy driving dissolution and not the total strain energy.
The distinction is important since neglecting the strain depend-
ence introduces an error of order ≈10−3, the maximum value of
the elastic strain. Dependence on grain size and grain boundary
structure is included in the dimensionless geometrical factor,
A. However if the stress depends on grain size or shape then
an exponential dependence of strain rate on stress can be intro-
duced (Gratier et al. 2013). The elastic shear modulus, G, is
included to ensure the equation is dimensionally correct; neglect
of a factor such as G introduces an error of ≈1011. Equation (1),

in the absence of a grain size/shape stress dependence, predicts a
linear dependence of strain rate on stress and upon dissolution
rate as do Paterson and Shimizu and many other authors. Note
that Equation (1) specifies a dependence of A, ψ and k on time
arising from the evolution in geometry, stress and/or dissolution
mechanisms. This introduces the possibility of Equation (1)
being nonlinear in time as discussed by Gratier et al. (2013,
section 3.4.4).

Thus, for a constant strain rate, the stress is inversely propor-
tional to the dissolution reaction rate, which in turn is a function of
the fluid pressure, pH, fluid chemical composition and tempera-
ture (Fournier & Potter, 1982; Dove & Rimstidt, 1994; Manning,
1994). Here we consider only the dependence on fluid pressure.
The dependence of dissolution rate on fluid pressure arises
from expressions such as equation (21) of Dove & Rimstidt
(1994) where the dissolution rate constant for quartz is propor-
tional to the square of the fugacity of H2O. Thus, a decrease in fluid
pressure results in decreased solubility of quartz and hence precipi-
tation of quartz leading to decreased permeability. Importantly,
decreased pressure also results in decreased dissolution rate that,
through Equation (1), results in an increase in effective stress.
The decrease in fluid pressure drives the Mohr circle to the cap
end of the failure surface, and this coupled with high stress results
in failure at the cap. The inverse is also true so that an increase in
fluid pressure results in increased solubility and hence increased

Fig. 11. Fluid flow models with changes in permeability. (a) A block of material with layered permeability. Fluid flux fixed at base and top at 2.7 × 10−8 m s−1. Permeability (K1) in
bottom and top layers is 10−15 m2. The middle layer has permeability K2= 10−14 m2. This means the fluid pressure gradient in the bottom and top layers is lithostatic. For mass
continuity, the fluid pressure gradient in the middle layer is (lithostatic/10). The yellow lines are fluid pressure contours at 1 × 105 Pa spacing. (b) Fluid pressure gradients in (a). (c,
d) The mode-switching model, see text for description. Yellow lines are fluid streamlines. Black lines are fluid pressure contours. These models were constructed using the finite
difference code FLAC (ITASCA, 2008). The fluid viscosity is taken to be 10−3 Pa s.
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permeability. Increases in fluid pressure also lead to a decrease
in the stress. The coupling between decreased stress and
increased fluid pressure leads to failure at the extension end
of the yield surface. The sequence of processes accompanying
a decreased$increased fluid pressure cycle is captured in
Figure 12a.

Thus, the mode-switching process is a chemical precipita-
tion$dissolution cycle driven by an imposed strain rate
coupled to fluid flow. It can operate independently of any seis-
mic activity but can also be coupled to seismicity since high
fluid pressures can, in principle, nucleate sliding on fault sur-
faces. Such failure occurs at the extension end of the yield sur-
face whereas high stresses at low fluid pressures at the cap end
of the yield surface result in accelerated slip on suitably oriented
faults (Fig. 12b). The mode-switching mechanism represents a
switching between failure modes at the cap end of the yield
surface (non-Andersonian structures at high angles to com-
pression) and failure modes at the tensile end (Andersonian
structures at low angles to compression).

8. Axial plane structures: quartz and melt veins

The enigmatic occurrence of veins and melt accumulations parallel
to the axial planes of folds is well documented. For reviews see
Vernon & Paterson (2001), Weinberg et al. (2015) and Druguet
(2019). Some examples are given in Figure 13. Explanations for
these structures vary widely and include the influences of initial
fabric anisotropy and fabric heterogeneity, reorientation of older
structures, relaxation or switching of stresses and preferential melt-
ing along planes normal to compression. The array of explanations
reflects the difficulties inherent in concepts based on uncapped
yield surfaces. Weinberg et al. (2015) and Veveakis et al. (2015)
presented models for axial plane leucosomes in terms of compac-
tion-driven instabilities based on a capped yield surface. Their
model is based on Veveakis & Regenauer-Lieb (2015), as is
this paper.

