H. Nomoto Nagoya Math. J. Vol. 38 (1970), 21–25

ON A CLASS OF METRICAL AUTOMORPHISMS ON GAUSSIAN MEASURE SPACE

HISAO NOMOTO

To Professor KATUZI ONO on the occasion of his 60th birthday

1. Introduction. Let E be an infinite dimensional real nuclear space and H be its completion by a continuous Hilbertian norm || || of E. Then we have the relation

$$E \subset H \subset E^*$$

where E^* is the conjugate space of E. Consider a function $C(\xi)$ on E defined by the formula

(1) $C(\xi) = e^{-\|\xi\|^2/2}, \ \xi \in E.$

Then $C(\xi)$ is a positive definite and continuous function with C(0)=1. Therefore, by Bochner-Minlos' theorem, there exists a unique probability measure μ on E^* such that

(2)
$$\int_{E^*} e^{i \langle x, \xi \rangle} d\mu(x) = e^{-||\xi||^2/2}, \ \xi \in E,$$

where $\langle x, \xi \rangle$ being the canonical bilinear form. The measure μ is defined on the σ -algebra \mathcal{L} generated by all cylinder sets of E^* ([1]). We call μ a Gaussian measure.

Let O(H) be the group formed by all linear and orthogonal operators acting on H. After [3], we consider a subgroup O(E) of the group O(H)which is defined as the collection of all g's of O(H) having the property that each of g is a linear homeomorphism from E onto E. An operator gof O(E) is called a rotation of E. As is seen from the formula (2), the conjugate operator g^* of a rotation g is a metrical automorphism on the space (E^*, μ) . The purpose of this paper is to generalize this fact and we shall prove that

Received March 31 1969.

HISAO NOMOTO

(i) for each g of O(H) there exists an automorphism T_g on the space (E^*, μ) , with the group property

(ii) $T_{g_1}T_{g_2} = T_{g_1g_2} \pmod{0}$, for each g_1 and g_2 .

In the following section 2, we shall prepare lemmas used to prove the above assertions. In particular, we consider a unitary representation $(U_g, L_2(E^*, \mu))$ of the group O(H) and we make use it in section 3 for the proof of Theorem.

2. Preliminaries. In this section we shall give some preparatory lemmas used in the following. For details we refer to [2] and [3].

Let μ be the Gaussian measure on the space (E^*, \mathcal{G}) . We denote by $L_2 = L_2(E^*, \mu)$ the Hilbert space of all square integrable complex-valued functions with the inner product $(\varphi, \psi) = \int_{E^*} \varphi(x) \overline{\psi(x)} d\mu(x)$. Then we have the following lemmas.

LEMMA 1. The mapping γ from E into L_2 defined by $\gamma: \xi \longrightarrow \langle x, \xi \rangle$

can be extended to a linear isometric mapping from H into L_2 . Moreover, for each f of H, $\Upsilon(f)$ (we shall also denote it by $\langle x, f \rangle$) is a Gaussian random variable with mean 0 and variance $||f||^2$ ([3], Proposition 1).

LEMMA 2. The linear subspace M of L_2 spanned by $\{e^{i \langle x, f \rangle}; f \in H\}$ is dense in L_2 ([2], Lemma 2.1).

Let g be an orthogonal operator of H. We shall define a unitary operator U_g on L_2 by the following manner. First, we define U_g as an operator on M by the formula:

(3)
$$U_g(\sum_{k=1}^n a_k e^{i \langle x, f_k \rangle}) = \sum_{k=1}^n a_k e^{i \langle x, gf_k \rangle}, \quad f_k \in H, \quad k = 1, 2, \cdots, n.$$

Then, by lemma 1, we obtain the following relation:

(4)
$$(U_{g_1}(\sum_{k=1}^{n} a_k e^{i \langle x, f_k \rangle}), \ U_{g_2}(\sum_{l=1}^{m} b_l e^{i \langle x, h_l \rangle})) = \sum_{k=1}^{n} \sum_{l=1}^{m} a_k \bar{b}_l \exp\left\{-\frac{1}{2} \|g_1 f_k - g_2 h_l\|^2\right\},$$

where g_1 and g_2 being elements of O(H). In particular, putting $g_1 = g_2 = g$, we know that U_g preserves the inner product in M. Hence, by lemma 2,

22

 U_g can be extended to a unitary operator on L_2 . Then we have the following lemma.

