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The Vlasov–Fokker–Planck (VFP) equation, a variant of the Boltzmann equation, is
frequently used to model the dynamics of laboratory and astrophysical plasmas. A
common approach in solving the VFP equation in numerical and analytic studies is to
expand the momentum part of the distribution function f (i.e. the particle density in
phase-space) in terms of known functions. The Cartesian tensor and spherical harmonic
expansion have been widely used, leading to the question of how to convert between the
different coefficients of the two expansions. This problem is also familiar in multipole
expansions of an electrostatic (or gravitational) potential. The coefficients of the Cartesian
tensor expansion of the potential are called (Cartesian) multipole moments and the ones of
the spherical harmonic expansion are called spherical multipole moments. In this paper,
we investigate the relation between the two kinds of multipole moments and provide a
general formalism to convert between them. We subsequently apply this formalism to
the coefficients of the expansions of the distribution function f . A free, open-source
command-line tool which implements this formalism is provided.
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1. Introduction

Plasma kinetic simulations are an essential tool in the study of weakly
collisional/collisionless systems. Such conditions are realised in both astrophysical and
laboratory plasmas. Collisions, either via binary Coulomb or frequent wave–particle
interactions can be appropriately modelled with the aid of a Fokker–Planck approach
(Chandrasekhar 1943). Thus treated, one arrives at the Vlasov–Fokker–Planck equation,
which has the following form

∂tf + v · ∇rf + F · ∇p f =
(

δf
δt

)
Sc

. (1.1)

Here, f = f (t, r, p) is the particle (number) density in the six-dimensional phase-space, or
simply the distribution function. Here, v is the velocity of the particles with F the force
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acting on them. The derivatives are taken with respect to the r- and p-coordinates. The
right-hand side of the equation represents the effect of the particles’ interactions; ‘Sc’
stands for ‘scattering’.

Several codes have been developed to solve the multi-dimensional Vlasov equation
numerically (for example, von Alfthan et al. 2014; Juno et al. 2018). Simulations with
this approach are expensive in multi-dimensions. When possible, it is pragmatic to exploit
the fact that collisions tend to drive the distribution towards isotropy. A large body of
work has exploited this fact to derive transport coefficients in ionized plasmas including
Coulomb collisions, for example in the form of resistivity and conductivity tensors (e.g.
Braginskii 1965). Reliable values for these coefficients are essential for accurate fluid
models, necessary for fusion and other applications (see for example Thomas et al. (2012)
for a review). In the case of small Knudsen numbers, i.e. when the Coulomb mean free
path is short compared to the relevant macroscopic gradients of the system, it is common
to adopt a perturbative approach, where the equilibrium solution is a local Maxwellian
distribution (Spitzer & Härm 1953; Braginskii 1958). In the small Knudsen limit, the
distribution is (following our notation below) well approximated by the leading-order
terms in a Cartesian expansion f (p) ≈ F (0) + F (1)

i pi/p. The relevant transport coefficients
can be determined by solving for F (1)( p) given F (0)(r, p). In his seminal work, Braginskii
(1958) derived approximate solutions using a truncated expansion in Laguerre (Sonine)
polynomials. Other works applied a more direct numerical finite-difference approach
(e.g. Epperlein & Haines 1986). The transport coefficients that result from the two
approaches differ in certain regimes, which Epperlein & Haines (1986) attributed to the
finite truncation of the Laguerre polynomial expansion. However, convergence is still
only accurate to the expansion order in the Knudsen number, which for larger values
necessitates more terms in the particle anisotropy.

To improve the angular space resolution, one can expand f as a series of Laplace’s
spherical harmonics (Allis 1956; Bell et al. 2006; Reville & Bell 2013; Tzoufras et al.
2013)

f (t, r, p) =
∞∑

l=0

l∑
m=−l

f m
l (t, r, p)Ym

l (θ, ϕ). (1.2)

Alternatively, one can expand f in a series of Cartesian tensors (Johnston 1960;
Shkarofsky, Johnston & Bachynski 1966; Epperlein & Haines 1986; Thomas et al. 2012)

f (t, r, p) =
∞∑

l=0

F (l)
i1...il(t, r, p)

pi1 . . . pil

pl
, (1.3)

where p1, p2 and p3 are the components of p. The objects F (l) are called Cartesian tensors
and its components F (l)

i1...il are the coefficients of the above expansion. Note that we are
implicitly summing over all repeated indices. Moreover, the product of the components of
p can be considered as a component of the (Cartesian) tensor ⊗p(l),i1...il ≡ pi1 . . . pil . Hence,
the summation over repeated indices may be seen as a contraction of two tensors (formerly
called a Cartesian tensor scalar product).

Both expansions can be substituted into (1.1) and the coefficients f m
l and F (l)

i1...il can be
computed numerically or, depending on the complexity of the problem, analytically. Since
both expansions of f represent the same distribution function, there must exist a relation
between f m

l and F (l)
i1...il , see Courant & Hilbert (1953).

Johnston (1960) investigated this relation and derived a way to express the components
of the Cartesian tensors F (l)

i1...il as a sum containing the f m
l for low values of l, namely
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Converting between the Cartesian tensor and spherical harmonic expansion 3

l ≤ 4. We revisit the problem of relating f m
l and F (l)

i1...il and derive general formulae for
converting between them (in both directions). We do not do this in the context of the
distribution function f and its expansions, but in the context of the multipole expansion of
an electrostatic (or gravitational) potential. Also, the multipole expansion is either given
as a Cartesian tensor or a spherical harmonic expansion. The expansion coefficients are
called (Cartesian) multipole moments (i.e. monopole, dipole, quadrupole and high-order
moments) or spherical multipole moments. The relation between these two kinds of
moments is the same as the relation between F (l)

i1...il and f m
l , but multipole moments play an

important role in multiple branches of physics, such as general relativity (Thorne 1980),
molecular physics (Cipriani & Silvi 1982), plasma physics (Johnston 1960; Epperlein &
Haines 1986) and other areas like computational physics (Ludwig 1991).

Hence, in this paper, we derive a way to convert between the Cartesian multipole
moments and the spherical multipole moments and apply it to convert between F (l)

i1...il and
f m
l . While the equivalence of the two multipole moments is long known (e.g. Courant &

Hilbert 1953, p. 517), systematic methods that relate them are not readily found in the
literature.

In § 2.1, we begin with deriving a definition of the components of the Cartesian
multipole moments. We will see that harmonic and homogeneous polynomials are part
of this definition.

A polynomial p of degree l is homogeneous if and only if

p(λr) = λlp(r) for all λ ∈ R. (1.4)

Moreover, a polynomial p is harmonic if it is a solution to Laplace’s equation, i.e.

Δp = 0. (1.5)

We denote the space of homogeneous and harmonic polynomials of degree l (in three
variables) by Hl(R3).

We call the polynomials, which are part of the Cartesian multipole moment’s definition,
multipole functions and we show that a subset of these polynomials is a basis of Hl(R3).
We call this subset multipole basis functions.

In § 2.2, we revisit the definition of the spherical multipole moments (prominently
derived in Jackson 1998, p. 146). We will see that it contains (regular) solid harmonics.
We prove that the solid harmonics are homogeneous and harmonic polynomials as well.
Furthermore, we show that they are also a basis of Hl(R3). We conclude that it is
possible to find a basis transformation between the multipole basis functions and the
solid harmonics. This basis transformation will allow us to express the spherical multipole
moments in terms of the Cartesian multipole moments.

We can compute a preliminary basis transformation with the help of Efimov’s definition
of the Cartesian multipole moments (Efimov 1979), which we introduce in § 3. We prove
that his definition and our definition are equivalent. In his definition, he uses a differential
operator (Efimov’s ladder operator) and, in conjunction with the ladder operator L±
(known from the theory of angular momentum in Quantum Mechanics), Efimov derives
the preliminary basis transformation, i.e. he derives a way to express the solid harmonics
as a sum of the multipole functions.

In § 4, we transform Efimov’s expression for the solid harmonics, taking into account
that only a subset of the multipole functions is a basis of Hl(R3), to become an actual
basis transformation between the solid harmonics and the multipole basis functions.