The important point elaborated upon by Alevizos et al. (2017) is
that the development of both axial plane veins and melt accumu-
lations involve mineral reactions (dissolution and deposition,
melting and crystallization) that are either endothermic or exo-
thermic. Such processes are fundamental in controlling the widths
of opening-mode compaction instabilities at a high angle to com-
pression as discussed in Section 3.

The progressive development of axial plane veins is envisaged
as follows: axial plane veins are opening-mode discontinuities
formed in compression under relatively low fluid (including melt)
pressure – high stress conditions, perhaps as part of the mode-
switching cycle. Even though the fluid pressure is low in the dis-
continuity it is higher than in the regions outside the discontinuity.
The low pressure enables precipitation of quartz in the vein. If the
fluid pressure increases in the discontinuity then dissolution may
be initiated as is common in a laminated vein.

The situation is somewhat different for axial plane leucosomes:
The rock is assumed to be at or just below the liquidus. The pres-
sure in the axial plane discontinuity is higher than outside the dis-
continuity, so melting will take place preferentially within the
discontinuity (Thompson, 1988). This relationship was suggested
in a slightly different context for shear zones with high dilatancy by
Ord (1990). If the melt pressure increases within the discontinuity
then increased melting is favoured. The width of the leucosome is a
function of the parameter η (Alevizos et al. 2017). The larger is η
the wider the leucosome.

It is of some interest to note that processes resulting in compac-
tion melt structures parallel to compression have been developed
by Rabinowicz & Vigneresse (2004). These in the anatectic domain
are the conceptual equivalent of crack-seal veins in the dissolution–
precipitation domain. Thus, during a mode-switching cycle it is
possible that switching between the development of leucosomes
at high angles and low angles to compression can occur resulting
in the common observation of layered leucosomes with other leu-
cosomes at high angles to the layering. Examples are figures A2,
B45, D24, D30 and E3 in Sawyer (2008).

9. Brecciation

Wong et al. (1997) showed experimentally that cataclasis is
associated with hardening of an elliptical cap on the yield sur-
face (Fig. 14a). The mechanics and thermodynamics of breakage
have been discussed by Einav (2007a,b) and Nguyen & Einav
(2009). The measure of the degree of breakage adopted by
Einav (2007a) is the ratio of the area under the current fragment
size distribution to that under the final fragment size

Fig. 12. Themode-switching cycle. (a) The complete cycle. High permeability leads to
low fluid pressure and hence low equilibrium solubility and hence precipitation. The
low fluid pressure also leads to a low reaction rate and hence, from Equation (1), high
effective stress. These conditions of low fluid pressure and high stress lead to opening-
mode discontinuities forming normal or at a high angle to compression. Precipitation
produces low permeability and hence high fluid pressure and high equilibrium solu-
bility and dissolution. The high fluid pressure also leads to a high reaction rate and
hence, from Equation (1), low stress. These conditions of high fluid pressure and
low stress initiate opening-mode discontinuities forming parallel or at a low angle
to compression. The dissolution produces high permeability and the cycle repeats.
(b) The mode-switching cycle coupled to the seismic cycle where high stress leads
to accelerated slip and high fluid pressure leads to failure at the extensile end of
the yield surface.
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distribution. Figure 14 shows the hardening of the cap associ-
ated with breakage.

On the basis of the work of Wong et al. (1997) and Nguyen &
Einav (2009) we recognize four end-member classes of breccia
(Fig. 15) that arise from the mode-switching cycle. The first cor-
responds to low stress and high fluid pressure where the stress
circle exceeds the tensile end of the yield surface. Failure is
essentially by opening-mode veining (A in Fig. 15). The second
corresponds to high stress and high fluid pressure where the
stress circle exceeds the tensile-shear part of the yield surface.
This corresponds to considerable dilation and mineral precipi-
tation with the formation of clast unsupported breccias (B in
Fig. 15). The third corresponds to high stress and low fluid pres-
sure where the stress circle exceeds the cap part of the yield sur-
face. The result is a closing-mode breccia with solution seams
and mineral precipitation (C in Fig. 15). The fourth corresponds
to low stress and low fluid pressure where the stress circle
exceeds the cap tip part of the yield surface. This corresponds
to collapse fracturing and little mineral precipitation (D in
Fig. 15). Each of these classes has clearly defined fabrics associ-
ated with their development (Fig. 15).

