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Abstract

Finite amplitude oscillatory convection rolls in the form of travelling waves are studied
for a horizontal layer of a low Prandtl number fluid heated from below and rotating
rapidly about a vertical axis. The results of the stability and nonlinear analyses indicate
that there is no subcritical instability and that the oscillatory rolls are unstable for the
ranges of the Prandtl number and the rotation rate considered in this paper.

1. Introduction

This paper studies finite amplitude oscillatory convection rolls in the form of
travelling waves and the subsequent stability analysis in a horizontally infinite
layer of fluid with a low Prandtl number P rotating rapidly about a vertical axis.
Since P is small and the rotation parameter T is large, the onset of convection
occurs in the form of an oscillatory mode (Chandrasekhar [2]). The subsequent
nonlinear time dependent and stability problem of the present investigation is
solved using a perturbation method similar to that initiated by Schluter et al. [8].
Using the method of Schluter et al., Kuppers and Lortz [5] and Kuppers [4]
solved the finite amplitude steady problem in the rotating case and found that all
the steady solutions are unstable for T beyond a critical value, TC. Hence, if for
T > TC the Rayleigh number R is increased from a subcritical value, then there is a
transition from pure conduction to a time dependent convective flow. The
problem of the physically realized solutions for P > 1 (where oscillatory motion is
not possible at the onset of convection [2]) was attacked by Busse and Clever [1].
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[21 Overstable convection rolls 407

They demonstrated that time dependent solutions in the form of periodic nonlin-
ear oscillations do indeed exist which depend on the initial conditions as well as
on the spectrum of small disturbances. They also pointed out that their theoretical
model represents a manifold of solutions which are all unstable and replace each
other continuously. The problem of convection in a rotating fluid that offers a
simple model exhibiting such a basic property of turbulence is, therefore, of
theoretical interest for further understanding the features of turbulent fluid
systems.

The present study is concerned with another kind of time dependent flow: the
finite amplitude development of the linear effect of the so-called overstability. For
the case of the time dependent convection rolls in the form of travelling waves,
the nonlinear properties of the motion for the Rayleigh number R close to its
critical value ROc (based on the linear theory) is studied and the stability of the
oscillatory rolls with respect to all the disturbances in the form of rolls which are
inclined at arbitrary angles to the original oscillatory rolls are investigated. All
such disturbances are found to lead to instability, and the disturbances which are
along the original rolls are shown to have the largest growth rate. Such dis-
turbances are expected to be predominant in the subsequent nonlinear develop-
ment of the convective flow. Another important result of the present study is that
no subcritical instability is found for the ranges of P and r considered in this
paper. Hence, the finite amplitude oscillatory convection rolls exist only for
R > /*«,.

2. Oscillatory convective motion

We consider an infinite horizontal layer of a low Prandtl number fluid (such as
mercury) of depth d bounded above and below by two stress-free perfectly
conducting planes maintained at temperatures To and To + AT (with A71 > 0).
The fluid is rotating about the vertical axis with a constant angular velocity B. It
is known, [3], that, under the usual Boussinesq approximation, the non-dimen-
sional forms of the equations for momentum, heat and conservation of mass can
be simplified by using the general representation

u = Sv + €\P, (la)

6 = V X V X A , « = V X A , (lb)

for the velocity field u. Here A represents a unit vector in the vertical direction,
and v and \p are two scalar functions. The components 8v and e\p for u in (la) are
called the poloidal and toroidal components of the velocity vector, respectively.
Taking the vertical components of the curl and curl of the curl of the momentum
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equation and using (1) in the heat equation yields the following governing
equations:

A 2 [[v2( V2 - | - ) c - T | * - *] = 8 • [(8v + e*)- v(8v + e*)], (2a)

- P ^ j f l - / ? A 2u = P(6t;+ €«/<)• VO. (2c)

Here 6 is the derivation of temperature from its static value, P = v/D is the
Prandtl number, v is the kinematic viscosity, D is the thermal diffusivity,
R = ag&Td3/(Dv) is the Rayleigh number, a is the coefficient of thermal
expansion, g is the acceleration due to gravity, r = 2Sld2/v is the rotation
parameter (square root of the Taylor number), t is the time variable, and A 2 is the
horizontal Laplacian. The notations and equations introduced above are now
standard in thermal convection theory, and the reader is referred to [3] for some
details regarding these matters. The boundary conditions appropriate to stress-free
conducting surfaces at z = ±1/2 are known, [3], to be

v = tfv/dz2 = dxp/dz = 0 = 0. (3)