In § 5, we write the basis transformation as a matrix equation and compute the inverse
basis transformation by inverting the basis transformation matrix. We show that inverting
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the basis transformation matrix is equivalent to invert four upper triangular matrices, if
real solid harmonics are used and if they and the multipole basis functions are ordered in
a specific way. The inverse basis transformation gives an expression of the multipole basis
functions in terms of the solid harmonics. We use the basis transformation matrix and its
inverse to present the relation between the Cartesian multipole moments and the spherical
multipole moments in the form of a matrix equation.

In § 6, we come back to our original problem, namely the Vlasov–Fokker–Planck
equation and the expansions of the distribution function f . We apply the formalism,
which we derived to convert between the Cartesian multipole moments and the spherical
multipole moments, to solve it and reproduce the results found by Johnston (1960).

We conclude the paper with a summary of the formalism to convert between the
Cartesian multipole moments and the spherical multipole moments and assess it critically.
Furthermore, we provide a link to the code of a command-line tool, which implements it.

2. Definition of the multipole moments

In electrodynamics (or equivalently, on exchanging constants, in gravitational theory),
the multipole expansion is an expansion of the solution to Poisson’s equation, namely

4πε0φ(r) =
∫

ρ(r)
|r − r′| d3r′. (2.1)

Either the denominator of the integrand is Taylor expanded in r′/r or it is interpreted as
the generating function of the Legendre polynomials. The former leads to the (Cartesian)
multipole expansion with the Cartesian multipole moments and the latter to the spherical
multipole expansion with the spherical multipole moments.

In the first part of this section, we look at the Cartesian multipole expansion and derive
a definition of the Cartesian multipole moments. The second part dedicates itself to the
spherical multipole expansion and investigates the definition of the spherical multipole
moments.

2.1. Definition of the Cartesian multipole moments
In textbooks (e.g. Jackson 1998, p. 146), no general definition of the Cartesian multipole
moments is given. Instead, the Taylor expansion of the denominator in the integrand of
(2.1) is computed up to, for example, second order, i.e.

1
|r − r′| =

∞∑
l=0

(−1)l

l!
(r′ · ∇)l 1

r
= 1

r
− x′

i∂i
1
r

+ x′
ix

′
j∂i∂j

1
r

− · · · . (2.2)

The potential then becomes

4πε0φ(r) =
∫

ρ(r′) d3r′ 1
r

+
∫

ρ(r′)x′
i d3r′ xi

r3
+ 1

2

∫
ρ(r′)x′

ix
′
j d3r′ (3xix j − r2δij)

r5
+ · · · .

(2.3)

The primed and unprimed components may be interchanged. As an example, consider the
second-order term:

1
2

∫
ρ(r′)(3x′

ix
′
j − r′2δij) d3r′ x

ix j

r5
, (2.4)

where we used that r2δijx′
ix

′
j = r′2δijxix j. This transforms the potential into

4πε0φ(r) = q
r

+ di

r3
xi + Qij

r5
xix j + · · · , (2.5)
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with the usual definitions of the monopole and the dipole. The components of the
quadrupole moment are defined as

Qij ≡
∫

ρ(r′)(3x′
ix

′
j − r′2δij) d3r′. (2.6)

Hence, a general method to define the components of the Cartesian multipole moment
of an arbitrary order l consists in taking l partial derivatives of 1/r and interchanging
the components of r and r′, as in the above example. However, note that the interchange
did not change the (functional) form of the numerator of ∂i∂j1/r, it merely replaced the
components of r with the components of r′. This implies that we could alternatively
have obtained the expression in parentheses in the quadrupole moment’s definition by
computing ∂ ′

i∂
′
j 1/r′ and ‘removing’ the denominator. This is the idea behind our definition

of the components of the Cartesian multipole moment of rank l, which is

Q(l)
i1...il ≡

∫
ρ(r′)K

[
(−1)l∂ ′

i1 . . . ∂ ′
il

1
r′

]
d3r′. (2.7)

Here, the calligraphic K denotes the Kelvin transform (Axler, Bourdon & Wade 2001,
p. 61), which is defined as

K[ f ](r) ≡ 1
r

f (r̃) with r̃ ≡ r/r2. (2.8)

Applying the definition to the l = 2 case recovers the quadrupole moment and
demonstrates in which sense the Kelvin transform removes the denominator. With this
definition at hand, the (Cartesian) multipole expansion is

4πε0φ(r) =
∞∑

l=0

1
l!r2l+1

Q(l)
i1...il x

i1 . . . xil . (2.9)

Of course, the first three multipole moments are the monopole Q(0) = q, the dipole
moment Q(1)

i = di and the quadrupole moment Q(2)

ij = Qij.
We show now that the definition in (2.7) gives the known Cartesian multipole moments

for an arbitrary rank l. The definition is correct if for all l, the interchange of r and r′ does
not change the form of the numerator of the lth partial derivative of 1/r and if the Kelvin
transform removes its denominator.

A sufficient condition for the Kelvin transform to remove the denominator is that the
numerator of the lth partial derivative of 1/r is an homogeneous polynomial (see (1.4)).
That this is a sufficient condition can be seen by noting that

(−1)l∂i1 . . . ∂il
1
r

= M(l)
i1...il(r)
r2l+1

, (2.10)

where M(l)
i1...il is an as yet undetermined function (the above equality can be proven by

induction). The indices reflect that the function is different for different values of the
indices. We call these functions multipole functions. Moreover, Axler, while proving
Lemma 5.15 in Axler et al. (2001, p. 86), shows that M(l)

i1...il is an homogeneous polynomial
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of degree l. Taking the Kelvin transform then yields

K
[
(−1)l∂i1 . . . ∂il

1
r

]
= r2l+1 M(l)

i1...il(r)
r2l+1

= M(l)
i1...il(r), (2.11)

which shows that it suffices that M(l)
i1...il is an homogeneous polynomial to remove the

denominator.
In the example of the second-order term, the interchange of r and r′ did not change

the (functional) form of M(2)

ij because this form was ‘somehow’ special. We already
know that M(l)

i1...il is an homogeneous polynomial of degree l. We can further restrict its
form. Remember that M(l)

i1...il is the numerator of g(r) ≡ ∂i1 . . . ∂il 1/r. The following two
considerations fix its form.

First, the form of the function g does not change if it is defined in a rotated coordinate
system. Assume that the relation between the rotated coordinates r̂ and the original
coordinates r is r̂ = Ar. The former statement then says that ĝ(r̂) = g(r̂), where ĝ(r̂) ≡
∂̂i1 . . . ∂̂il 1/r̂. A comparison of g’s definition and ĝ proves it. This restricts the form of the
numerator of g, as the following example for l = 2 illustrates:

ĝ(r̂) = ∂̂i∂̂j
1
r̂

= (A)k
i ∂k(A)l

j∂l
1
r

= (A)k
i (A)l

j
3xkxl − r2δkl

r5
= 3x̂ix̂j − r̂2δij

r̂5
= g(r̂), (2.12)

where we used that r̂ = r and ∇̂ = A∇. Note the rotation matrices must either transform a
component of r or they must be multiplied with each other, i.e. (A)k

i (A)l
jδkl = (A)k

i (A
T)kj =

δij. Hence, all the terms of M(l)
i1...il must be products of components of r and Kronecker deltas

to ‘cope’ with the l rotation matrices which appear as a consequence of ĝ(r̂) = g(r̂).
Second, the exchange of any two of the indices in g’s definition does not change

its numerator, because it is possible to exchange the partial derivatives with each other
(Schwarz’s theorem). Hence, the object M(l)

i1...il is symmetric in all its indices. This implies
that a sum of the mentioned products of components of r and Kronecker deltas is needed.
For example, consider the l = 3 case,

M(3)

ijk = c3,0xixjxk + c3,1r2(xiδjk + xjδik + xkδij), (2.13)

where c3,0, c3,1 ∈ R are coefficients. Note that the sum is over pairs of indices and that this
guarantees that any two of the indices can be exchanged without changing M(3)

ijk . The factor
r2 reflects that M(3)

ijk must be an homogeneous polynomial of degree three.
In summary, the fact that M(l)

i1...il is an homogeneous polynomial of degree l that can
be invariantly defined in a rotated coordinate system and that is symmetric in its indices
implies that its functional form must be

M(l)
i1...il =


l/2�∑
k=0

cl,kr2kRl,2k, (2.14)

where 
x� is the floor function. We also introduce Rl,2k ≡ P(δi1i2 . . . δi2k−1i2k xi2k+1 . . . xil),
where P is an operator which produces the sum over the pairs of indices needed to assure
symmetry (cf. with the previous example). This operator hides a lot of the complexity, but
is explained in detail in Appendix A.2. A closed-form expression for the coefficients cl,k is
derived in Appendix A.3. Similar arguments are used by Efimov to fix the functional form
of the multipole functions (Efimov 1979, p. 426).
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Converting between the Cartesian tensor and spherical harmonic expansion 7

This is the ‘somehow’ special (functional) form of the multipole functions M(l)
i1...il which

permits that the interchange of r and r′ does not change the form but only replaces the
components of r with the components of r′. To see this, note that, in the light of (2.10) and
(2.14), a term in the Taylor expansion of (2.2) of arbitrary order l contains

r2kx′i1 . . . x′il P(δi1i2 . . . δi2k−1i2k xi2k+1 . . . xil). (2.15)

Using that the exponent of r2k is even and remembering that r2δijx′
ix

′
j = r′2δijxix j, we can

replace the components of r and r′.
We conclude that the definition of the Cartesian multipole moments introduced in

(2.7) is correct. The Q(l) are tensors, i.e. they transform as required under coordinate
transformations. In Appendix A.1, we use our definition to prove this.