LEMMA 3. The system $\{U_g, g \in O(H); L_2\}$ is a unitary representation of the group O(H):

(i)
$$U_{g_1}U_{g_2} = U_{g_1g_2}$$
,

and

(ii) the mapping $g \longrightarrow U_g$ is continuous, that is, if $g_{\nu}f \longrightarrow gf \ (\nu \rightarrow \infty)$ for any f of H, then $U_{g_{\nu}} \varphi \longrightarrow U_g \varphi(\nu \rightarrow \infty)$ for any φ of L_2 .

Proof. Since each operator U_g is unitary, (i) is obvious by definition (3) of U_g and the lemma 2. To prove (ii), it is enough to show that (iii) holds for φ with the form $\sum_{k=1}^{n} a_k e^{i \langle x, f_k \rangle}$. By the relation (4), we have

$$\begin{split} \|U_{g}\varphi - Ug_{\nu}\varphi\|^{2} &= 2\|\varphi\|^{2} - 2\sum_{k,l=1}^{n} a_{k}\bar{a}_{l} \exp\left\{-\frac{1}{2}\|gf_{k} - g_{\nu}f_{l}\|^{2}\right\}\\ &\xrightarrow[(\nu\to\infty)]{} 2\|\varphi\|^{2} - 2\sum_{k,l=1}^{n} a_{k}\bar{a}_{l} \exp\left\{-\frac{1}{2}\|gf_{k} - gf_{l}\|^{2}\right\} = 0 \end{split}$$

This proves the lemma.

3. The theorem. The purpose of this section is to prove the following theorem.

THEOREM. For any g of O(H) there exists a unique (mod 0) metrical automorphism T_g of the space (E^*, \mathcal{L}, μ) with the following properties:

(i)
$$U_g \varphi(x) = \varphi(T_g^{-1}x)$$
 (a.e.), $\varphi \in L_2$,

and

(ii) $T_{g_1}T_{g_2} = T_{g_1g_2} \pmod{0}$, for each g_1 and g_2 .

Proof. 1°. We put $U=U_g$ and prove that U is multiplicative: it holds that

(*)
$$U(\varphi \phi) = U\varphi \cdot U\phi$$

for any bounded measurable functions. By the definition (3) of U the relation (*) is obvious if both φ and ψ are functions in M. Suppose φ is bounded and ψ belongs to *M*. By lemma 2, there exists such a sequence $\{\varphi_n\}$ of functions in *M* that

$$\varphi_n \longrightarrow \varphi \quad (n \to \infty), \text{ in } L_2.$$

Then the following inequality (which holds almost everywhere)

$$\begin{split} |U(\varphi \psi) \left(x \right) - U\varphi(x) \cdot U\psi(x)| &\leq |U(\varphi \psi) \left(x \right) - U(\varphi_n \psi) \left(x \right)| \\ &+ |U(\varphi_n \psi) \left(x \right) - U\varphi_n(x) \cdot U\psi(x)| + |U\varphi_n(x) \cdot U\psi(x) - U\varphi(x) \cdot U\psi(x)| \end{split}$$

implies that

$$\begin{split} \|U(\varphi\phi) - U\varphi \cdot U\phi\|_{L_1} &\leq \|U(\varphi\phi) - U(\varphi_n\phi)\|_{L_1} + \|(U\varphi_n - U\varphi)U\phi\|_{L_1} \\ &\leq \|U(\varphi\phi) - U(\varphi_n\phi)\| + \|(U\varphi_n - U\varphi)U\phi\| \\ &\leq \left\{\sup_x |\phi(x)| + \sup_x |U\phi(x)|\right\} \|\varphi_n - \varphi\| \longrightarrow 0 \quad (n \to \infty), \end{split}$$

where $\| \|_{L_1}$ being the L_1 -norm. Hence we have $U(\varphi \psi) = U \varphi \cdot U \psi$. Furthermore, let ψ be bounded and find $\psi_n \in M$ such that