10. Discussion

This paper discusses the implications of adding a cap to the
classical open-ended Mohr–Coulomb yield surface along with
the added effects of coupling to fluid flow and chemical reactions
that result in negativeΔV or in dissolution, fluid transport and pre-
cipitation. Behaviour at the cap is controlled by competition
between fluid flow diffusivities and deformation diffusivities. For
a constant strain rate, low permeability results in opening-mode
discontinuities normal to compression (but only if the deformation
is coupled to mineral reactions that lead to a decrease in volume in
the matrix of the rock) whereas high permeability results in com-
paction bands. The result is nonlinear behaviour where the inverse
relationship between stress and dissolution/precipitation reaction
rates drives oscillatory behaviour between high fluid pressure –
low differential stress states and low fluid pressure – high differen-
tial stress states. This cyclic behaviour is accompanied by oscilla-
tions between classic extension veins parallel to compression
(typically crack-seal veins) and stylolite parallel veins normal to
compression (typically laminated or quartz-ribbon veins). The
deformation–chemical-driven aseismic cyclic behaviour, labelled

Fig. 13. Axial plane quartz and melt veins. (a, b) Axial plane veins, Harvey’s Retreat, Kangaroo Island, Australia. (a) is ≈1 m wide and (b) is ≈2 m wide. (c) Axial plane melt veins.
Reprinted from Vernon & Paterson (2001), Copyright (2001), with permission from Elsevier.

Fig. 14. Hardening of the cap arising from breakage. (a) Expansion of the cap arising from fragmentation. The evolution of the cap is controlled by the degree of breakage
(Nguyen & Einav, 2009). (b) Modes of failure. The line ABmarks the boundary between friction dominated and breakage dominated failure modes resulting in different brecciation
modes.
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mode-switching, is an alternative to the seismically driven fault-
valve process described by Sibson (2020). The mode-switching
process does not involve mechanical breaching of a hydraulic ‘seal’
nor reactivation of faults at high angles to compression and need
not be coupled to seismic activity. Axial plane veins (commonly
parallel to axial plane solution seams) andmelt segregations belong
to the class of discontinuities formed by failure at the cap.
Brecciation is the result of failure associated with a hardening cap.

The treatment in this paper largely neglects thermal effects such
as heat produced by frictional sliding, breakage and exothermal
mineral reactions (such as mineral dissolution) or heat absorbed
by endothermic mineral reactions (such as mineral deposition).
Quartz deposition is particularly important here. We assume that
ΔH0 for the quartz deposition reaction is approximately equal to
the activation energy, Ea, determined by Rimstidt & Barnes (1980,
their table 4). Thus, for the endothermic reaction

H4SiO4 ! SiO2ðsolidÞ þ 2H2O

ΔH0 is approximately 71 kJ mol−1. This means that the deposition
of 1 cubic metre of quartz requires ≈3.127 × 106 kJ of heat. If this
deposition occurs over 105 years then the heat absorption rate is a
massive 10−3 Wm−3, which is far in excess of the average radio-
genic crustal heat production rate. Shorter time frames increase
the heat production rates. The behaviour of the coupled deforma-
tion–chemical reaction system we have described in this paper
depends on the competition between exothermic processes such
as frictional deformation, breakage and the production of new sur-
faces, mineral dissolution and endothermic processes such as min-
eral deposition. Typically such systems are episodic in behaviour as

heat and mass supply compete with heat and mass consumption
(Lesueur et al. 2020), and a full understanding of the mode-
switching model depends on incorporation of such thermal
effects.

A more realistic treatment would also include the influence of
anisotropy on the shape of the yield surface, and this is probably
needed to explain why one only observes single orientations of fail-
ure surfaces in the field rather than ubiquitous conjugate pairs.

Although the treatment here has concentrated on brittle behav-
iour, Wintsch & Yi (2002) have emphasized that dissolution and
replacement creep can be an important mechanism in the deep
crust, and so the oscillatory switching between dissolution and
depositionmay be an important process even at highmetamorphic
grades where the Mohr–Coulomb yield surface is replaced by a
capped elastic–plastic-viscous yield surface. Wintsch & Yeh
(2013) have further suggested that oscillations between reaction
weakening and reaction strengthening can result in switching
between ductile and brittle behaviour. All of these processes have
the potential to produce strong feedback relationships so that not
only does the fluid pressure oscillate as the crust deforms but also
the yield surface can change shape and size with mineral reactions
producing oscillations in fluid pressure, dissolution, precipitation,
veining and brecciation.