Before we close this section, we emphasise that the multipole functions M(l)
i1...il are

harmonic functions, i.e.
ΔM(l)

i1...il = 0. (2.16)

This is also proven in (the already quoted) Lemma 5.15 in Axler et al. (2001, p. 86).
In what follows, it is convenient to introduce a different notation for the indices of M (l),

namely

M(l)
pqr ≡ K

[
(−1)l∂p

x ∂
q
y ∂

r
z

1
r

]
with p + q + r = l. (2.17)

This notation implicitly takes advantage of the symmetry. For example, M(3)

112 = M(3)

121 in the
M(l)

i1...il notation and both components are M(3)

210 in the newly introduced pqr notation.
Last, but not least, Axler shows in Theorem 5.25 in Axler et al. (2001, p. 92) that

Hl(R3) = span{M(l)
pqr | p ≤ 1 and p + q + r = l}. (2.18)

In words, the functions M(l)
pqr are homogeneous and harmonic polynomials of degree l,

and a subset of them is a basis of the space of these polynomials. We call this subset the
multipole basis functions.

2.2. Definition of the spherical multipole moments
The denominator of the integrand in (2.1) can be interpreted as the generating function of
the Legendre polynomials, i.e.

1
|r − r′| =

∞∑
l=0

r′l

rl+1
Pl(cos γ ). (2.19)

Here, γ is the angle between r and r′ (Jackson 1998, p. 102, (3.38)). Together with the
addition theorem for Laplace’s spherical harmonics (cf. Jackson 1998, p. 110, (3.62)),
which is

Pl(cos γ ) = 4π

2l + 1

l∑
m=−l

Ym
l

∗(θ ′, ϕ′)Ym
l (θ, ϕ), (2.20)

we obtain the spherical multipole expansion

4πε0φ(r) =
∞∑

l=0

l∑
m=−l

4π

2l + 1
qm

l

r2l+1
rlYm

l (θ, ϕ). (2.21)

The function rlYm
l (θ, ϕ) is called a solid harmonic of degree l and order m. Furthermore,

we call the coefficients qm
l spherical multipole moments (Jackson 1998, p. 145). They are
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defined as

qm
l ≡

∫
ρ(r′)r′lYm

l
∗(θ ′, ϕ′) d3r′. (2.22)

A (Laplace’s) spherical harmonic of degree l and order m is (cf. Jackson 1998, p. 108,
(3.53))

Ym
l (θ, ϕ) ≡

√
2l + 1

4π

(l − m)!
(l + m)!

Pm
l (cos θ) eimϕ ≡ Nm

l Pm
l (cos θ) eimϕ. (2.23)

Here, Nm
l is the normalisation and the functions Pm

l are the associated Legendre
polynomials.

The solid harmonics are homogeneous polynomials of degree l. This can be seen by
using the following definition of the associated Legendre polynomials (cf. Jackson 1998,
p. 108, (3.49)):

Pm
l (cos θ) = (−1)m sinm θ

dm

d cosm θ
Pl(cos θ). (2.24)

Then, the solid harmonics with order greater than or equal to zero (m ≥ 0) are

rlYm
l (θ, ϕ) = (−1)mNm

l rl−m dm

d cosm θ
Pl(cos θ)(r sin θ cos ϕ + ir sin θ sin ϕ)m

= (−1)mNm
l


(l−m)/2�∑
k=0

akr2kzl−m−2k(x + iy)m ≡ p(r). (2.25)

The ak ∈ R are coefficients, which collect numerical factors. In the second equation, we
expressed the spherical coordinates in Cartesian coordinates and exploited that the mth
derivative of a degree l polynomial yields a degree l − m polynomial. The Legendre
polynomials, in particular, consist of either odd or even powers of cos θ . It can be checked
that the definition of an homogeneous polynomial of degree l, which was given in (1.4),
applies to p as defined in (2.25). The argument holds true for negative m as well. In this
case, (x + iy)m becomes (x − iy)m. The definition of an homogeneous polynomial still
applies.

Furthermore, the solid harmonics (as their name suggests) are harmonic functions. In
spherical coordinates the Laplace operator can be split into a radial part and an angular
part, i.e. Δ = Δr + Δθ,ϕ/r2. Laplace’s spherical harmonics are eigenfunctions of the
angular part with eigenvalue −l(l + 1) (Landau & Lifshitz 1977, p. 91, (28.7)). Hence,

ΔrlYm
l = Ym

l

(
∂2

r rl + 2
r
∂rrl

)
+ rl−2Δθ,ϕYm

l = l(l + 1)rl−2Ym
l − l(l + 1)rl−2Ym

l = 0.

(2.26)
We conclude this section by proving

Hl(R3) = span{rlYm
l | −l ≤ m ≤ l}, (2.27)

i.e. the solid harmonics are also a basis of the space of homogeneous and harmonic
polynomials.

We proceed in two steps. First, we determine the dimension of Hl(R3) and, second,
we show that the solid harmonics are independent. The dimension of Hl(R3) is 2 l + 1.
This can be derived in different ways, for example, as in Müller (1966, p. 11, (11)) or,
alternatively, as done by Axler in Proposition 5.8 in Axler et al. (2001, p. 78). Note that
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Converting between the Cartesian tensor and spherical harmonic expansion 9

there are 2l + 1 solid harmonics of degree l. The linear independence follows from the
orthogonality of Laplace’s spherical harmonics, namely (cf. Jackson 1998, p. 108, (3.55))∫ 2π

0

∫ π

0
Ym′

l′
∗
Ym

l sin θ dθ dϕ = δl′lδm′m. (2.28)

Hence, (2.27) is proven.
We gave explicit definitions of the Cartesian multipole moments and the spherical

multipole moments. Both definitions contained homogeneous and harmonic polynomials:
the multipole functions M(l)

pqr in the former case, solid harmonics rlYm
l in the latter.

Moreover, a subset of the functions M(l)
pqr (namely, the multipole basis functions) are a

basis of Hl(R3). The same is true of the solid harmonics. Hence, the relation between
the Cartesian multipole moments and spherical multipole moments can be formalised as
a basis transformation between the solid harmonics and the multipole basis functions. In
the next section, we introduce Efimov’s ladder operator to derive the basis transformation.

3. Efimov’s ladder operator
3.1. An alternative definition of the Cartesian multipole moments

In their paper on multipole moments, Efimov derives an alternative definition of the
Cartesian multipole moments (Efimov 1979). To derive it, they multiply the Taylor
expansion given in (2.2) by r, which yields

r
1

|r − r′| =
∞∑

l=0

r
(−r′ · ∇)l

l!
1
r

=
∞∑

l=0

M(l)
i1...il(r)
l!r2l

x′
i1 . . . x′

il . (3.1)

Taking advantage of the fact that the functions M(l)
i1...il are homogeneous polynomials of

degree l and using the definition of r̃ (see (2.8)) leads to the equivalent equation

∞∑
l=0

1
r̃

(−r′ · ∇)l

l!
r̃ =

∞∑
l=0

1
l!

