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Intermittency as it occurs in fast dynamos in the magnetohydrodynamics (MHD) frame-
work is evaluated through the examination of relations between normalized moments at
third order (skewness S) and fourth order (kurtosis K) for both the velocity and mag-
netic field, and for their local dissipations. As investigated by several authors in various
physical contexts such as fusion plasmas (Krommes 2008 Phys. Plasmas 15, 030703),
climate evolution (Sura & Sardeshmukh 2008 J. Phys. Oceano. 38, 639-647), fluid turbu-
lence or rotating stratified flows (Pouquet et al. 2023 Atmosphere 14, 01375), approximate
parabolic K(S) ∼ Sα laws emerge whose origin may be related to the applicability of
intermittency models to their dynamics. The results analyzed herein are obtained through
direct numerical simulations of MHD flows for both Taylor–Green and Arnold–Beltrami–
Childress forcing at moderate Reynolds numbers, and for up to 3.14 × 105 turn-over
times. We observe for the dissipation 0.2 � α � 3.0, an evaluation that varies with the
field, the forcing and when filtering for high-skewness intermittent structures. When using
the She & Lévêque (1994) Phys. Rev. Lett. 72, 336-339 intermittency model, one can
compute α analytically; we then find α ≈ 2.5, clearly differing from a (strict) parabolic
scaling, a result consistent with the numerical data.
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1. Introduction

One striking property of turbulent flows is their lack of predictability, as well as
their intermittency, associated with the presence of intense and isolated patterns at
small scales, such as vortex filaments and current sheets, or coherent structures at
large scale. Such extreme events can be assessed through their probability distri-
bution functions (PDFs), and thus through their normalized moments such as the
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skewness and kurtosis (definitions are given in § 2). These intense structures have
been identified in many experiments, observations and direct numerical simulations
(see for recent reviews e.g. Matthaeus et al. 2015; Yeung, Zhai & Sreenivasan 2015;
Chen 2016; Camporeale et al. 2018; Ergun 2020; Schekochihin 2022). The ensu-
ing dissipation is found in a reduced volume of the system, in both neutral fluids
(Bradshaw, Farhat & Grujic 2019; Rafner et al. 2021; Buaria, Pumir & Bodenschatz
2022) and magnetohydrodynamics (MHD) (see e.g. Politano, Pouquet & Sulem
1995; Meneguzzi et al. 1996; Mallet, Schekochihin & Chandran 2017; Zhdankin,
Boldyrev & Mason 2017; Adhikari et al. 2020). This physical intermittency volume
can be in fact smaller than for fully developed turbulence, as shown explicitly in the
presence of gravity waves (Marino et al. 2022). It is also found in the ocean (van
Haren et al. 2016), as well as in clear air turbulence, the origin of which remains
rather ill understood although Kelvin–Helmholtz and shear instabilities are likely to
be the culprit (Imazio et al. 2023), as for the other examples given here. Similar
observations are documented for plasma disruptions.

Intermittency can be characterized in many ways, such as when evaluating anoma-
lous exponents of structure functions. Perhaps more directly, one can assess when
and where normalized third- and fourth-order moments, skewness S and kurtosis
K, differ from their Gaussian values. There is a long history of such measurements;
for example, both skewness and kurtosis have been used to map a flow, such as in
meandering jets in the ocean (Hughes, Thompson & Wilson 2010), or in climate
data reanalysis (Petoukhov et al. 2008).

One way to condense the data further is to look for K(S) relations, often found
to be close to parabolic in a variety of contexts (see Pouquet et al. 2023 and ref-
erences therein for a recent review), e.g. for the Navier–Stokes (NS) equations, in
the presence or not of stratification and/or rotation, as relevant to the atmosphere,
the ocean and climate (Lenschow, Mann & Kristensen 1994; Sura & Sardeshmukh
2008). Such quasi-parabolic laws were also found in laboratory and astrophysical
plasmas (see for example Labit et al. 2007; Krommes 2008; Sattin et al. 2009; Garcia
2012; Guszejnov et al. 2013; Mezaoui, Hamza & Jayachandran 2014; Furno et al.
2015; Miranda et al. 2018). More recently, Sladkomedova et al. (2023) analyzed the
intermittency of the density in MAST (Mega Ampere Spherical Tokamak) plasmas,
and found that the data agrees with the K(S) model given by Garcia (2012) (see also
Guszejnov et al. 2013; Losada, Theodorsen & Garcia 2023).