The stability of the solutions v, \p, 6 of (2)-(3) is investigated by superposing on
the solutions perturbations v, \p, 6 of infinitesimal amplitude and with addition of
a time dependence of the form exp(ar), where a is the growth rate. When the
governing equations and boundary conditions (2)-(3) are subtracted from the
corresponding equations and boundary conditions for the total dependent varia-
bles plus perturbation quantities and the resulting system is linearized with
respect to the perturbation quantities, we obtain the following linear stability
equations

= 8 • [(Sv + t>p )• v(Sv + e*p) + (dv + c^)- v(6«5 + £«£)],

(4a)

= e • [(86 + ei)- v(8v + e\p) + (8v + e^)- v(8v + €\£ )],

(4b)

V 2 - Pa- ^ 9 7 ) ^ - ^A2t5 = P[(8v + ej )• V0 + (8v + e^)- V0],
(4c)
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and the appropriate boundary conditions at z = ±1/2 are then clearly

6 = d2v/dz2 = dj/dz = (9 = 0. (5)

The systems (2)-(3) and (4)-(5) are analyzed by a method of small amplitude
perturbation similar to that initiated by Schluter et al. [8]. The dependent
variables, R and <o (frequency of the overstable motion) are expanded with respect
to an amplitude parameter /x,

(!>,*,*)= 1 Hm{vm,im,6m), (/{,«)= i ( . " K , « J . (6)
m—\ m=0

Using (6) in (2)-(3) yields a set of inhomogeneous systems the solvability
conditions of which determine Rm and um. As usual, these conditions mean that
the solutions of the inhomogeneous equations should be orthogonal to the
solutions of the adjoint homogeneous equations. Similarly, the stability equations
are solved by expanding v,4>,6 and o with respect to n as

{v,iJ)= 1 M"-'^™.*-.^). a = l ^ a m . (7)
m= \ m~0

The method of finite amplitude and stability analysis carried out in the present
study is of fairly standard nature ([8], [5]). Furthermore, the algebra involved in
the solutions of (2)-(3) and (4)-(5) is so extremely tedious and lengthy that only
the solutions to the lowest order in fi and the method of procedure will be
outlined here. The solutions vm, >pm, 6m (m > 1) and vm, >pm, 6m will not be written
explicitly.

The basic model treated in this paper is for a rapidly rotating system such that
P lies in the range

TM «/>«T-2/5 . (8)

The assumption (8) simplifies considerably the lengthy algebra involved in the
solutions of the nonlinear problem and is also physically realistic. It involves, as it
will be discussed in the next section, a rapidly rotating layer of a fluid such as
mercury.

By inserting (6) into (2)-(3) and disregarding the quadratic terms, we find that
the solutions of the linear system for the two-dimensional rolls, to the leading
order terms, can be written as

(»i ,*i ,«,)=[/ , (*)>g,(*) ,*,(z)] 2 cm[f,{yZ),gl(yZ),hl(y:)], (9a)

where

Y+ = k ( n T + Wor, (9b)
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fs(z) = & cos TTZ, gs(z) = W O ' T ^ , (9c)

h,(z) = 2a2fs,

/,('*) = cost*, g,(t*) = sin t* + u-0
]a2cost*, (9d)

h,(t*) = cost* + a"'Pwosin t*,

r is the horizontal position vector, km are horizontal wave number vectors
satisfying | k m |= a, and cm are constants. The quantities Ro and w2, which are
functions of P, r and the wave number a, are found from a characteristic
equation derived from (9) and the linear system of equations, and they can be
written in the following forms:

Ro = 2a4 + 2 ( / V T T ) V 2 , (10a)

ul = 7 T 2 T V 2 - a4. (10b)

These results are well known ([2]). The critical values of Ro, M2, and a for which
Rois minimized with respect to a are

ROC=3.2^\PTV)4/\ U>1 = a;W, ac=(PW2)l/\ (11)

In the following, we assume a = ac because we are mainly concerned in the
present study with the weakly nonlinear oscillatory motion of convection rolls
rather than the range of the wave numbers of the realized convection flows. We
also restrict ourselves to those disturbances with the wave numbers a = ac and
frequencies u — uc. Then the most critical disturbance which has the maximum
growth rate is found to be characterized by a0 = 0. By inserting (6)-(7) into
(4)-(5) and disregarding the quadratic terms, we find that the solutions of the
linear system for the disturbances, to the leading order terms, can be written as

x 1 {U/,(ynr)^,(Y:).^(Y^)] + 4[/,(y:),l,(r;),A,(Ym
+)]},

m= I

(12a)

where

* ) , (12b)

and cmand Em are arbitrary constants.
In contrast to the steady problem treated by Kuppers and Lortz [5], the linear

system in the present time dependent problem is not self adjoint, and the
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solvability conditions to be formed next require us to know two independent
particular solutions of the adjoint linear system