Finally, we note that the failure-mode diagrams of Cox (2010)
are special examples of the mean stress – shear stress diagrams
commonly used in the soil mechanics literature in particular
(Schofield &Wroth, 1968), but also in the experimental rock defor-
mation literature. In this case, the fluid pressure is equal to the
mean stress for elastic deformations (Hobbs & Ord, 2018) so that
the use of a mean stress – shear stress diagram up until yield is

Fig. 15. The four end-member classes of brec-
cia. (a) Low stress – high fluid pressure. Stress
circle exceeds the extension end of the yield sur-
face. Failure is essentially by veining. (b) High
stress – high fluid pressure. Stress circle exceeds
the extension–shear part of yield surface with
considerable dilation andmineral precipitation.
(c) High stress – low fluid pressure. Stress circle
exceeds the cap part of yield surface with solu-
tion seams and mineral precipitation. (d) Low
stress – low fluid pressure. Stress circle exceeds
the cap tip part of yield surface with collapse
fracturing and little mineral precipitation.
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equivalent to a Cox-failure-mode diagram. Themodes of failure on
mean stress – shear stress diagrams are shown in Figure 16.

11. Conclusions

We have explored several implications of adding a cap to the yield
surface for elastic–plastic and elastic–visco-plastic materials. Such
a cap ensures that the necessity, implied by uncapped yield surfa-
ces, for the deforming rock to support infinite shear and normal
stresses is overcome. Failure at the cap results in compaction bands
for highly permeable rocks but results in opening-mode disconti-
nuities forming normal to compression in low permeability rocks if
the deformation is coupled to mineral reactions that lead to a
decrease in volume in the matrix of the rock. These opening-mode
structures appear as laminated veins with vein parallel stylolites
and solution seams and contrast with opening-mode veins that
form normal to stylolites at the extension end of the yield surface.
The addition of a cap can severely limit the permissible stress states
that can be represented on a Cox-failure-mode diagram. Failure at
the cap in fluid saturated low permeability rocks also results in
opening-shear structures at high angles to compression. These
are commonly interpreted as reactivated older normal faults, but
the addition of a cap makes such an interpretation unnecessary.

A capped yield surface means that a deforming fluid saturated
rock mass automatically oscillates between a low stress – high fluid
pressure, low permeability state and a high stress – low fluid pres-
sure, high permeability state controlled by competition between
dissolution and precipitation. This process, labelled mode-switch-
ing, is a coupled mineral reaction – deformation – fluid flow cyclic
mechanism that is an alternative to the fault-valve process. The
mode-switching process involves switching between reverse slip
on discontinuities at a high angle to compression and the operation
of opening-mode discontinuities at a low angle to compression.
Mode-switching does not depend on fluids breaching a permeabil-
ity ‘seal’ and is intrinsically aseismic, although it can, in principle,
nucleate a seismic cycle process.

The addition of a cap to the yield surface also provides a basis
for the development of axial plane veins and melt segregations
together with various classes of breccias. The capped yield surface
concept provides a unifying self-consistent approach for vein/brec-
cia formation, cyclic yielding and fluid flow and for the kinematics
of brittle rocks undergoing solution creep.
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Appendix: Equation for an elliptical cap in a Mohr–
Coulomb material

We follow Reiweger et al. (2015) who developed aMohr–Coulomb
yield surface with a cap for compacted snow. The equation for the
cap is written:

τcap ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ þ σtð Þ2

σc þ σtð Þ2
s

where b ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σc þ σtð Þ2

σc þ σtð Þ2 � K
tanϕ

� �
2

vuut

This corresponds to an ellipse with centre at (−σt, 0), major axis,
σc þ σtj jand minor axis, b, as shown in Figure 6a. The maximum
normal stress the material can sustain without collapsing is σ = σc
and the maximum shear stress the material can sustain without
yielding is τcap= K. Both σc and K are material parameters that
are independent of each other, except that since σt is generally
small, σc >K ; having set their values, along with σt, b is defined.
In addition, σc þ σtð Þ> K

tanϕ must always be true for b to be real.

We write the following expressions involving only material
parameters:

a ¼ σc þ σtð Þ2; c ¼ K
tanϕ

� �
2

Then

τcap ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ þ σtð Þ2

a

r
and b ¼ K

ffiffiffiffiffiffiffiffiffiffi
a

a� c

r

The equation for the cap becomes:

τcap ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ þ σtð Þ2

a

r
¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� σ þ σtð Þ2

a� c

r

We now put σ0 ¼ σ þ Pf where σ0 is the effective normal stress
at yield and Pf is the fluid pressure at yield in the cap region. Notice
that one adds the fluid pressure rather than subtracting as in the
classical situation with no cap since here the fluid pressure is
decreased rather than increased to enable yield.