1

Detailed knowledge of intermittency in plasmas and turbulent systems in general
may lead to a better understanding of their PDFs and of the dissipation mechanisms
at play. It is in this context that we want to examine in this paper the intermittent
properties of MHD through the possible relationship between excess kurtosis and
skewness for the velocity and magnetic field, as well as for their local dissipation.
MHD has, of course, many different regimes, and we concentrate here on one sub-
set, namely that of the fast dynamo in its nonlinear phase and at moderate Reynolds
number for which long runs are available, up to in excess of 105τnl , where

τnl = Lint/Vrms (1.1)

is the turn-over time of the turbulence based on the large-scale velocity Vrms and on
the integral length scale Lint. In the next section are written the equations and defi-
nitions needed for our analysis of numerical MHD data for a fast dynamo regime,

1The model is based on moments up to fourth order as well as on an estimate of the number of the intermittent
events that are observed simultaneously.
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as well as information on the direct numerical simulations (DNSs) employed herein.
In § 3, we analyze the numerical results, and in § 4 we give an interpretation of them
within a specific model of intermittency. The last section presents a discussion and
our conclusions.

2. Equations and numerical set-up
2.1. Equations and definitions

The equations for MHD in the incompressible case are written as usual as

[∂t + u · ∇]u ≡ Dtu = −∇P� + b · ∇b + ν�u + FV , (2.1)

[∂t + u · ∇]b ≡ Dtb = b · ∇u + η�b, (2.2)

together with ∇ · u = 0, ∇ · b = 0; here, u, b are the velocity and magnetic field (in
Alfvén velocity units), P� is the total pressure, ν, η are the viscosity and magnetic dif-
fusivity and FV is a forcing term. We will use in this paper two types of forcing. The
first one is the ABC (Arnold–Beltrami–Childress) forcing, which is a superposition
of Beltrami vortices and thus fully helical; it is defined as

f ABC = [cos y + sin z] x̂ + [sin x + cos z] ŷ + [cos x + sin y] ẑ. (2.3)

The ABC flow is an eigenfunction of the curl, and it is an exact solution of the Euler
equations; thus, for large enough viscosity, it is stable but turbulence develops as
the Reynolds number RV increases. We also take the Taylor–Green (TG) forcing
written as

f TG = f tg
0

{
[sin x cos y cos z] x̂ − [cos x sin y cos z] ŷ + 0 ẑ

}
, (2.4)

with f tg
0 = 3. This forcing is globally non-helical, but it can be viewed in fact as an

assembly of helical patches of both signs and varied intensities.
We solved numerically our MHD system in a fully periodic box using a classic

pseudo-spectral solver, involving a 2/3 dealiasing technique with a parallel CPU-
MPI code (CUBBY; Ponty et al. 2005). With these two forcings, we compute four
simulations altogether, for up to hundreds of thousands of eddy turn-over times, and
we record the same number of snapshots for the three-dimensional field components
for v and b. Some of the data and a few of the statistical properties of these runs are
given in table 1.

2.2. Brief description of the runs
The dynamo problem, concerning the generation of magnetic fields at both large

and small scales, is a long-standing topic (see Brandenburg & Subramanian 2005;
Rincon 2019 for thorough recent reviews). In the context of this paper, we analyze
four simulation runs, focusing on the turbulent dynamo regime. In these simulations,
the (fast) dynamo is triggered when the magnetic Reynolds number RM exceeds a
threshold that depends on the magnetic Prandtl number Pm = ν/η (Ponty et al.
2005), as seen in run TG3. Sub-critical dynamos can also be observed, where mag-
netically induced changes to the velocity field play a role, such as in run TG1, which
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Run – np ν RV Rλ RN Tmax τnl RM Pm r
TG1 – 64 0.07 65.5 25.5 2.98 50 × 103 2.23 111 0.7 1.05
TG3 – 64 0.1 60. 24.3 3.35 130 × 103 1.86 430 3.3 5.26
ABC1 – 64 0.16 210. 45.8 2.4 60 × 103 1.14 32 1.45 1.18
ABC2 – 64 0.2 175. 41. 1.4 314.254 × 103 1.12 21 1.42 1.21

