6th International Workshop on Immunonutrition, 15th–17th October 2012, Palma de Mallorca

LTD₄ is involved in the control of non-differentiated intestinal epithelial cell growth

M. Cabral, J. J. Moreno and R. Martín-Venegas

Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona

Leukotriene D_4 (LTD₄) is a powerful pro-inflammatory mediator, which is formed from arachidonic acid through 5-lipoxygenase (5-LOX). LTD₄ mediates its effects through two specific cell surface receptors, $CysLT_1R$ and $CysLT_2R^{(1)}$. Colon tumours have an increased expression of $CysLT_1R$ and it has recently been observed that colon cancer patients with high expression levels of this receptor have poor prognosis⁽²⁾.

The aim of this study was to investigate the potential role of LTD_4 on the control of non-differentiated intestinal epithelial cell growth using intestinal human Caco-2 cells (HTB37, ATCC) in culture.

We observed that LTD_4 (1–100 nM) induces Caco-2 cell proliferation in a concentration dependent manner. Moreover, cell growth and DNA synthesis induced by LTD_4 were reverted by specific CysLT₁R antagonists, such as MK571 and LY171883, thus indicating the involvement of this receptor in these events.

Considering that LTD_4 up-regulates 5-LOX, cyclooxigenase 2 (COX-2) and CysLT₁R levels in intestinal epithelial cells⁽³⁾, we study the role of COX pathway on the effect of LTD_4 on Caco-2 cell growth. Our findings show that LTD_4 induces PGE₂ synthesis in Caco-2 cell cultures. Moreover, ketoprofen, a COX inhibitor, NS398, a specific COX-2 inhibitor, and SC560, a specific COX-1 inhibitor, were able to inhibit Caco-2 cell growth and DNA synthesis induced by LTD_4 . Furthermore, similar effects were obtained using antagonists of PGE₂ receptor, such as SC19220, a specific EP₁ antagonist, and AH23838, a specific EP₄ antagonist.

These data suggest that the proliferative effect of LTD_4 is dependent on PGE_2 synthetized by both COXs and on PGE_2 interaction with EP_1 and EP_4 receptors. Finally, we provide evidence that LTD_4 stimulates several cell signalling pathways involved in cell growth, such as ERK, β -catenin, CREB, and p38 α .

On the basis of our results we can conclude that LTD_4 is involved in the regulation of Caco-2 cell growth through the interaction of CysLT₁R and the subsequent PGE₂ synthesis and cell signaling pathways activation. It is hoped that these findings show novel mechanisms by which the effect of LTD₄ on intestinal epithelial cell growth may be mediated.

Supported by Ministerio de Ciencia e Innovación (BFU2007-61727/BFI) and Generalitat de Catalunya (2009SGR0438).

1. Heise CE, O'Dowd BF, Figueroa DJ et al. (2000) J Biol Chem 275, 30531-30536.

- 2. Magnusson C, Mezhybovska M, Lörinc E et al. (2010) Eur J Cancer 46, 826-835.
- 3. Yudina Y, Parhamifar L, Bengtsson AM, Juhas M, Sjölander A. (2008) Prostaglandins Leukot Essent Fatty Acids 79, 223-231.