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POLYNOMIAL REPRESENTATIONS OF THE
DIFFIE-HELLMAN MAPPING

EDWIN E L MAHASSNI AND IGOR SHPARLINSKI

We obtain lower bounds on the degrees of polynomials representing the Diffie-Hellman
mapping ( j 1 , gy) —> gxy, where g is a primitive root of a finite field ¥q of q elements.
These bounds are exponential in terms of log q. In particular, these results can be used
to obtain lower bounds on the parallel arithmetic complexity of breaking the Diffie-
Hellman cryptosystem. The method is based on bounds of numbers of solutions of
some polynomial equations.

1. INTRODUCTION

Let g be a primitive root of a finite field F, of q elements [3]. One of the most common
public-key cryptosystems, the Diffie-Hellman cryptosytem. is based on the assumption
that recovering the value of the Diffie-Hellman secret key gxy from the known values of g1

and gv is a hard computational problem, see [9, 17]. However, very few rigorously proved
results of this kind are known for this and for the closely related problem of computing
the discrete logarithm, see [1, 2, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16].

In particular, polynomial representations of the Diffie-Hellman key in the "diagonal"
case x = y have recently been considered in [2]. Among other results, it has been shown
in [2] that the equation gx* = f(gx) with a polynomial / (( / ) € F9[£/] of degree deg / ^ n

is satisfied by at most O(max{^2/'3,n1/'2q1^2}) values of x £ [0,g —2]. For the more general
equation F{gx,gx2) = 0, x <E [0,<? - 2] with a non-zero polynomial F(U, V) £ Fq[U, V] of
degree deg F $C n the number of solutions has been estimated as 0{n2^q2^3).

For polynomial representations of the discrete logarithm similar results have been
obtained for that paper as well, see also [11, 18] for some generalisations.

In this paper we obtain several new results for the equations which relate gx,gy,gxy-

Thus we obtain analogues of the results of [2] for the general case when x and y are
independent variables. Although our method is similar to that of [2] several new effects
have appeared in the bivariate case.

Although our results are quite precise (and can be combined with some standard
tools of complexity theory to obtain lower bounds on the parallel arithmetic complexity
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of breaking the Diffie-Hellman cryptosystem) they are too weak to be useful for any
rigorous cryptographic conclusions. Nevertheless, they may provide additional support
to the assumption of the hardness of the Dime-Hellman cryptosystem.

2. POLYNOMIAL RELATIONS AMONG gx,gv,gxy

Here we present our main results.

THEOREM 1 . Let / ( [ / , V) £ Wq[U,V] be a polynomial of degree n = d e g / such

that

where W C [TV + 1, TV + H] x [TV + 1, TV + H] for some integers TV and H, 2 ^ H < q - 1.
If |VV| > IQH8'5 then the bound

holds.

PROOF: Define
K_

and let "R. be the set of integer vectors

For a vector r € 7?. we consider the shift set Wr = W + r.

Let Af be the number of pairs (x, y) £ [TV + 1, TV + H + K] x [N + 1, TV + H + A']
which belong to at least one shift Wr. r e ft. Obviously Wr C [TV + 1, TV + H + K] x [TV +
1, TV + H + K], thus M ^ (H + A')2. On the other hand, by the inclusion and exclusion
principle,

|WrinWr2|.

Hence
1 J |WrinWr22

Therefore there is a pair r i , r 2 £ H, r^ / r2 such that,
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Because of the choice of K,

Therefore

1 r i r 2 ' " 2((AT + I)2 - 1) " 2A-(A" + 2)'

For these vectors r̂  — (ii,ji) and r2 = (12,̂ 2) we put r = rt — r2. Let Q — WH Wr.
Then

\Q\ = |w n wP| = |wr, n wrs|

On the other hand for any (x, y) £ Q, we have

9v) and

where A: = ti — ta, / = Ji — Ja- Hence,

Letting u = gx and v = gy, then

Without loss of generality we can assume that at least one component of r is strictly
positive (otherwise we can interchange r : and r2). Assume that k > 0, and let L be the
number of u 6 FJ for which f(u,v) € Wq [V] is an identically zero polynomial with respect
to V. Obviously L ^ n. For each such u there are at most H values for v = gy with
y € [N+l, N + H] which satisfy the above equation. For other u — gx, y e [N+l, N+H],
the above function is a non-zero polynomial in v of degree at most n + k ^ n + K. Thus,
there exist at most (n + K)H solutions to this equation. Hence

And taking into account that K ^ 2; thus K + 2 ^ 2/^, and we obtain

3|W| g 3|W| A" 31WKIWI1/2 - 2) 2

4HK{K + 2) 2 " 8//A'2 2 " 32H3 | W | 1 / 2 - 2 '

By the condition of the theorem |W| > 10 • 28/5 ^ 24, thus |W|1/2 - 2 ^ 0.5|W|1/2.
Therefore,

3|W| AT 3|W| A~ 3|W|2 2H
4HK(K + 2) 2 •" 8HK2 2 " 128#3
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For |W| > 10# 8 / 5 we obtain
2H |W|2

and the desired result follows. u

Now consider more general relations.