TABLE 1. Characteristics of the runs, with the linear resolution np of the cubic grid, ν the vis-
cosity, the Reynolds number RV = LintVrms/ν and Taylor Reynolds number Rλ = λVrms/ν;
RN = ηvnp/3 is the so-called Kaneda criterion based on the resolution in terms of the
Kolmogorov dissipation length ηv. TG denotes Taylor– Green runs, and ABC denotes ABC
runs (see text). For each run, Tmax is its total duration, with τnl in these units between 1 and
2. For the magnetic variables, we give the magnetic Reynolds number RM = LintVrms/η, the
magnetic Prandtl number Pm = ν/η and r = RM/RC

M is the ratio of the magnetic Reynolds
number to the (approximate) critical value for the threshold of the dynamo. All these
non-dimensional numbers need different definition of scales, like the integral scale Lint =
2π

∑
E(k)/k/

∑
E(k) defined using the isotropic energy spectrum computed along the simu-

lation at each wavenumber k, the Taylor scale λ = √
10ηvR

1/4
V = √

10LintR
−1/2
V in the inertial

range and the Kolmogorov scale ηv = [ εv
ν3 ]−1/4 = LintR

−3/4
V at the onset of the dissipation

range. We need also one characteristic velocity which is usually taken as the root mean square
of the kinetic energy Vrms = √

2
∑

E(k). The nonlinear time is taken as τnl = Lint/Vrms. All
the scales and velocity are averaged in time as the simulations develop.

is close to the onset of dynamo action, and living on the sub-critical branch (Ponty
et al. 2007). It is also worth noting that the Lorenz force’s feedback on the velocity
field can influence the so-called ‘on–off’ intermittency of the dynamo, as explored in
detail by Alexakis & Ponty (2008) in the context of the ABC runs ABC1 and ABC2.
These runs are notable for their short off phases, during which the magnetic field
becomes weak enough to revert the system to a hydrodynamic state. The dynamo
comes back quickly, with a return to an MHD equilibrium (see figure 1 below). We
thus finally have two different types of dynamo turbulence, with a large amount of
fluctuations which are analyzed in the next sections, examining the behavior of the
third- and fourth-order normalized moment statistics using the full-space temporal
field data.

2.2.3. Analysis of the results
3.1. Field gradient tensors, skewness and kurtosis

Concerning the data points for measurements, which must be statistically inde-
pendent, they are taken approximately every τnl ; we recall that measurement errors
go as

√
6/Ns, with Ns the number of independent data points (see e.g. Sura &

Sardeshmukh 2008). Large samples are needed also because a parabolic fit is quite
sensitive to extreme values. Note that it is shown in (Wan et al. 2010), in the con-
text of two-dimensional (2-D) MHD turbulence, that an estimate of the kurtosis at
small scales requires, in the framework of the DNSs analyzed in that paper, that the
(Kolmogorov) dissipation scale be at least twice as large as the cutoff kmax = np/3;
this condition is well fulfilled by the runs of table 1 (see parameter RN ).

We analyze the data using the point-wise rates of dissipation of the kinetic and
magnetic energy, εv(x), εm(x). They are expressed in terms of the symmetric part of
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the velocity gradient tensor, namely the strain tensor Sv
ij

Sv
ij(x) = ∂jui(x) + ∂iuj(x)

2
; εv(x) = 2ν�ijSv

ij(x)Sv
ij(x) (3.1)

and of the magnetic current density, viz. εm(x) = ηj2(x). For completeness, we also
define the symmetric part of the magnetic field gradient tensor, namely

Sm
ij (x) = ∂jbi(x) + ∂ibj(x)

2
; σm(x) = �ijSm

ij (x)Sm
ij (x). (3.2)

Note that Sm
ij is a pseudo (axial) tensor. The standard expressions for the integrated