]0. (,3a)

(13b)

(13c)

which satisfy the boundary conditions (3). These are (labelled by the subscripts 11
and 12):

where

Ym = k m T - w o r . (14c)

The solvability conditions for the second order system of equations in ju. for the
oscillatory rolls which are given below are derived after multiplying the momen-
tum equations for the poloidal and toroidal components of velocity by vu and \pu

(I = 1,2), the heat equation by Rol6u, adding and integrating over the whole
volume of fluid, averaging in time over a period of 2IT/U0, and using the
appropriate boundary conditions. They are

R-o% <0,,A 2

+ (vu8 • (u, • Vu,) + $ue • (u, • Vu,) + / ^ ' P l V K • V«,)) = 0,

/ = 1,2.

(15a)

In a similar manner, the solvability conditions for the second order system of
equations in /x for the disturbances are derived and are given below.

0 = U 2 A | + ' ) 5 + ^ A [ + ]

+ (t3,,6- (u, • Vu, + u, • Vu,)

+ ^,,c • (u, • Vu, + u , • Vu,) + R-o
lP0u(ul • V0~, + u , • Vfl,)). 1= 1,2.

(15b)
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The triple products in (15) are zero due to the symmetry of the function fs(z). The
equations (15) then yield

/?, = w, = a, = 0. (16)

The solvability conditions for the third order systems of equations in /t for the
oscillatory rolls and the disturbances which are given below are derived by direct
analogy to that described above for the second order systems of equations in ii.

(u, • Vu2 + u 2 - Vu,)

+ R-0
lP6u(u] • V02 + u2- V 0 , ) ) = 0 , / = 1 , 2 ,

(17a)

+ ((VU8 + \pu€) • (u, • Vu 2 + u, • Vu 2 + u2 • Vu, + u2

+ R-o
lPdu(ut • V02 + u,- V62 + u2v0] + u 2 - V » , ) ) = 0 , / = 1,2.

(17b)

The triple products in (17) contain the horizontal averages of the functions
cos[(kn + km + k, - kp) • r] and cos[(kn - km + k; + kp) • r] which are non zero
only in the following cases respectively:

= n, l=-m; (lI)/=-n, p = m, p^n (18a)

and

(l)p = n, l=m; (II)/=-«, p = m, p^-n. (18b)

Using (18) in (17a) and after some considerable algebra, we find the following
results for the leading order terms:

R2 = 4-ya
6, (19a)

coj = (16«0)~Va4 - (6a4ylPio0R2, (19b)

c . , = c , = ± 1 / 2 . (19c)

Using (16) and (19a) in the expansion for R given in (6), we find that the
oscillatory motion occurs at R > ROc. Hence, there is no subcritical instability
and the motion is supercritical. Using (18) and (19c) in (17b) and after some
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lengthy algebra, we find the following system of equations for the leading order
terms

Soci = 3£_,, V - i = 3£, , (20a, b)

6c_, + 5 0 £ , = c,, 6c, + So£_, = C_,, (20c, d)

where

So = 8wo(2a2a2 - 3-'/?2)(7ra3)"2. (20e)

Equations (20a, b) and (20c, d) are resulted from (17b) for / = 1 and / = 2,
respectively. For the special disturbances for which £_, = £ , = 0 , then (20a, b)
imply that

So = 0 (21)

which holds for non-trivial solutions c_, and c,. Similarly if c_, = c, = 0, then
(20c, d) imply (21) which now holds for nontrivial solutions £_, and £ , . In the
general case, (20) yields

50
4 + 36S0

2 + 315 = 0 (22)

which is the characteristic equation for (20). The solutions to (22) are

S o =±(21) 1 / 2 7 , 5 0 = ± ( l 5 ) 1 / 2 7 . (23a, b)

It is clear that if (21) holds, then (20e) implies that

o2 = R2(6a2)i/2 (24)

However if (23) holds, then (20e) implies that

o2=± (16<oor'(21)1/27rV/ + R2(6a2)'\ (25a)

a2 = ± (16«0)"'(15)l /2wV/ + R2(6a2)~\ (25b)

Since either the expression (24) or the real parts of the expressions (25) for a2 are
positive, we have shown that the overstable rolls are unstable.