$$\psi_n \longrightarrow \psi \quad (n \to \infty), \text{ in } L_2.$$

Then using the above result, we obtain

$$\begin{split} \|U(\varphi\psi) - U\varphi \cdot U\psi\|_{L_1} &\leq \|U(\varphi\psi) - U(\varphi\psi_n)\|_{L_1} + \|U(\varphi\psi_n) - U\varphi \cdot U\psi_n\|_{L_1} \\ &+ \|(U\psi_n - U\psi)U\varphi\|_{L_1} \\ &\leq \|U(\varphi\psi) - U(\varphi\psi_n)\| + \|U\varphi\| \cdot \|U\psi_n - U\psi\| \\ &\leq \left\{\sup_x |\varphi(x)| + \|\varphi\|\right\} \|\psi_n - \psi\| \longrightarrow 0 \quad (n \to \infty), \end{split}$$

so that we have $U(\varphi \psi) = U \varphi \cdot U \psi$. This proves the assertion.

2° Since E is a nuclear space, the conjugate space E^* of E is a separable complete metric space and the class of all Borel sets of this space coincides with the σ -algebra \mathscr{L} generated by all cylinder sets (see [6]). Moreover, the Gaussian measure μ is regular. Therefore, on account of the results of von Neumann [4,5], we know that there exists a unique (mod 0) automorphism T_g satisfying the relation of (i). Finally, applying (i) of lemma 3, we get

$$\varphi(T_{g_1g_2}^{-1}x) = U_{g_1g_2}\varphi(x) = U_{g_1}U_{g_2}\varphi(x) = \varphi(T_{g_2}^{-1}T_{g_1}^{-1}x) \quad (\text{a.e.}).$$

Thus we obtain $T_{g_1g_2} = T_{g_1}T_{g_2} \pmod{0}$. This concludes the proof.

COROLLARY. Let (g_t) , $-\infty < t < \infty$, be a strongly continuous one-parameter subgroup of O(H). Then setting

(5)
$$T_t = T_{g_t}, \quad and \quad U_t = U_{g_t}, \quad -\infty < t < \infty,$$

we have a flow (T_t) :

(6)
$$T_tT_s = T_{t+s} \pmod{0}, \text{ flor each } t \text{ and } s,$$

and a continuous unitary group (U_t) such that

$$U_t \varphi(x) = \varphi(T_t^{-1}x), \quad (a.e.), \quad \varphi \in L_2.$$

For, the mapping $t \longrightarrow U_t$ is continuous by (ii) of lemma 3.

EXAMPLE. Let $X = X(t): -\infty < t < \infty$ be a real stationary Gaussian process defined on a certain probability space, which is mean continuous with expectation 0. We define h_t by $h_tX(s) = X(s+t)$ and extend h_t to an orthogonal operator on the real Hibert space H_x spanned by all linear combinations of X(t), $-\infty < t < \infty$. Then we get a strongly continuous one-parameter subgroup (h_t) , $-\infty < t < \infty$, of $O(H_x)$. Now, assume an additional condition that H_x is infinite dimensional and let σ be an isometric mapping from H onto H_x . Then it can be shown that the flow $(T_{\sigma-1h_t\sigma})$, $-\infty < t < \infty$, on E^* is spectrally equivalent to the flow of the process X.

References

- [1] I.M. Gelfand and N.Ya. Vilenkin, *Generalized functions*, *IV*, New York, Academic Press, 1964.
- [2] T. Hida and N. Ikeda, Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral, *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability*, Berkeley and Los Angeles, University of California Press, 1965, Vol. 2. 117-143.
- [3] T. Hida, I. Kubo, H. Nomoto and H. Yoshizawa, On projective invariance of Brownian motion, Publ. Res. Inst. Math. Sci. (in press).
- [4] J. von Neumann, Einige Sätze über messbare Abbildungen, Ann. Math., 33 (1932), 574–586.
- [5] ", Zur Operatorenmethode in der klassischen Mechanik, Ann. Math., 33 (1932), 587-642.
- [6] Yu.V. Prohorov, The method of charachteristic functionals, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1961, Vol. 2, 403–419.

Nagoya University