(space-averaged) kinetic, magnetic and total energy dissipation rates, can respectively
be written also as

εV = ν
〈|ω|2〉; εM = η

〈|j2|〉 εT = εV + εM (3.3)

with ω = ∇ × u the vorticity. Finally, the skewness and excess kurtosis are written
below for a scalar field f , with Sf = 0, Kf = 0 for a Gaussian distribution, with the
kurtosis (or flatness) being defined as Ff = Kf + 3

Sf = 〈
f 3〉/〈 f 2〉3/2

, Kf = 〈
f 4〉/〈 f 2〉2 − 3. (3.4)

3.2. Some models for K(S) relations
A K(S) parabolic law has been derived explicitly in Sura & Sardeshmukh (2008)

for a model of oceanic sea-surface temperature anomalies, based on the dynamics
of a specific linear Langevin model with both additive and multiplicative noises.
Analyzing the corresponding Fokker–Planck equation for the stationary PDF, these
authors can show analytically that, in the limit of weak multiplicative noise, one has
K(S) = 3S2/2. Multiple other studies show the plausibility of a Langevin model for
parabolic K(S) behaviors in different contexts as exemplified e.g. in Hasselmann
(1962) and Sattin et al. (2009) (see also Pouquet et al. (2025) for nonlinear Langevin
models). Note that, in a Langevin equation, in a sense, one is getting rid of the
closure problem for turbulent motions since it is linear, with the complex nonlinear
small-scale dynamics bundled up in a rapid stochastic forcing with an assumption of
(mostly) local interactions among these fast motions.

In fact, models in the framework of fusion plasmas have also been written, for
example in the context of magnetically confined experiments. In Garcia (2012),
the dynamics, as for dissipation events, is viewed as a random sequence of bursts
as opposed to a quasi-continuum. These bursts are occurring independently and
following a Poisson process. When taking for the shape of these bursts a sharp
rise and a slow exponential decay, one can compute K(S) relations which, for an
exponential distribution of burst amplitudes, becomes K(S) = 3/2(S2 − 1).

3.3. Collecting the spatio-temporal data for further analysis
Our methodology is the following. For each field variable at a fixed observation

time TO, as for the vertical component of the velocity vz(x, TO), or the magnetic
energy dissipation ηj2(x, TO), the data are collected roughly every turn-over time
τnl , for in excess of 5 × 104 outputs, as shown in column Tmax in table 1. For each
full-cube temporal data output at TO the spatially dependent 3-D fields we analyze
are computed point-wise at each x location in the n3

p data cube. The PDFs are
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FIGURE 1. Run ABC2: temporal evolutions, with kinetic variables in blue and magnetic ones in
red. Top, left and right: kinetic energy and its dissipation, εv. Middle, left and right: magnetic
energy and its dissipation, εm = η( j2). Note the different units on axes, and the lin–log scale
for magnetic energy. Bottom: probability density functions of the kinetic and magnetic energies
(two left plots), and of their dissipation (two right plots), with lin–log plots used for the latter.

FIGURE 2. Similar plots as in figure 1 but now for the TG3 run.

constructed for these various fields, at that fixed time TO, and their second, third
and fourth moments are evaluated to yield skewness and kurtosis for that time index
TO. These data are then assembled in K(S) plots for the different physical variables
of interest. In figures 3 and 4, the time arrow of the data is indicated by the color
of the points in the scatter plots, with a rainbow code as given by the color bar at
the left of the plots, with purple at early times and red at late times. We note that,
having in excess of 5 × 104 time stamps T (i)