M(l)
i1...il(r̃)x

′
i1 . . . x′

il . (3.2)

Since every term of the sums on both sides of the equation is an homogeneous polynomial
of the same degree, one finds

(−1)l 1
r̃
(r′ · ∇)lr̃ = M(l)

i1...il(r̃)x
′i1 . . . x′il . (3.3)

Note the derivatives on the left-hand side of the equation are taken with respect to r (and
not r̃). We may rewrite the above to get a convenient grouping:

(−1)l

l times︷ ︸︸ ︷
1
r̃
(r′ · ∇)r̃

1
r̃
(r′ · ∇)r̃ . . .

1
r̃
(r′ · ∇)r̃︸ ︷︷ ︸

≡f (r̃)

= (−1)l+1x′i(2x̃ix̃ j∂̃j − r̃2∂̃i + x̃i)f (r̃). (3.4)

The expression in parentheses is Efimov’s ladder operator. We introduce the notation

Di ≡ (2xix j∂j − r2∂i + xi), (3.5)
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10 N.W. Schween and B. Reville

which on applying l times turns (3.3) into

(r′ · D̃)l1 = M(l)
i1...il(r̃)x

′i1 . . . x′il . (3.6)

Here, 1(r) = 1 is a constant function. This implies an alternative definition of the
multipole functions

M(l)
i1...il(r) ≡ Di1 . . . Dil 1. (3.7)

Replacing the Kelvin transform in (2.7) with Efimov’s ladder operator yields an alternative
definition for the Cartesian multipole moments as well.

We explicitly prove that the two definitions of the multipole functions are equivalent,
i.e.

K
[
(−1)l∂i1 . . . ∂il

1
r

]
= Di1 . . . Dil 1. (3.8)

The first step consists in showing that

K
[
(−1)l∂i1 . . . ∂il

1
r

]
=

l∏
k=1

((2l − (2k − 1))xik − r2∂ik)1. (3.9)

This can be proven by induction. A quick computation shows that the statement holds true
for the base case l = 1. From (2.10), and noting that K[K[ f ]] = f , it follows that

(−1)l∂i1 . . . ∂il
1
r

= K[M(l)
i1...il ](r) = M(l)

i1...il(r)
r2l+1

. (3.10)

Taking the derivative with respect to xj yields

∂j∂i1 . . . ∂il
1
r

= (−1)l+1

r2l+3
((2l + 1)xj − r2∂j)M

(l)
i1...il(r). (3.11)

Note that acting with the expression in parentheses on M(l)
i1...il gives an homogeneous

polynomial of degree l + 1. We again take the Kelvin transform, use the induction
hypothesis and see that

K
[
(−1)l+1∂j∂i1 . . . ∂il

1
r

]
= ((2l + 1)xj − r2∂j)M

(l)
i1...il(r)

= ((2l + 1)xj − r2∂j)

l∏
k=1

((2l − (2k − 1))xik − r2∂ik)1. (3.12)

Relabelling the indices (j → i1 and ik → ik+1) and shifting the index of the product by one,
yields the conclusion.

In a second step, we prove that each factor in the product in (3.9) is equivalent to
Efimov’s ladder operator. We choose an arbitrary factor with index k equal to n and express
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Converting between the Cartesian tensor and spherical harmonic expansion 11

the right-hand side of (3.9) as

((2l − 1)xi1 − r2∂i1) × · · · × (2(l − n)xin − r2∂in + xin)M
(l−n)

in+1...il(r), (3.13)

where we used that

l∏
k=n+1

((2l − (2k − 1))xik − r2∂ik)1 =
l−n∏
k=1

((2(l − n) − (2k − 1))xik+n − r2∂ik+n)1

= M(l−n)

in+1...il(r). (3.14)

To show that the factor in (3.13) corresponding to the index k = n and Din are equivalent,
we have to prove that

2(l − n)xin M
(l−n)

in+1...il = 2xin x
m∂mM(l−n)

in+1...il . (3.15)

This equality holds because the function u ≡ M(l−n)

in+1...il is an homogeneous polynomial of
degree l − n. Note that every homogeneous polynomial of an arbitrary degree l can be
written as a linear combination of monomials xj1 . . . xjl , i.e. p(r) = αj1...jl x

j1 . . . xjl . Here, α

is a collection of coefficients. There are (l + 2)(l + 1)/2 different monomials. If the object
𝞪 is symmetric in all its indices, it contains an equal amount of independent coefficients.
Thus, there exists a symmetric 𝞪 such that u(r) = αj1...jl−n x

j1 . . . xjl−n . This implies that

xm∂mu(r) = xmαj1...jl−n∂m(xj1 . . . xjl−n) = (l − n)xmαj1...jl−nδ
j1
m . . . xjl−n

= (l − n)αj1...jl−n x
j1 . . . xjl−n = (l − n)u(r). (3.16)

In the second line, we used that 𝞪 is symmetric. Since n was arbitrary, we conclude that all
factors in the product in (3.9) are equivalent to a corresponding component of the ladder
operator D.

Before we end this section, we use the alternative definition of the Cartesian multipole
moments (and the multipole functions) to learn more about them.

We first note that Efimov’s ladder operators commute, i.e.

[Di, Dj] ≡ DiDj − DjDi = 0. (3.17)

Note that this must be the case, because M(l)
i1...il must be symmetric. Moreover,

DiDi = r4Δ. (3.18)

An immediate consequence of these two equations is that

M(l)
i1...ik ...ik ...il = 0. (3.19)

We say that the object M(l)
i1...il is traceless, i.e. the contraction of two arbitrary indices is

zero (cf. Efimov 1979, (1.5)–(1.7)). This property is carried over to the Cartesian multipole
moments. Thus, the Cartesian multipole moments Q(l) are symmetric and traceless tensors
of rank l.

We pointed out that an homogeneous polynomial of degree l can be written as a linear
combination of monomials with the help of a symmetric collection of coefficients 𝞪. It
can be shown that if the polynomial is harmonic as well, 𝞪 must be traceless (Jeevanjee
2011, ex. 3.26). This implies that not only the multipole functions M(l)

i1...il are homogeneous
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12 N.W. Schween and B. Reville

and harmonic polynomials, but also the functions in the Cartesian multipole expansion in
(2.9), namely

Q(l)
i1...il x

i1 . . . xil, (3.20)

are homogeneous and harmonic polynomials of degree l.

3.2. Preliminary basis transformation
With the tools derived up to now, we are in a position to express the solid harmonics as a
sum of the multipole functions M(l)

i1...il .
We start again with the denominator of the integrand in (2.1). We fix r′ to be the unit

vector pointing into the z-direction. This implies

1
|r − ez| =

∞∑
l=0

(−ez · ∇)l

l!
1
r

=
∞∑

l=0

1
rl+1

Pl(cos θ). (3.21)

We used the Taylor expansion given in (2.2) for the left-hand side and (2.19) for the
right-hand side of the last equation. Since r′ = ez, the angle γ is the polar angle θ . We
take the Kelvin transform of this equation, i.e.

∞∑
l=0

1
l!
K
[
(−1)l∂ l

z
1
r

]
=

∞∑
l=0

K
[

1
r2l+1

rlPl(cos θ)

]
. (3.22)

Note that the Kelvin transform’s definition implies that it is linear, namely K[ f + λg] =
K[ f ] + λK[g]. We now use that N0

l rlPl = rlY0
l . Furthermore, since a solid harmonic of

degree l is an homogeneous polynomial of degree l, the Kelvin transform removes the
denominator of the right-hand side of the last equation (cf. § 2.1). Together with the
equivalence of the Kelvin transform of the partial derivatives of 1/r and Efimov’s ladder
operator, we obtain the equivalent statement

∞∑
l=0

rlPl(cos θ) =
∞∑

l=0

1
l!

(ez · D)l1. (3.23)

Since every term on both sides of the equation is a polynomial of the same degree (namely
l), the equation implies that

rlY0
l = 1

l!

√
2l + 1

4π
(ez · D)l1 = 1

l!

√
2l + 1

4π
M(l)

00l. (3.24)

Compare with Efimov (1979, p. 428, (2.9)) and note that the notation introduced in (2.17)
is used for the indices of the multipole function.

To express a solid harmonic of order m greater than zero as a sum of multipole functions,
we use that Laplace’s spherical harmonics Ym

l appear as the common eigenfunctions of the
square of the angular momentum operator (known from Quantum Mechanics) and one of
its components. The angular momentum operator is defined as (cf. Landau & Lifshitz
1977, p. 83, (26.2))

L ≡ −ir × ∇. (3.25)

We are particularly interested in the angular momentum ladder operator

L± = Lx ± iLy = −i( y∂z − z∂y ± i(z∂x − x∂z)) = e±iϕ(±∂θ + i cot θ∂φ). (3.26)

The last line shows the ladder operator in spherical coordinates (Landau & Lifshitz 1977,
p. 85, (26.15)). The ladder operators are used to increase (or decrease) the order of a
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Converting between the Cartesian tensor and spherical harmonic expansion 13

spherical harmonic, e.g.