THEOREM 2. Let F{U,V,Z) e Wq[U,V,Z] be a non-zero polynomial of degree
n = deg F such that

g*,g**)=0, (x,y)eW,

where W C [N + 1, N + H) x [N + 1, N + H] for some integers N and H , 2 ^ H ^ q - \ .

Then the bound

iioids.

PROOF: We consider the complete factorisation of F(U, V, Z) over the algebraic clo-
sure Fq of F, (thus, the factors are absolutely irreducible polynomials). For an irreducible
divisor $(£/, V, Z) e Wq[U, V, Z] of F(U, V, Z) let us denote by W«, the subset of W such
that $(gx,gv,gxy) = 0 for (x,y) € i/$. Obviously, there exists an irreducible divisor
$(£/, V, Z) of F(f/, V, Z) such that

Indeed, otherwise

Fix a polynomial $ which satisfies (1) and put d = deg$, V = U^.
Define

Because |V|1/2 < |W|1/2 < H we see that Ar ^ 2. We can also assume that |V| > 5
because otherwise n ^ |W|/|V| > |W|/4 and the bound is trivial. Therefore K <
2i//5 ^ (21/2 - 1)7/ and we obtain

Hence, as in the proof of Theorem 1 we see that there exists a non-zero shift-vector
r = {k,l) with 0 Sj k,l ^ K, such that the system of equations

(2) $(gx,gv,gIV)=0 and $(<,(*+*), <,(*+<)i5(*+*)(y+0) _ O
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has at least
3|V| . 3jV| ^ 3|V|2

2K{K + 2) 4A'2 16#2 16n2//2

solutions.

Let us consider the system of equations

(3) $(U,V,Z) = 0 and Q{aUtbV,cU'VkZ) = 0,

where a = 5*, b = g',c = gkl.

If the polynomials $(£/, V, 2 ) and §(aU, bV, cU'VkZ), of degrees at most d and d{l +
k + 1) respectively, are relatively prime as polynomials in Z over the ring Fq[U, V] then
their resultant R(U, V) is a non-zero polynomial in U and V of degree at most d2(l+k+\).

Because R(U, V) vanishes for each (u,v) which is a part of a solution (u,v,z) of
system (3), we see as in Theorem 1, that there are at most 2<P(/ + k + \)H such pairs
w i t h u = 0 * , i ; = fl*, ( x , y ) e [N + l , N + H] x [ N + l , N + H}.

For each such pair (u,v) we have at most one solution of the system (2). Therefore

the number of solutions of the system (2) in such pairs is at most 2d2(l + k + 1)H ^

2d2(2K + l)H. Therefore

2 2

T^W 2d (2A + ! ) ^ < 5d K H

Thus,

5/2
" ^ 10/74 ^

and in this case we have the desired inequality.

Further, if $((/, V, Z) and $(at/, 6V, cU'VkZ) are not relatively prime, then recalling
that ${U, V, Z) is absolutely irreducible and that they are of the same Z-degree, we
see that $(af/, bV, cU'VkZ) = *({/, V)${U, V, Z) for some polynomial *(C/, V) (over the
algebraic closure of F,). If

•=0

then either /,((/, V) = 0 or /,(£/, V)$(t/, V) = fi(U,V)(U'Vk)i. Therefore only one
of/(,(£/, V) , . . . ,fd(U,V) is not equal to zero. Thus, $(£/, V,Z) = Zmf(U,V), where
/(t/ , V) £ Fq[U, V] and 0 < m ^ rf. Therefore f{gx,gy) = 0 for (x,y) G V and, as in the
proof of Theorem 1, we obtain

2dH > |V| >, ^ -
n

This implies

U ^ 2H" ^
and the result follows.
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3. R E M A R K S

It is easy to see that Theorems 1 and 2 imply the upper bounds

12max{#8/5, nl'2H3'2} and 3nH8'b

on t h e n u m b e r of s o l u t i o n s (x , y) e [N + 1, N + H] x [N + l,N + H] of t h e e q u a t i o n s

9v) and F(g*,g»,gr») = 0,

respectively, with non-zero polynomials f{U, V) € Fq[U, V] and F(U, V, Z) e ¥q[U, V, Z]

of degree at most n. These bounds are probably of independent interest.

We also remark that the constants in the above results are not the best possible and
can easily be improved.

Theorems 1 and 2 can be used to derive lower bounds on the degrees of polynomial
relations among gx,gy, gxy for "almost all" sets W of much smaller cardinality than that
of Theorems 1 and 2. This can be derived in exactly the same fashion as Theorems 9
and 11 are derived from [2, Theorems 8 and 10].

The method which has been used in the proof of Theorem 2 is somewhat less involved
that tha t of [2, Theorem 10]. However we have not been able to extend the refined
analysis of the equation F(gx,gx ) — 0 to the equation F(gx,gv,gxy) = 0. Finding an
appropriate generalisation of the method of proof of [2, Theorem 10] would probably lead
to an improvement of Theorem 2 of the present work.
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