So far, the analysis has been restricted to disturbances whose wavenumber
vectors coincided with the basic vector of the overstable two-dimensional motion.
We now would like to consider the analysis for the disturbances whose wavenum-
ber vectors do not coincide with the basic vector of the original oscillatory rolls.
Defining the disturbance vector kr, the leading order terms of the equations for
a2, En and cn, after some lengthy algebra, can be written in the following forms:

- 0 , n = -r,r, (26a)

n, - m)c_n + 2woa-2Anicn + $,£_„ + BniEn - 0, n = -r, r,

(26b)
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where

m = a4u2, S, = a4a2 - 6^a2R2,

<t>ni=a-2(knk{), Hn,=a-2(knXk,). (27)

For the special disturbances for which E_r = Er = 0, then (26a) and (27) yield the
following solutions for o2:

o2 = a~4Br] + 6-]a-2R2, (28a)

a2 = -a'4(28Arl/3 + Brl) + 6" 'a-2«2 . (28b)

Using (27) in (28) and the fact that Anl (or Bn]) can have either sign, we find that
a2 becomes positive for all possible values of 4>rl (-1 < <j>rl < 1). The growth rate
o2 has its largest positive values for < ,̂ = 1. Similarly if cr = cr = 0, then (26b)
and (27) yield the following solutions for a2:

a2 = a~4Bri + (>-xa-2R2, (29a)

a2 = -a ~%i +6-]a-2R2. (29b)

Again a2 given by (29) is real and positive for all possible values of <j>rl, but the
maximum growth rates are now reached for < ,̂ = 12. For the general dis-
turbances of the type (12), (26) yields

(Sf- 25HS, + B2 + m2)

X [S2 + (2SAri/3 + 2Brl)St + Brl(2ZArt/3 + Brl)

+ m(m - 4a-2u0Ar])] = 0. (30)

Using (27) and (30), we find the following solutions for o2:

o2 = (6a2)~]R2 + a'4BA ± a-4ml, (31a)

a 2 = {- (\4Arl/3 + Br])

±[\96A2
r]/9 - m2 + 4a-2o>omAr]]

]/2 + a2R2/6)a-4. (31b)

Equation (31) indicates that a2 can have complex values, but the real part of a2 is
positive and reaches its maximum value for ^ , — 1. A simple calculation shows
that the maximum value of the growth rate of these latter disturbances is largest
among the growth rates of all the disturbances discussed in this section.
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3. Discussion

The expression (19a) for the coefficient R2 which is the largest nonlinear
correction term to ROc in the expansion (6) for R (since Rx — 0 by (16)) is clearly
positive. Hence, the oscillatory motion of the two-dimensional rolls is supercriti-
cal and occurs at R > ROc. There is, therefore, no subcritical instability. This
important result that the finite amplitude instability does not occur in the present
problem indicates that the fluid is not able to release sufficient amounts of
potential energy to compensate for the significant viscous dissipation resulting
from the finite amplitude growth. No disturbance can, therefore, grow in the
present problem to offset the effects of rotation and to maintain the convective
flow when the Rayleigh number is reduced below its critical value according to
linear theory.

The expression for the heat transported by the convective rolls, Hc, can be
evaluated using (9) and (19a). We have

Hc = p2R-] (<?u • A ) a n2a2
cP

2R-1 (vi6l >

s a2P2(RR2Y\R - R0c)(viei)=4(R - ROc)/Ra2. (32)

Using the expression for ac given by (11) in (32), we find that the heat transported
by convection is quite small and decreases with increasing P or T. These results
are expected since it is known [2] that oscillatory convection is not quite effective
at transporting heat and that viscous or coriolis forces have stabilizing effects on
the convective flow.

The expression (19b) for the coefficient w2 which is the largest nonlinear
correction to wOc in the expansion (6) for u (since co, = 0 by (16)) implies that the
frequency u is a function of the amplitude /x. Using (19a) in (19b), we find that to
the leading order term

16uOcW2 = <n2a*. (33)

This result means that the finite amplitude effects on the frequency has the same
sign as the linear frequency wOc. Hence for supercritical motion R > ROc, |w |>
| wOc | . Nonlinear processes, therefore, cause the period of overstable oscillations
to become smaller than that in the linear regime. Using (6), we find that to the
second order in /i

p2=R-2
l(R-ROc)^ail(U-ciOl). (34)