Ym
l = ((l + m)(l − m + 1))−1/2L+Ym−1

l . (3.27)

The numerical factor is an implication of (27.12) in Landau & Lifshitz (1977, p. 89). We
can apply this operator m times to (3.24) and we get

rlYm
l =

√
(l − m)!
(l + m)!

rlLm
+Y0

l = 1
l!

√
2l + 1

4π

(l − m)!
(l + m)!

Lm
+Dl

z1, (3.28)

where we used the fact that L+ does not contain a derivative with respect to r, as can be
seen in (3.26). We can compute the commutator of L+ and Dz. This yields

[L+, Dz] = −(Dx + iDy). (3.29)

This computation is done in detail in Appendix B.
One can prove by induction that

Lm
+Dl

z1 = (−1)m l!
(l − m)!

Dl−m
z (Dx + iDy)

m1, (3.30)

which, when substituted into the previously derived expression for rlYm
l , yields the final

result of this section: the preliminary basis transformation, i.e.

rlYm
l = am

l Dl−m
z (Dx + iDy)

m1 = am
l

m∑
p=0

im−p

(
m
p

)
Dp

xDm−p
y Dl−m

z 1

= am
l

m∑
p=0

im−p

(
m
p

)
M(l)

p(m−p)(l−m). (3.31)

Here, m ≥ 0 and we used the notation of (2.17) for the indices of the multipole functions.
The factor is

am
l ≡ (−1)m

√
2l + 1

4π

1
(l + m)!(l − m)!

. (3.32)

We called this expression for the solid harmonics a preliminary basis transformation,
because the sum on the right-hand side of (3.31) contains multipole functions with p > 1,
which are not multipole basis functions. The solid harmonics with negative order m are
obtained with the help of Y−m

l = (−1)mYm
l

∗ (Jackson 1998, p. 146, (4.3), (4.7)). Efimov
derived (3.31) with similar arguments (see Efimov 1979, p. 429, (2.10)).

The preliminary basis transformation already allows to express spherical multipole
moments in terms of Cartesian multipole moments. We can take the complex conjugate of
(3.31) and plug it into the definition of the spherical multipole moments (see (2.22)) and
obtain

qm
l = am

l

m∑
p=0

(−i)m−p

(
m
p

)
Q(l)

p(m−p)(l−m). (3.33)

In his textbook ‘Classical Electrodynamics’, Jackson computes the spherical multipole
moments with degree l = 0, 1 and 2 (Jackson 1998, p. 146). The above formula allows a
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FIGURE 1. Dependence of the multipole functions with p > 1 on functions with smaller p
given by Pascal’s triangle.

computation for arbitrary l and m. For example,

q3
3 = 1

24

√
7

5π
(iQ(3)

030 − 3Q(3)

120 − 3iQ(3)

210 + Q(3)

300)

= 1
24

√
7

5π
(iQ(3)

222 − 3Q(3)

122 − 3iQ(3)

112 + Q(3)

111). (3.34)

In the last equation, we used the conventional tensor indices, namely Q(3)

ijk .

4. Basis transformation

As already pointed out, we called the expression derived in (3.31) a preliminary basis
transformation, because the sum on the right-hand side contained multipole functions with
index p > 1. However, only the multipole functions with p ≤ 1 are a basis of the space
of homogeneous and harmonic polynomials of degree l (see (2.18)). To turn (3.31) into an
actual basis transformation, we have to express all M(l)

pqr with p > 1 as a linear combination
of the multipole basis functions.

We can accomplish this by exploiting that the object M (l) is symmetric and traceless (cf.
(3.19)). In a first step, we use the notation for the indices of M (l), which we introduced in
(2.17), to express the latter property of M (l) in the following way:

M(l)
pqr + M(l)

( p−2)(q+2)r + M(l)
( p−2)q(r+2) = 0, (4.1)

with p > 1 and, by definition, p + q + r = l. This becomes plausible when an example is
considered, e.g. l = 5 and p = 2, q = 1 and r = 2,

0 = M(5)

212 + M(5)

032 + M(5)

014 = M(5)

11233 + M(5)

22233 + M(5)

33233 = M(5)

ii233. (4.2)

Note that we used the symmetry of M(l)
i1...il . An immediate consequence of (4.1) is that we

can express a multipole function with index p > 1 as a sum of multipole functions with
index p − 2. These, in turn, can again be expressed as a sum of multipole functions with
index p − 4. Depending on whether p is even or odd, this chain ends when p = 0 or p = 1.
This computation can be represented in the form of Pascal’s triangle (see figure 1). Note
the alternating minus sign. Or, more compactly, in the following formula:

M(l)
pqr = (−1)
p/2�


p/2�∑
k=0

( ⌊p
2

⌋
k

){
M(l)

0(q+p−2k)(r+2k) p is even,

M(l)
1(q+p−(2k+1))(r+2k) p is odd.

(4.3)
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We can split the sum in (3.31) into even and odd p values and plug in the expression for
the multipole functions, which we just derived. This yields

rlYm
l = am

l

[
a∑

n=0

im−2n

(
m
2n

)
M(l)

2n(m−2n)(l−m)

+
b∑

n=0

im−(2n+1)

(
m

2n + 1

)
M(l)

(2n+1)(m−(2n+1))(l−m)

]

= am
l

[
a∑

n=0

n∑
k=0

im

(
m
2n

)(
n
k

)
M(l)

0(m−2k)(l−m+2k)

−
b∑

n=0

n∑
k=0

im

(
m

2n + 1

)(
n
k

)
M(l)

1(m−(2k+1))(l−m+2k)

]
. (4.4)

The limits of the sums are

a = 
m/2� and b = 
(m − 1)/2�. (4.5a,b)

In a last step, we note that we can exchange the two sums. For example, for even p, we find

a∑
n=0

n∑
k=0

im

(
m
2n

)(
n
k

)
M(l)

0(m−2k)(l−m+2k) =
a∑

k=0

(
im

a∑
n=k

(
m
2n

)(
n
k

))
M(l)

0(m−2k)(l−m+2k). (4.6)

The same holds true for odd p. We arrive at the final result of this section, namely

rlYm
l =

a∑
k=0

βm
l,0,kM(l)

0(m−2k)(l−m+2k) +
b∑

k=0

βm
l,1,kM(l)

1(m−(2k+1))(l−m+2k). (4.7)

For m ≥ 0 and with the coefficients

βm
l,0,k ≡ imam

l

a∑
n=k

(
m
2n

)(
n
k

)
and βm

l,1,k ≡ −im+1am
l

b∑
n=k

(
m

2n + 1

)(
n
k

)
, (4.8a,b)

the solid harmonics with m < 0 can be computed with the formula Y−m
l = (−1)mYm

l
∗.

We thus have a way to express an arbitrary solid harmonic of degree l and order m as a
linear combination of the multipole basis functions with degree l. We call the coefficients
βm

l,0,k and βm
l,1,k the basis transformation between the solid harmonics and the multipole

basis functions in the space of homogeneous and harmonic polynomials of degree l.
Last, but not least, the complex conjugate of the basis transformation relates

the spherical multipole moments with the Cartesian multipole moments. A practical
implication of this section’s considerations is that it is only necessary to compute
2l + 1 components of the Cartesian multipole moments (those corresponding to the
multipole basis functions given in (2.18)) instead of the (l + 2)(l + 1)/2 components of
the symmetric tensor Q(l). A way to reconstruct the dependent components of M (l) (or Q(l))
will be found in the next section while deriving the inverse basis transformation.
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5. Inverse transformation

We derive the inverse of the basis transformation given in (4.7) by, first, collecting the
coefficients βm

l,0,k and βm
l,1,k in a matrix, the basis transformation matrix B, and second, by

inverting this matrix.
How difficult it is to invert a matrix depends on its structure, e.g. if it is a diagonal

matrix, computing the inverse consists in taking the reciprocal of its elements. The
structure of the matrix B simplifies if we use real spherical harmonics instead of Laplace’s
spherical harmonics.