O for all runs, the error on the skewness
is less than 0.025, and twice that for the kurtosis. As expected, these systems achieve
statistical equilibria rapidly, in a few τnl (see figures 1 and 2 giving the whole time
span of the runs for the kinetic and magnetic energies).
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Note that this methodology does not correspond to a spatial analysis of intermit-
tency at a fixed time, such as the first maximum of dissipation, given the moderate
spatial resolution of the runs analyzed herein. This would lead to a study of the
localization and intensity of extreme events at that time, but this is not the purpose
of this study. Rather, we instead consider solely here the statistical variations over
long times of the spatial intermittency of several field statistics in a global way. We
do that in terms of overall variation of non-dimensionalized moments of various
functionals of the velocity and magnetic fields as they evolve in time. With samples
taken roughly every turn-over time, the statistical data points can be considered as
independent. This leads to an investigation of the scatter in values of both K and S
for a sample of field functionals, and thus of the K(S) relationships that may emerge
for them, with each point on the scatter plots of figures 3 and 4 corresponding to
a given TO. We finally note that these analyses require substantial storage capabil-
ities even at moderate spatial resolutions, so that the various statistical variables of
interest and their moments are better computed a priori, and stored as the runs
progress.

3.4. Overall data analysis
We give for the ABC2 flow (figure 1) and for the TG3 case (figure 2) the temporal

evolution of the kinetic (top) and magnetic (middle) energy as a function of time on
the left, and on the right of their respective total dissipations, εV ,M . Note that time
is expressed in output counts, with a turn-over time being roughly twice that. At
the bottom are given the energy PDFs for the velocity (blue, leftmost) and the
magnetic field (red, rightmost plots.) In all cases, there are sustained fluctuations in
the amplitude of the fields, and in the case of the ABC run, lapses in both kinetic and
magnetic energy corresponding to the on–off mechanism. This is directly related to
the fact that the PDFs, in that case, have two relative maxima (with one peak close
to zero for the magnetic field), whereas in the case of the TG forcing, the structure
of the PDFs is closer to being unimodal. We note that exponential fits in the case
of the dissipation fields are plausible, but not yet very strongly marked given the
moderate range of Reynolds numbers in these runs.

Figure 3 gives K(S) for various fields; at top, we display the K(S) relationship
for the z-component of the velocity, the square vorticity and the kinetic energy
dissipation, namely Kvz(x), Kω2(x) and Kεv(x). At bottom we plot the equivalent
fields for the magnetic induction, namely Kbz(x), Kσm(x) and Kηj2(x). The blue lines
correspond to K = [3/2][S2 − 1] as mentioned before (see § 3.2).

We note the following: whereas for NS turbulence, the three components of the
velocity field are Gaussian with the K(S) relation centered on the (0, 0) point, here,
the peak in values for K at S ≈ 0 for vz is up to K ≈ 14, and rather narrowly cen-
tered around Svz ≈ 0; high K values are also present for bz. The hydrodynamic case
analyzed in Pouquet et al. (2023) is computed at comparable Rλ and np (but not
Tmax), and both S and K for the velocity are close to 0. On the other hand, for
stratified flows with or without rotation, the vertical component of the velocity, vz,
can have high kurtosis and high values itself; this is associated with the intermittency
of dissipation because of the variability of the system dominated by waves with the
sudden development of small dissipative scales through shear-related instabilities.
For this MHD run, the x and y components of the velocity behave approximately
in the same way as vz (not shown), with a skewness comparable to that of vz but
smaller kurtosis.
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FIGURE 3. Top: for run TG3, K(S) for the vertical velocity vz (left), the square vorticity density
ω2 (middle) and the point-wise kinetic energy dissipation εv (right). Bottom: K(S) for bz (left),
σm (middle) and ηj2 (right). The color bar at left indicates the temporal clock in units of turn-over
times, with early (late) times in blue (red). The blue lines follow K(S) = 3/2[S2 − 1].

The symmetric and anti-symmetric parts of both the velocity and magnetic field
gradient tensors have both high skewness and high kurtosis and for them, a quasi-
parabolic fit is appropriate. The magnetic dissipation has higher kurtosis and thus is
likely significantly more intermittent than its kinetic counterpart, and similarly for σm
and vorticity. On the other hand, both kinetic and magnetic dissipations have lower
skewness and kurtosis than for the other part of their gradient tensors, although their
statistics overall are similar. We recall that double exponential (Laplace), or Weibull
distributions have small S of either sign and high kurtosis (Bertin & Clusel (2006);
Biri, Scharffenberg & Stammer 2015; 2016). In that context, we note that it is shown
in Sorriso-Valvo et al. (2018) that a proxy of energy transfer for the solar wind can be
defined based on exact laws for MHD corresponding to the conservation of energy
and cross-helicity HC = 〈v · b〉; these proxy fields display high intermittency in Helios
2 (and Ulysses) data, with plausible stretched exponential fits. A final remark is that
data points with [K, S] ≈ 0 must be dominated by random noise at these times; they
could correspond to relaxation intervals following sharp bursts in energy dissipation.