Equation (34) shows the effects of the nonlinear change in the frequency on the
amplitude of convection and subsequently on the heat transport. The change in
the frequency causes R2 to become positive and the motion becomes stable to
finite amplitude perturbations.
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Various kinds of disturbances which lead to instability of the oscillatory rolls
were discussed in Section 2. Some of these disturbances which may or may not be
along the oscillatory rolls have the same period of oscillations as that of the
overstable motion. The nonlinear effect on the frequency of some of the dis-
turbances which are along the oscillatory rolls is different from the nonlinear
effect on the frequency of the overstable motions. However only some of the
disturbances which are along the original rolls and have the same period of
oscillations as that of the overstable motion are the most dangerous ones. That is,
they have the largest positive growth rate among all the disturbances discussed in
Section 2, and are therefore amplified and will be predominant in the subsequent
nonlinear development of the time dependent flow field.

The growth rates of all the disturbances discussed in Section 2 are almost
independent of the period of the rolls' oscillations. Although oscillatory motion is
preferred in the present study, it is known to be inefficient at transporting heat.
Since the heat transported by convection is proportional to /*2, the frequency of
the rolls' oscillations is indeed expected to have no significant effect on the
growth of the amplitude of the disturbances.

The instability of the overstable motion and the amplification of the dis-
turbances having the maximum growth rate discussed in Section 2 are due to the
toroidal component exp of u given in (la) which dominates over the poloidal
components 8v of u given in (la) for asymptotically large T. This interesting
mathematical result seems to have a general validity (beyond the conditions (8))
for sufficiently large parameters T and P~l and can be followed from the
following discussion. It can be shown from (27) and (31) that the real part of a2

can be written as D*t -I- D°t, where £>/, and D/j are in general functions of <j>rl, Hri,
T and P. Now, D*x is symmetric with respect to subscripts r and 1 and satisfies the
properties £>/, = D\r — Ds_rV Further D°x is anti-symmetric with respect to sub-
script r and 1 and satisfies the following properties D"{ = -D°r — -D"r,. It can
also be shown (details are not given here) that the symmetric function £>/, is due
to the poloidal component 8v, while the anti-symmetric function D% is due to the
toroidal component e\p. When T and P~l are sufficiently large, Df\ is much larger
in magnitude than />/,. The sign of the growth rate of the disturbances is then the
same as the sign of Df\. Due to the anti-symmetries of the function D°x discussed
above, a disturbance whose wave number vector is either Kr or K_r causes the
function D"{ to become positive and consequently the overstable motion becomes
unstable. Using (1), we find that that vertical vorticity (Vxu) • A equals -A 2^ and
thus depends only on the toroidal component c^ or u. The instability of the
overstable motion discussed above is caused by the nonlinear terms in the
momentum equations and is due to e\p that generates a significant nonlinear
vorticity which counteracts the vorticity generated by the external constraint of
rotation.
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The assumption (8) made earlier in Section 2 for a rapidly rotating layer
implies of course that P is small. Mercury is a typical small Prandtl number fluid
which satisfies the condition (8). For mercury, P — 0.025, we find from (8) the
range for T for which the results of the present study apply

4 0 « T « ( 1 . 0 1 1 2 ) X 104. (34)

Veronis [9] considered the problem of overstable convective motion in the form
of standing waves in his study of small amplitude convection in a rotating low
Prandtl number fluid. He used a modified version of the method of Malkus and
Veronis [6] to determine the weakly nonlinear behavior of the flow and evaluated
numerically the finite amplitude effects for the convection cells. For mercury, he
found, for example, that in the range (34), Hc increases with T for oscillatory rolls.
This result does not agree with experimental evidence, [7], as well as with our
finding. He also found that Hc is quite small for the oscillatory rolls and that the
flow of mercury is not unstable subcritically. These results agree with our
findings.

Rossby [7] considered the problem of rotating mercury in his experimental
study of Benard convection. He observed a horizontal buckling of rolls that
eventually broke up into vorticities at sufficiently large T. Mercury was found to
be unstable and unsteady. He also found that Hc was quite small and decreases
with increasing r. These results are all in qualitative agreement with our present
results. An evidence found in [7] which is not predicted by the present study is the
existence of finite amplitude oscillatory instability for 134 < T < 316. It is,
however, quite possible that the value of T in this range is not large enough to
satisfy (34).

The above discussions indicate the need for further studies in the subject.
Although the present study is the first investigation of the nonlinear overstable
convection with its instability, its range of validity is rather restricted due to
condition (8) and the assumption that R is close to ROc. There are still many
problems which need to be studied particularly for the ranges of T and P other
than those considered in this paper.
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