The real spherical harmonics are defined as⎛
⎝Ylm0

Yl00
Ylm1

⎞
⎠ ≡ 1√

2

⎛
⎝ 1 0 (−1)m

0
√

2 0
−i 0 (−1)mi

⎞
⎠
⎛
⎝ Ym

l
Y0

l
Y−m

l

⎞
⎠ . (5.1)

Henceforth, we denote the above matrix by S. Note that S is unitary, i.e. S†S = 1. An
explicit expression for the real spherical harmonics is

Ylms = NlmPm
l (cos θ)(δs0 cos mϕ + δs1 sin mϕ), (5.2)

with m ≥ 0. Furthermore, the above definition implies the normalisation Nlm ≡√
2 − δm0Nm

l .
Applying the unitary transformation to (4.7) results in the following pattern:

s = 0 :

even m : rlYlm0 =
√

2
a∑

k=0

βm
l,0,kM(l)

0(m−2k)(l−m+2k)

odd m : rlYlm0 =
√

2
b∑

k=0

βm
l,1,kM(l)

1(m−(2k+1))(l−m+2k))

s = 1 :

even m : rlYlm1 = −
√

2i
b∑

k=0

βm
l,1,kM(l)

1(m−(2k+1))(l−m+2k)

odd m : rlYlm1 = −
√

2i
a∑

k=0

βm
l,0,kM(l)

0(m−2k)(l−m+2k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5.3)

This pattern has two implications for the structure of the basis transformation matrix B.
First, the unitary transformation brings it into a form in which it consists of four blocks
which correspond to the above four cases. Second, since the limits of the sums a and
b decrease with decreasing m, the corresponding real solid harmonic depends on less
multipole basis functions. For example, let us consider the case s = 0 and even m for
l = 5. The even values of m are zero, two and four. The corresponding limits a are zero,
one and two,respectively. Hence, the real solid harmonic of degree five and order zero
depends on one multipole basis function, the one with order two on two and the last one
with order four on three multipole basis functions. This pattern translates into a triangular
matrix block. Hence, the basis transformation matrix can be transformed into a matrix,
which consists of four triangular matrix blocks.

Whether the triangular matrices show up also depends on the ordering of the solid
harmonics and the multipole basis functions. For the solid harmonics, we pick the
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ordering, which is implicitly suggested by (5.1), namely

rlY l ≡ rl
(
Yl

l Yl−1
l · · · Y−l+1

l Y−l
l

)T
. (5.4)

Additionally, a corresponding ordering for the multipole basis functions, for example, is

M l ≡ (M(l)
0l0 M(l)

0(l−1)1 · · · M(l)
1(l−2)1 M(l)

1(l−1)0

)T
. (5.5)

Assembling the matrix B in accordance with these orderings brings (4.7) into the compact
form:

rlY l(θ, ϕ) = BM l(r). (5.6)

This equation can be multiplied with the unitary matrix S. On the left-hand side, the
real solid harmonics will show up and on the right-hand side, a matrix with the four
blocks, which we found in (5.3). If we now re-order the real solid harmonics (and the
multipole basis functions) such that the harmonics with even order m (and odd order m)
are grouped together, four triangular matrices result. If we additionally reverse the order
of the real solid harmonics with s = 1, we get four upper triangular matrices. Let P denote
the corresponding permutation matrix, then

rlPSY l = PSBPTPM l. (5.7)

An actual computation for even l shows the following matrix structure:

B̃ ≡ PSBPT =

⎛
⎜⎝

U1
U2

U3
U4

⎞
⎟⎠ . (5.8)

For odd l, the four upper triangular matrices are at other positions in the matrix.
The inversion of this matrix is equivalent to inverting four upper triangular matrices.

This can, for example, be done by applying repeatedly back-substitution with unit
vectors as the right-hand sides (Press et al. 2007, § 2.2.1). We define the inverse basis
transformation matrix as

A ≡ B−1 = PT B̃
−1

PS. (5.9)

Thus, M l = rlAY l and with the help of a suitable mapping between the matrix indices and
the p, q, r indices, we get

M(l)
0qr =

l∑
m=−l

αm
l,0,q,rr

lYm
l and M(l)

1qr =
l∑

m=−l

αm
l,1,q,rr

lYm
l . (5.10a,b)

We call the αm
l,0,q,r and αm

l,1,q,r the inverse basis transformation.
The dependent multipole functions (i.e. the functions with index p > 1) can be

expressed as a linear combination of the multipole basis functions (see (4.3)). Since the
multipole basis functions are M l = rlAY l, it is possible to obtain an expression for
the dependent multipole functions in terms of the solid harmonics by adding the rows
of the inverse basis transformation matrix while multiplying them by the factor given in
(4.3).
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The relation between the (independent) Cartesian multipole moments and the spherical
multipole moments is given by the complex conjugate of the inverse basis transformation
(matrix), i.e.

ql = B∗Ql and Ql = A∗ql. (5.11a,b)

Last, but not least, instead of inverting the basis transformation matrix B, it is possible to
directly compute the inverse basis transformation matrix A. A derivation of the formulae
for the αs is provided in Appendix C.

6. The Vlasov–Fokker–Planck equation

In this section, we come back to the original problem, which stood at the beginning
of our investigation of the relation between the Cartesian multipole moments and the
spherical multipole moments: the two expansions of the distribution function f and their
relation.

In the first step, we show that their relation is the same as the relation between
the Cartesian multipole moments and spherical multipole moments. To this end, we
investigate the differences between (2.9) and (2.21) and the expansions of f given in (1.3)
and (1.2). The expansions of f are done in momentum space (and not in configuration
space), the coefficients (previously Q(l)

i1...il and qm
l and now F (l)

i1...il and f m
l ) are functions,

there are no numerical factors and, most importantly, the magnitude of p (previously r) was
set to one. This last difference accounts for the factor p−l in (1.3), since p/p restricts the
components of p to the unit sphere in momentum space. The dependence on the magnitude
of p is now included in the coefficients f m

l and not explicitly given as 1/r2 l+1.
The fact that the coefficients F (l)

i1...il and f m
l are functions does not change the relation

between them. Actually, the object F (l)
i1...il is constructed (for example, it is chosen to be

symmetric in its indices and it should be chosen to be traceless as well) such that the
relation between it and the f m

l s is the same as between the Cartesian multipole moments
and the spherical multipole moments. The fact that p (or r) was set to one also does not
change the relation. This can be seen by setting r to one and restricting the magnitude of
r to one in (5.6). However, that there are no factors means that 4π/(2 l + 1) was included
in the definition of f m

l (see (2.22)) and 1/l! is included in the definition of F (l)
i1...il (cf. with

(2.7)). Thus, the relation is given by (5.11a,b), i.e.

f l = D1B∗D2F l, (6.1)

where we replaced ql with f l, Ql with F l, and multiplied with D1 ≡ 4π/(2l + 1)1
and D2 ≡ l!1 to include the factors in the definitions of the coefficients. The inverse
transformation is obtained by computing the inverse of the above matrix, as explained
in § 5.

Johnston (1960) derives this inverse basis transformation for l = 2 and l = 3. However,
when expanding f , he uses the real spherical harmonics without normalisation Nlm and
without including (−1)m in the definition of the associated Legendre polynomials. Thus,
he implicitly starts with the following equation:

f (t, r, p) =
∞∑

l=0

l∑
m=0

1∑
s=0

(−1)m 2
1 + δ0m

(l − m)!
(l + m)!

f̄lms(t, r, p)

Nlm
Ylms(θ, ϕ)

≡
∞∑

l=0

l∑
m=0

1∑
s=0

flms(t, r, p)Ylms(θ, ϕ). (6.2)

https://doi.org/10.1017/S002237782200099X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782200099X


Converting between the Cartesian tensor and spherical harmonic expansion 19

The fraction with factorials appears because the numerical factor in the addition theorem
changes if (real) spherical harmonics without normalisation are used to derive it (cf. with
(2.20)). Moreover, 1/Nlm removes the normalisation. Additionally, in the last definition of
(6.2), all these factors are included in the coefficients flms.