We now check whether this behavior is observed as well for another type of
forcing. In figure 4 are plotted the K(S) relationships at the top for vz (left), ω2

(middle) and εv (right) and (middle row), bz (left), σm (middle) and ηj2 (right), as in
figure 3 but now for run ABC2 with a fully helical ABC forcing. Values for (S, K)
for both runs are comparable except for the vertical component of the velocity due
to its specific structure. We added in the last row of figure 4 the K(S) plots for
the magnetic energy (left) and σm (right) for the same run, and using now log–log
coordinates. Power laws are conspicuous above some threshold in skewness, with
Em ≈ 0.96S2.20, σm ≈ 0.96S2.25, ηj2 ≈ 1.05S2.17.

Finally, due to the strong symmetries of the initial conditions and forcing of the
dynamos analyzed in this paper, one could wonder whether the addition of a small
noise would change the results. On the other hand, in view of the length of the
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FIGURE 4. The first two rows are the same as figure 3 for run ABC2 with RV ≈ 175 and Tmax ≈
3.14 × 105. Bottom: K(S) is plotted for the magnetic energy Em (left) and for the symmetric part
of the magnetic field gradient tensor σm (right), using now log–log coordinates. Approximate
fits give for both α ≈ 2.2, κ ≈ 1.0.

computations, well beyond what can be estimated for a reasonable Lyapounov time
of separation of trajectories, it is unlikely that the overall results, and in particular the
quasi-parabolic law for dissipation, would be altered. Indeed, one can find estimates
of the first Lyapounov exponent λ1, in the ABC dynamo for example, with λ1 ∼
0.073 for a run with RV ≈ 60, PM = 4, comparable to what we have here (Zienicke,
Politano & Pouquet 1998; Alexakis & Ponty 2008), meaning that, after roughly
14τnl , the initial conditions have been forgotten.

4. Kurtosis–skewness law as given by classical intermittency models

We can in fact compute the scaling exponent αf in the relationship K(S) ∼ Sαf ,
assuming the usual formulation for the structure functions of order p for a scalar
field f , namely the field differences over a distance r, 〈δf (r)p〉 ∼ rζp ; one obtains for
αf

αf = ζ4 − 2ζ2

ζ3 − 3
2ζ2

. (4.1)

Within the framework of the standard multi-fractal She & Lévêque (1994) (SL)
model for fluids (indicated by the index slf), and generalized for MHD in Grauer,
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FIGURE 5. Log–log plot for |K|(|S|) = κ|S|α , runs TG3 (top) and ABC2 (bottom), for kinetic
(left) and magnetic (right) dissipation. Thresholds in S are displayed in different colors, and
similarly for the power-law fits, as indicated in each inset.

Krug & Mariani (1994) and Politano & Pouquet (1995) (index slm), one has

ζ slf
p =p

9
+ 2

[
1 −

(
2

3

)p/3
]

; αslf = 2[1 − 2(2/3)2/3 + (2/3)4/3]

7/3 − 3(2/3)2/3
≈ 2.56 ; (4.2)

ζ slm
p =p

8
+ 1 −

(
1

2

)p/4

; αslm = 3 − 4(1/2)1/2

1 + 2(1/2)3/4 − 3(1/2)1/2
≈ 2.53. (4.3)

In building these SL models for fluid turbulence (slf) and MHD (slm), an assump-
tion is made that a hierarchy of flux structures exists compatible with a Kolmogorov
transfer time scale and with vortex filaments (or in MHD, an isotropic Iroshnikov–
Kraichnan wave–eddy interaction and current sheets). This leads to a specific
nonlinear relation in p for the ζps. Note that a parabolic scaling, α = 2 is obtained
when considering the generalized versions of these log-Poisson models – derived
in Politano & Pouquet (1995) both for fluids and for MHD – as the intermit-
tency becomes maximal with extreme flux structures whose geometrical signature
disappears in the expression of α (see Pouquet et al. 2025).

