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Abstract. We approach the dynamics in proto-stellar systems via the two-body problem asso-
ciated to an anisotropic Schwarzschild-type potential. On the basis of the natural symmetries
of the characteristic vector field, and using variational methods (particularly the classical lower-
semicontinuity method), we prove the existence of infinitely many families of symmetric periodic
orbits.
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1. Introduction
Dynamics in proto-stellar systems is a topic that can be tackled via anisotropic two-

body problems (Saslaw 1978). Actually, astronomy provides a much larger class of prob-
lems tractable by this model (e.g., Mioc et al. 2003).

The physical framework of our model is a central (proto-)star in fast rotation, hence
oblate, but still axisymmetric, surrounded by a nonuniformly dense accretion disk. We
are interested in the dynamics of a body that moves in the plane of the disk, without
gravitationally interacting with the disk particles, but being influenced by the nonuniform
(due to the presence of the disk) radiation of the central star that falls on the body.
The oblateness of the star, created by the fast rotation, leads to the existence of a
Schwarzschild-type potential. The influence of the disk makes the Newtonian-type term
of the potential to be anisotropic.

Our previous attmepts (Mioc et al. 2003) to prove the existence or nonexistence of
periodic orbits within such a Schwarzschild-type problem were unsuccessful. Here we
solve this problem, even if within a little bit restricted framework. To this end, we use
the natural symmetries of the problem, and a variational principle: the extrema of the
action integral are genuine periodic solutions.

In this paper we present results without proofs. A complete presentation will be pub-
lished elsewhere.

2. Basic equations and properties
The problem is described by a two-degrees-of-freedom system of ODE with the Hamil-

tonian H (q,p) = |p|2 /2 − W (q), in which the potential W : R
2\ {(0, 0)} → R is (cf.
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Mioc et al. 2003):

W (q1, q2) =
(
µq2

1 + q2
2

)−1/2
+ b

(
q2
1 + q2

2

)−3/2
, (2.1)

where µ > 0 and b > 0 are parameters. The presence of the disk and the oblateness
of the star lead to this expression of the potential inside the disk. The corresponding
Lagrangian, L (q,p) = |p|2 /2 + W (q), is always positive.

The equations of motion define the two-body problem dynamics in an anisotropic
plane, in which, for µ > 1, the attraction is the strongest in the q1-direction and the
weakest in the q2 -direction; for µ < 1 the situation is inverse. We consider, without loss
of generality, that µ > 1.

The model admits the integral of energy, but not the angular momentum integral
(because of the anisotropy).

An important property of the potential W is that it generates a strong force according
to Gordon’s (1975) definition (using an alternative definition, one immediately proves
that W (q) � b/ |q|2 for 0 < |q| < 1). This makes the variational methods easier to
apply.

Another important property is that the vector field that characterizes the problem
benefits of eight natural symmetries Si = Si (q1, q2, p1, p2, t) , i = 0, 7, as follows:

S0 = (q1, q2, p1, p2, t) = I (identity), S1 = (q1, q2,−p1,−p2,−t) ,

S2 = (q1,−q2,−p1, p2,−t) , S3 = (−q1, q2, p1,−p2,−t) ,

S4 = (q1,−q2, p1,−p2, t) , S5 = (−q1, q2,−p1, p2, t) , (2.2)
S6 = (−q1,−q2,−p1,−p2, t) , S7 = (−q1,−q2, p1, p2,−t)

It is easy to translate these symmetries in physical terms. For instance, S1 implies
that, for every solution, there is another solution with the same coordinates and with
inverse velocities, all in reversed time, and so forth.

3. Main steps
The anisotropy of the potential is a strongly destabilizing factor for the motion we

study. Within a slightly more general model (Mioc et al. 2003), we found collision/ejection-
type or escape/capture-type orbits, but did not succeed in proving the existence or nonex-
istence of periodic orbits. Here, taking into account those previous results, we use some
symmetries and topological constraints in connection with a variational principle to get
periodic orbits as extrema of the action. To this end, we resort to results concerning pe-
riodic solutions of fixed period for symmetric, singular, Lagrangian systems (Ambrosetti
and Coti Zelati 1993), as it is the case for the system associated to (2.1).

We first choose a value T > 0, and dwell upon the space of T -periodic C∞ cycles
f : [0, T ] → R

2. Let L2 be the space of square integrable functions, and let H1 be
the Sobolev space of all absolutely continuous T -periodic functions with L2 derivatives
defined almost everywhere.