Thus, we should be able to reproduce his results by inverting the matrix on the
right-hand side of

f l
J = CD3N−1S∗B∗D2F l, (6.3)

which yields the following matrix:

AJ = D−1
2 A∗STD−1

3 C, (6.4)

where A∗ = B∗−1 and where we introduced the following definitions:

f l
J ≡ ( fll0fl(l−1)0 . . . fl(l−1)1fll1)

N ≡ diag(NllNl(l−1) . . . Nl(l−1)Nll)

C ≡ diag((−1)l(−1)l−1 . . . (−1)l−1(−1)l) and

D3 ≡ diag
(

2
(2l)!

2
(2l − 1)!

. . . 1 . . .
2

(2l − 1)!
2

(2l)!

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (6.5)

Furthermore, S is the unitary transformation between Laplace’s spherical harmonics and
the real spherical harmonics (see (5.2)). The complex conjugate is necessary, because we
are using the complex conjugate of (5.6) (namely, we are using Ym

l
∗ and comparing with

(5.11a,b)). The dependent components of F l
i1...il can be computed as described at the end

of § 5. The entries of the matrix AJ can be compared with (9a–d) in the paper by Johnston
(1960). Moreover, the entries of A∗ can be directly computed with formulae derived in
Appendix C.

Last, but not least, the Vlasov–Fokker–Planck equation and the corresponding
expansions of f can be considered as an example partial differential equation (PDE).
We note that whenever (Laplace’s) spherical harmonics are used to expand a solution
to a PDE, it is possible to work with the multipole functions instead (or vice versa). If
the multipole functions are used, it is always enough to compute the 2l + 1 independent
components, namely the multipole basis functions.

7. Conclusion

We started off with the aim to find a way to convert between the coefficients appearing
in the Cartesian tensor expansion and the spherical harmonic expansion of the distribution
function f . A problem which was prominently investigated by Johnston (1960).

We pointed out that the relation between the Cartesian tensors F (l) and the f m
l is the same

as the relation between the Cartesian multipole moments Q(l) and the spherical multipole
moments qm

l . Since multipole moments are ubiquitous in physics, we revisited the problem
of converting between coefficients of expansions in the context of the multipole expansion.

In the first step, we introduced a new definition of the Cartesian multipole moments
and showed that it reproduces the known multipole moments. We saw that this definition
contained the multipole functions M(l)

i1...il , which are proven to be homogeneous and
harmonic polynomials of degree l. Furthermore, we pointed out that a subset of the
multipole functions is a basis of the space of homogeneous and harmonic polynomials
Hl(R3). We called this subset the multipole basis functions.

Subsequently, we took a look at the definition of the spherical multipole moments
and noticed that it contains the complex conjugate of a solid harmonic of degree l and
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order m. We showed that these functions are also harmonic and homogeneous polynomials
of degree l and that they are a basis of Hl(R3) as well.

This led us to the new conclusion that the relation between the Cartesian multipole
moments and the spherical multipole moments can be formalised as a basis transformation
between the solid harmonics of degree l and the multipole basis functions of degree l.

We derived closed-form formulae to compute the basis transformation, i.e. we derived a
way to express the solid harmonics of degree l and order m ≥ 0 as a sum of multipole basis
functions. We inverted the basis transformation matrix and simplified the computation of
the inverse matrix considerably. Additionally, we also derived closed-form formulae for
the inverse basis transformation (see Appendix C). We, thus, provided a systematic and
easy-to-compute method to convert between the Cartesian multipole moments and the
spherical multipole moments.

A key practical implication of our approach is the insight, that it is enough to
compute 2 l + 1 components of the Cartesian multipole moments, namely the components
corresponding to the multipole basis functions. The dependent components can be
computed as explained at the end of § 5.

Eventually, we came back to our original problem and applied our knowledge about the
relation between the Cartesian multipole moments and the spherical multipole moments
in the context of the Cartesian tensor and the spherical harmonic expansion of f . We used
the basis transformation matrix B to express the coefficients f m

l as a linear combination of
the independent components of the corresponding Cartesian tensor F (l)

i1...il . We explained
how our results reproduce the findings in Johnston (1960).

We developed a free and open-source command-line tool, called multipole-conv
(Schween & Reville 2022), which is able to compute the basis transformation matrix and
its inverse. We hope that this tool will be useful for all who work with spherical harmonics
or multipole moments.

Last, but not least, we would like to assess our approach critically. First, the elements
in the basis transformation matrix B become very small even for small l, say l ≈ 15,
and the elements of the inverse basis transformation matrix A very large. This leads to
numerical errors in the computation of A. We suspect that this happens because Laplace’s
spherical harmonics are normalised whereas the multipole basis functions are not. Second,
the mathematically inclined reader may know that Laplace’s spherical harmonics are
an irreducible representation of SO(3). Since both definitions of the multipole basis
functions, i.e. the definition with the Kelvin transform (see (2.17) and, in particular,
(3.9)) and the definition with Efimov’s ladder operator (cf. with (3.7)) generalise to
arbitrary dimensions, it could be that there also exists a basis transformation between
these generalised multipole basis functions and irreducible representations of SO(n).

Supplementary material

A free and open-source command-line tool, called multipole-conv, is available at
https://github.com/nils-schween/multipole-conv.
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Appendix A. Notes on the definition of the Cartesian multipole moments
A.1. The multipole moments are tensors

We would like to use our definition of Cartesian multipole moments, which is given
in (2.7), to show that they are tensors. In the physics literature, a rank lth tensor T (l)

is defined as a quantity having 3l components T (l)
i1...il , which transform under coordinate

transformations according to the following scheme (cf. Goldstein, Poole & Safko 2014,
p. 189):

T̂
(l)
i1...il = (A)

j1
i1 . . . (A)

jl
il T

(l)
j1...jl . (A1)

Our definition of the Cartesian multipole moments implies this, i.e.

Q̂
(l)
i1...il =

∫
ρ̂(r̂)M̂

(l)
i1...il(r̂) d3r̂ =

∫
ρ̂(r̂)K̂

[
∂̂i1 . . . ∂̂il

1
r̂

]
d3r̂

= (A)
j1
i1 . . . (A)

jl
il

∫
ρ(r)K

[
∂j1 . . . ∂jl

1
r

]
d3r = (A)

j1
i1 . . . (A)

jl
il Q

(l)
j1...jl . (A2)

Note that we dropped the primes in the definition of the Cartesian multipole moments to
increase readability.

A.2. The P operator
We defined the P operator implicitly using the description: ‘[It] produces the sum over the
pairs of indices needed to assure symmetry’. We now give a more explicit definition.

P acts on a product of components of r and Kronecker deltas, i.e.

P(δi1i2 . . . δi2k−1i2k xi2k+1 . . . xil). (A3)

Note that there are k Kronecker deltas and l − 2k components of r.
The P operator produces a sum of products, which must not change if arbitrary indices

are exchanged, i.e. which is symmetric. Moreover, note that in each product, all indices are
distinct (no index appears twice).

For k = 0, we define
P(xi1 . . . xil) ≡ xi1 . . . xil . (A4)

Note that a product is commutative, hence this (trivial) sum is symmetric. For k = 1, one
Kronecker delta is part of the products and the sum created by P will be symmetric if it
contains all the terms (products) with Kronecker deltas whose two indices correspond to
all possible pairs, which can be formed from the l indices. For example, if l = 3, then there
are
(3

2

) = 3 pairs of indices and accordingly,

P(xi1δi2i3) = xi1δi2i3 + xi2δi1i3 + xi3δii1 i2 . (A5)

This guarantees the symmetry of the sum, because whenever an index of a Kronecker
delta is exchanged with another index (may it be an index of a component of r or of another
Kronecker delta), the newly created pair is matched by another term with a Kronecker delta
whose pair of indices turns into the Kronecker delta’s original combination of indices.
Generally, if k = 1, the sum produced by P contains

( l
2

)
terms.
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The k Kronecker deltas need to be equipped with k pairs of indices. Since no index
appears twice in a product, the pairs must be distinct, or more technically, disjoint. We
can collect all distinct pairs in a set. The P operator must produce a sum over all sets
of distinct pairs of indices to make it symmetric. For example, if l = 6 and k = 2, the
product δi1i2δi3i4 xi5 xi6 will be part of the sum. The set of distinct pairs is {(i1, i2), (i3, i4)}. If
you exchange an index of one Kronecker delta with an index of the other, then a different
set of distinct pairs is created. Additionally, to make the sum symmetric, another term
whose set of distinct pairs (pertaining to the Kronecker deltas) matches the newly created
set must be included in the sum. It is because a corresponding exchange of indices in the
other term’s set of pairs recreates the original one. Moreover, if you exchange an index of
a Kronecker delta with an index of a component of r, a new set of distinct pairs is created,
which also requires its counterpart to keep the sum symmetric. Hence, P produces

(
l

2k

)(2k
2

)(
2k − 2

2

)
· · ·
(

2
2

)
k!