Now the equation for the cap at yield is:

τcap ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� σ= � Pf þ σt

	 

2

a� c

s

Resulting in: τcap ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� σ=�Pfþσtð Þ2

a�c

q
or, Pf ¼ σ= þ σt

	 
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� a� cð Þτ2cap=K2

q
We now write the standard relationships (from here on the

principal stresses are effective stresses):

σ= ¼ σ1 þ σ3
2

þ σ1 � σ3
2

cos 2� ¼ σ1 � σ3 þ 2σ3
2

þ σ1 � σ3
2

cos 2�

and τcap ¼ � σ1�σ3
2 sin 2�

or, σ= ¼ 1
2 σ1 � σ3ð Þ 1þ cos 2�ð Þ þ σ3 and τcap ¼ � σ1�σ3

2 sin 2�

Then the expression for Pf in terms of σ1 � σ3ð Þ becomes

Pf ¼
1
2

σ1 � σ3Þ 1þ cos 2�ð Þ þ σ3 þ σtð Þ
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� a� cð Þ σ1 � σ3ð Þ2

4K2 sin22�

r

The equation for Pf versus (σ1 – σ3) at yield is therefore a
parabola. This means the complete failure-mode diagram consist-
ing of the classical Cox function plus a cap is as in Figure 6b.

We now take the values for the various constitutive parameters
as in Cox (2010), namely,

� ¼ 1
2 tan

�1 1
�

� �
; μ= 0.75; 2θ= 53.13°; sin 2θ= 0.8; cos 2θ= 0.6;

ϕ = tan−1 μ= 36.87°; σt= 5MPa; C= 3.75 MPa; depth, z= 10
km so that σ3= ρgz= 265MPa.

Then a ¼ σc þ σtð Þ2 ¼ σc þ 5ð Þ2; c ¼ K
tanϕ

� �
2 ¼ 1:3333Kð Þ2

so that

b ¼ K

ffiffiffiffiffiffiffiffiffiffi
a

a� c

r
¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σc þ σtð Þ2

σc þ σtð Þ2 � K
tanϕ

� �
2

vuut

¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σc þ 5ð Þ2

σc þ 5ð Þ2 � ð1:3333KÞ2
s

Pf ¼
1
2

σ1 � σ3Þ 1þ cos 2�ð Þ þ σ3 þ σtð Þ
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� a� cð Þ σ1 � σ3ð Þ2

4K2 sin22�

r

Pf ¼ 0:8 σ1 � σ3Þ þ 270ð Þ½ �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σc þ 5ð Þ2 � 0:16 σc þ 5ð Þ2 � 1:3333Kð Þ2ð Þ σ1 � σ3ð Þ2=K2

q

and

L ¼ Pf
σ3

¼ 0:0038 0:8ðσ1 � σ3Þ þ 270½ �f

�
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σc þ 5ð Þ2 � 0:16 σc þ 5ð Þ2 þ 1:3333Kð Þ2ð Þ σ1 � σ3ð Þ2=K2

q
g

Let us choose σc= 500 MPa, and K= 250 MPa then

b ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σc þ 5ð Þ2

σc þ 5ð Þ2 � ð1:3333KÞ2
s

¼ 250

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
505ð Þ2

505ð Þ2 � ð1:3333� 250Þ2
s

or, b= 332.8 MPa
The Mohr–Coulomb failure envelope plus cap is shown in

Figure A1. The initial stress state shown by the full blue circle
can lead to failure by increasing the fluid pressure by 210 MPa
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to fail by dilatant shear at P or by decreasing the fluid pressure by
45MPa to fail by compactional failure normal to σ1 at Q.

If we take the above expression for Λ, namely,

L ¼ 0:0038 0:8ðσ1 � σ3Þ þ 270½ �f

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σc þ 5ð Þ2 � 0:16 σc þ 5ð Þ2 þ 1:3333Kð Þ2ð Þ σ1 � σ3ð Þ2=K2

q
g

and take σc= 100MPa and K= 50MPa, then

L ¼ 0:0038 0:8 σ1 � σ3Þ þ 270ð Þ½ �f

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
255025� 111105:56ð Þ σ1 � σ3ð Þ2=2502

q
g

Other combinations of σc and K are plotted in Figure 7a.

Fig. A1. Failure by increasing and decreasing fluid pressure for a yield surface with a cap using parameters proposed by Cox.
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