In this context, we compute power-law fits, |K| = κ|S|α , (as displayed in figures 5
and 6) for the TG3 and ABC2 runs for the kinetic and magnetic dissipations, and
for both full and thresholded data. There are clear variations of α with the strength
of the intermittency as evaluated through the level of the skewness. Specifically, the
chosen thresholds are S < 2 (black), 2 � S < 3 (blue), 3 � S < 5 (green) and S � 5
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(red). Power-law fits in these intervals are given using the same colors. The high
S, K values reached here are related to the very long integration times allowing for
a thorough exploration of configuration space. We note that the velocity field has a
broad range with non-intermittent values (black dots) in the sense that both S and
K are quite low; it also undergoes a change of sign of the skewness at low values
for TG3. We also observe that S and K can be substantially higher for ηj2 than
for the point-wise kinetic energy dissipation, and with less scatter for K at a given
S. This difference might be related to the dynamo that controls the behavior of
the magnetic field and its dissipation, whereas the velocity, at these resolutions, still
feels the effect of the forcing, but the fit that includes these low-S points does not
represent the behavior of the more intermittent data.

Skewness and excess kurtosis can be negative, which is why absolute values are
used to visualize the realizations. It is important to mention that Fisher’s definition is
applied here (where a normal distribution corresponds to zero), then negative values
(above −3) are common. For magnetic field quantities, the percentage of negative
skewness (S) or kurtosis (K) is nearly zero. In contrast, the skewness of the velocity
dissipation rate εv can reach up to 2 % negative values across all realizations (thus
represent only few black points in figure 5). Only in the ABC2 case, the proportion of
negative and positive kurtosis values of the velocity dissipation becomes equivalent.

We give some more quantitative information in figure 6, looking at variations with
threshold in skewness of the power-law index α for the dissipation fields, namely ηj2
(left) and εv (right) for the two ABC runs (top) and the two TG runs (bottom); these
runs are identified in the inserts by line and color.

We note first that the run TG3 has a higher RM , and the two ABC runs have
higher Rλ. We also note that the overall ranges of variations for the power-law index
is lesser for the TG runs than for the ABC runs, probably due to the fact that the TG
run is more developed, and the effect of the forcing is lesser. The power-law index
for εv for run ABC2 has a substantially larger range of variation than for ηj2, with
0+ < αεv � 5.0 overall, versus 1.95 < αj2 � 2.17. In general, rather abrupt changes in
the values of α (and κ , not shown) occur for S � 0.5, i.e. when turbulent motions
develop locally. For the current, αηj2 decreases systematically towards αηj2 ≈ 2 when
the threshold in Sηj2 is increased. We also note that we see a systematic decreasing
trend in α towards a value of 2 or slightly lower, a value that can be recovered
with the extension of the SL model to more varied dissipative structures (Pouquet
et al. (2025)). Finally, the constant κ (not shown) is of order unity in all cases, and
slightly increases with threshold as long as enough data are available. We also note
its quasi-constancy at lower S values.

A common feature of all these plots is that there are notable variations with
threshold in S, starting rather abruptly in the case of the ABC flows. This could
indicate an effect on the velocity of the influence of the forcing at these moderate
Reynolds numbers and that the velocity is not necessarily changed by the magnetic
field which remains somewhat weak (see figures 1 and 2 and table 1). Indeed, with
the ratio r = RM/RC

M ≈ 1+ for all runs except run TG3 (see table 1), we are still
rather close to the threshold of the onset of the dynamo.