The potential (2.1) is singular at (0, 0) (collision). Let Λ = {f ∈ H1 | f(t) �= (0, 0),
∀t ∈ [0, T ]} be the open subset of noncollisional cycles in H1. We define the winding
number w(f), which shows how many times the continuous cycle f winds around the
origin. It easily follows that Λ = ∪k∈ZΛk, with Λk = {f ∈ Λ | w(f) = k}. In other words,
the set of noncollisional cycles is partitioned by the winding number.

Coming back to the natural symmetries of the system, denote the subsets of H1 formed
by Si-symmetric cycles by Σi.
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As a first step, we proved that Σi, i ∈ {1, 2, 3, 7}, are Sobolev spaces, which are the
natural framework for finding periodic solutions by variational methods. Moreover, we
proved that H1 = Σ2 ⊕ Σ3 = Σ1 ⊕ Σ7 (orthogonal decomposition), hence such a couple
is sufficient to cover the whole loop space H1.

In the second step, in order to avoid cycles that pass through origin (collision) or have
zero winding number (escape or quasiperiodic orbits), we examined all subsets Σi. Only
Σ2 and Σ3 fulfil these requirements. With the above results, Σ2 and Σ3 can provide
periodic solutions for the whole H1.

We define now the action integral (whose extremal values will provide periodic orbits)
AT : Λ → R between the instants 0 and T , along a cycle f whose Euclidean coordinate
representation is q = (q1, q2) as

AT (f) =
∫ T

0

L (q (t) ,p (t)) dt, (3.1)

with the positive Lagrangian specified in Section 2. To obtain periodic solutions, we are
forced to minimize AT on subsets Λk of Λ, chosen via symmetries). After selecting a
suitable subset, we use the lower-semicontinuity method (e.g., Struwe 1996) to get a
minimizer in that subset, which we prove to be an extremal value of AT ..

A specification from the astronomer’s standpoint is necessary here: why the minimiza-
tion of the action leads to periodic orbits? Recall that the Lagrangian of our problem
is the sum of two positive terms: the kinetic energy K and the force function W (the
negative of the potential energy). Also note that K and W are not independent each
other, being related by the energy integral. Since K,W > 0, any minimization of their
sum involves the minimization of both K and W ; both push the trajectory away from
the field-generating centre. But the limit imposed by the fixed energy-level and by the
fixed value of T stops the orbit expansion to a finite value, which can lead to a periodic
orbit.

A new step concerns the connection between solutions of our problem and the extremals
(critical points) of AT . We proved that, if a cycle f is a critical point of AT on Λ, then
f is a classical periodic solution of the problem.

Next we showed that the elements for which the action is bounded are bounded away
from zero. This prevents critical points from being collisional solutions. Another property
of the action, the coercivity, avoids critical points at infinity. The fact that our procedure
also avoids quasiperiodic solutions makes our results lead to genuine periodic solutions.

4. Main results
Provided all previous results (Σi, i ∈ {1, 2, 3, 7}, are Sobolev spaces; H1 = Σ2 ⊕ Σ3 =

Σ1⊕Σ7; only the cycles belonging to Σ2 and Σ3 are noncollisional, nonescape, and do not
represent quasiperiodic orbits; Σ2 and Σ3 can provide periodic solutions for the whole
H1; the minimizer in a Λk subset is an extremal of the action; a cycle that is aa critical
point of AT is a classical periodic solution of the problem), we proved the following:

THEOREM 1. For any T > 0 and any k ∈ Z\ {0}, there exists at least one Si-
symmetric (i = 2, 3) periodic orbit with period T and winding number k.

THEOREM 2. By the existence theorems of a minimal period τ of an autonomous
system, and of a period τ/2 (e.g., Amann 1990), there exist infinitely many families of
distinct T -periodic orbits.
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Remark 3. Consider the present model to be a perturbation of the isotropic case (Stoica
and Mioc 1997) via the parameter µ > 1. This anisotropy, no matter how large its size,
deforms the Si-symmetric (i = 2, 3) periodic orbits of the isotropic problem, but does
not destroy them. This makes the symmetries Si (i = 2, 3) constitute an indicator of the
robustness of the system to perturbations.

5. Conclusions
From the astronomical point of view, a central proto-star in fast rotation (hence oblate),

surrounded by a nonhomogeneous accretion disk, and a body moving under this combined
influence constitute a good concrete situation to be studied via a two-body problem
associated to the anisotropic potential (2.1).

Our results prove that initially far orbits can collide with the central star or escape
from the system (cf. Mioc et al. 2003), but genuine periodic orbits exist, too.

Even if outside our framework, problems as dynamics and structure of planetary rings,
or satellite dynamics under the influence of the re-emitted solar/stellar radiation, can be
tackled via the same mathematical tools.

The results we presented add new features as regards structure of proto-stellar systems,
but can also serve to the understanding of the dynamics in some concrete situations in
the Solar system.
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