4.5. Discussion, conclusion and perspectives

We have found in this paper that, rather close to the threshold of the fast dynamo
regime, a now classical quasi-parabolic behavior between kurtosis and skewness is
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FIGURE 6. The|K(S)| ∼ κ|S|α fit: variations with filter threshold in S of α for ηj2 (left) and εV
(right) for the ABC (top) and TG (bottom) flows; runs are differentiated by their colored lines.

present for kinetic and magnetic variables. The numerical data we analyzed repre-
sent but one aspect of the study of intermittency in the dynamo regime, and many
questions remain. One issue concerns the effect a fully turbulent velocity will have
on K(S) scaling and the turbulence of the magnetic field itself. For example, using
wavelets, Camporeale et al. (2018) could estimate in high-resolution 2-D DNS of
Hall-MHD that only 25 % of the volume supports 50 % of the energy transfer, giv-
ing thus a quantitative estimate of the intermittency of energy dissipation; we note
that, for stratified fluids, this proportion can go as low as 11 % of the kinetic energy
dissipation for high kurtosis of the vertical velocity (Marino et al. 2022). It will be
of interest to examine as well these statistics in the case of fast dynamos at higher
Reynolds numbers.

Another question is whether the intermittency of the early dissipation range domi-
nates the statistics, at least at moderate Reynolds numbers. Indeed, one could argue
that the intermittency of the dissipation is mostly located in the beginning of the
range, due to the ensuing fast decay. In Wu et al. (2023), a near-dissipation range
intermittency is examined using solar wind data obtained with the Parker Solar
Probe. The authors conclude that they find evidence for log-Poisson scaling as mod-
eled for MHD in Grauer et al. (1994); Politano & Pouquet (1995), and that such
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structures are also almost entirely responsible for the intermittency anisotropy (see
also Bian & Li 2024). This may be consistent with stating, as developed already in
Kraichnan (1967), that most of the intermittency is in fact at the beginning of the
dissipative range.

Another issue is whether or not there is a dynamical consequence of K(S) being
close to its Cauchy–Schwarz limit. These inequalities linking K and S can be viewed
as a limitation both on skewness (which has to be smaller than some value) and
kurtosis, which cannot be too small. It shows that non-Gaussianity and intermit-
tency are unavoidable (except for the trivial (K = 0, S = 0) solution), but also that
intermittency is limited in the sense that K and S are not independent, and at least
for the NS case, the skewness is constrained by the exact law stemming from energy
conservation (Kolmogorov 1941), the laws in MHD involving cross-correlations (see
for a recent review Marino & Sorriso-Valvo 2023). Furthermore, as noted by several
authors, K(S) laws may put some limitation on the type of PDFs that a particular
intermittent field follows. Similarly, some of these K(S) relationships may contribute
insight as to the relevance of large eddy simulation parametrizations by providing
constraints on the flow characteristics.

The role of anisotropy in interpreting the dynamics of turbulent flows is com-
plex, including at larger RV such as that encountered in the atmosphere (Lovejoy,
Schertzer & Stanway 2001). For example, it is shown in Galtier (2023) that it affects
in different ways the amplitude of the energy distribution and the spectral indices,
so more work will be needed in that direction as well; we already know that, for
anisotropic fluid flows in the presence of stratification, the skewness and kurtosis
of velocity components can be direction-dependent (Bos, Liechtenstein & Schneider
2007; see also Homann et al. 2014 for the fast dynamo), and that anisotropic scaling
laws can be developed phenomenologically and found observationally (Nazarenko
& Schekochihin 2011; Bian & Li 2024).

When the velocity field is chaotic but not yet fully turbulent, and close to threshold
for dynamo action, Sweet et al. (2001) identified a temporal bursty ‘on–off’ behavior
of the dynamo-generated magnetic field which grows on average linearly with the
control parameter, i.e. the distance in RM from the threshold (see also Ponty et al.
2007; Alexakis & Ponty 2008, but these authors did not give indications on the
behavior of the first few moments of the growing field). In Alexakis & Ponty (2008),
the Lorentz force feedback on the flow is studied in detail with DNS ran for up to
105τnl and for various PM . They find that the Lorentz force strongly modifies the
temporal evolution of the growing field through a control of the noise. We already
know that the noise can alter the coefficients in a parabolic relation (Theodorsen,
Garcia & Rypdal 2017; Losada et al. 2023), so we might be able to observe a
change of scaling once we enter a turbulent saturation regime for the dynamo at
higher Reynolds numbers, as we did for stratified flows (Pouquet et al. 2023). This
is left for future work.
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