=
(

l
2k

)
(2k − 1)!! (A6)

terms. The first factor counts the number of possible combinations of indices, which are
then available to form sets of distinct pairs from them. The second factor counts the
number of possible sets of distinct pairs. One way to approach the second factor is to think
of a tennis tournament. In the first round, you have to think of who plays against whom
and this is tantamount to build sets of distinct pairs. If you like to know how many sets
there are, you can do the computation encoded in the second factor: choose two players
from all the available players, then choose two players form the leftover players and so on.
Since the order of the formed pairs is irrelevant, you divide by k! (note that there are k
pairs).

Building the products in the sum, produced by the P operator, can be done
systematically. Assume there are l indices.

If you choose from them 2k indices, the possible combinations can be constructed as
follows. Begin with i1, traverse the tree of possible combinations, which is determined by
the other l − 1 indices and the amount of chosen indices, namely 2k. The pattern of this
traversal is illustrated in the following example. In a next step, choose i2 and traverse the
tree of possible combinations. However, this time, there are only l − 2 indices left to form
this tree; proceed until only one possibility is left. For example, l = 6 and k = 2, then

i1i2i3i4 i1i2i3i5 i1i2i3i6
i1i2i4i5 i1i2i4i6 i1i2i5i6
i1i3i4i5 i1i3i4i6
i1i3i5i6
i1i4i5i6

i2i3i4i5 i2i3i4i6
i2i3i5i6
i2i4i5i6

i3i4i5i6

(A7)

are the possible combinations of indices.
In a second step, each combination has to be used to build sets of distinct pairs. Take for

example the first combination i1i2i3i4. The possible sets of distinct pairs are

{(i1, i2)(i3, i4)}, {(i1, i3), (i2, i4)} and {(i1, i4)(i3, i2)}. (A8a,b)
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These sets were constructed by swapping the index i2 with i3 and i4. If it had not been four
but six indices, the sets of distinct pairs would have been constructed by creating the above
three sets with four indices and, subsequently, swapping one element of the leftover pair
with all the indices appearing in the three sets. This process can be continued as needed.
The terms in the sum corresponding to the above sets of distinct pairs are

δi1i2δi3i4 xi5 xi6 + δi1i3δi2i4 xi5 xi6 + δi1i4δi2i4 xi5 xi6 . (A9)

The P operator then sums over all sets of distinct pairs which are created for each of the
above combination of indices.

A.3. cl,k coefficients
The coefficients cl,k appearing in the explicit expression for the multipole functions given
in (2.14) can be computed. The multipole functions are harmonic polynomials, i.e. they
are solutions to Laplace’s equation. This implies that

0 = ΔM(l)
i1...il =


l/2�∑
k=0

cl,kΔ(r2kRl,2k). (A10)

The product rule tells us that

Δfg = Δfg + 2∇f · ∇g + f Δg. (A11)

Hence, we calculate the following derivatives:

Δr2k = 2k(2k + 1)r2k−2

∇r2k · ∇Rl,2k = 2k(l − 2k)r2k−2Rl,2k

ΔRl,2k = (2k + 2)Rl,2k+2

⎫⎪⎬
⎪⎭ . (A12)

The first derivative is a straightforward computation. We explain the second and the third
derivatives. We begin by replacing Rl,2k in the second derivative with its definition, i.e.

∂jr2k∂ jP(δi1i2 . . . δi2k−1i2k xi2k+1 . . . xil). (A13)

Additionally, ∂jr2k = 2kr2k−2x j. The action of the derivative with respect to xj on the terms
in the sum produced by the operator P is most easily seen if an example term is considered,
e.g.

δi1i2 . . . δi2k−1i2k∂j(xi2k+1 . . . xil)

= δi1i2 . . . δi2k−1i2kδj,i2k+1 xi2k+2 . . . xil + · · · + δi1i2 . . . δi2k−1i2k xi2k+1 . . . xil−1δj,il . (A14)

Here, l − 2k terms appear. In every term, one of the components of r is replaced with a
Kronecker delta. Note that a contraction of the above sum with x j yields l − 2k times the
original term. Whence,

∇r2k · ∇Rl,2k = 2k(l − 2k)r2k−2Rl,2k. (A15)

To illuminate the reasoning behind the derivation of the third derivative, we again consider
an example. Let l = 6 and k = 0, then (by definition) P creates only one term, namely
xi1 . . . xi6 . If our expression for the third derivative is correct, applying the Laplace operator
to this term yields the sum, which is created by P if k = 1, times two. We can compute how
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many terms we expect this sum to have with the formula given in (A6), namely
(6

2

) = 15.
Computing Δ(xi1 . . . xi6) gives 30 terms. However, for example,

∂j(xi1δji2 xi3 . . . xi6) = · · · + xi1δji2 xi3 . . . δji4 xi5 xi6 + · · · (A16)

and
∂j(xi1 . . . δji4 xi6) = · · · + xi1δji2 xi3 . . . δji4 xi5 xi6 + · · · (A17)

yield the same term if summed over j. Hence, we get 15 × 2 terms and this is what we
expect.

If we apply the Laplace operator to P when k = 1, we expect to obtain the sum which is
created by P when k = 2 times four. For l = 6 and k = 2, the P operator produces a sum
with 45 terms. Applying Δ to P when k = 1, yields 15 × 4 × 3 = 180 terms. Note, this is
exactly four times the amount of terms in R4. And, as the following example shows, the
same term in ΔR2 appears four times, i.e.

∂j(δi1i2δji3 xi4 xi5 xi6) = · · · + δi1i2δji3δji4 xi5 xi6 + · · ·
∂j(δi1i2 xi3δji4 xi5 xi6) = · · · + δi1i2δji3δji4 xi5 xi6 + · · ·
∂j(δi3i4δji1 xi2 xi5 xi6) = · · · + δi3i4δji1δji2

xi5 xi6 + · · ·
∂j(δi3i4 xi1δji2 xi5 xi6) = · · · + δi3i4δji1δji2

xi5 xi6 + · · ·

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (A18)

Thus, we get the expected derivative.
This pattern can be generalised to arbitrary l and k. The number of terms created when

the Laplace operator is applied to R2k divided by the number of terms which are contained
in the sum R2k+2 is ( l

2k

)
(2k − 1)!!(l − 2k)(l − 2k − 1)( l

2k+2

)
(2k + 1)!!

= 2k + 2. (A19)

As in the above examples, ΔR2k includes 2k + 2 times the same terms: two of them
because of the components of r (cf. with the first example) and two for each Kronecker
delta (and there are k of them). Thus,

ΔRl,2k = (2k + 2)Rl,2k+2. (A20)

The coefficients cl,k can be determined by plugging the three derivatives, given in (A12),
into the equation presented at the beginning of this section, namely (A10). Collecting all
factors in front of r2k−2R2k yields the following condition:

2kcl,k−1 + (2k(2k + 1) + 4k(l − 2k))cl,k = 0. (A21)

This condition implies the recurrence relation

cl,k = − cl,k−1

2l − (2k − 1)
. (A22)

Eventually, setting cl,0 ≡ (2 l − 1)!! turns it into a closed-form expression:

cl,k = (−1)k (2l − 1)!!
(2l − 1)(2l − 3) . . . (2l − (2k − 1))

= (−1)k(2l − (2k + 1))!!. (A23)
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Appendix B. Commutator of the ladder operators

We would like to compute the commutator [L+, Dz]. We use that [Li, x j] = iεijkxk and
[Li, ∂j] = iεijk∂k (cf. Landau & Lifshitz 1977, p. 84, (26.4)–(5)) to compute

[L+, x j] = iε1jkxk − ε2jkxk (B1)

and

[L+, ∂j] = iε1jk∂k − ε2jk∂k, (B2)

where εijk is the Levi–Civita symbol, which is, for example, defined in Jeevanjee (2011,
p. 4, (1.1)). Since the commutator is linear, we get

[L+, Dz] = 2[L+, zxm∂m] − [L+, r2∂z] + [L+, z]. (B3)

With the above formulae, we obtain for the last two terms

[L+, z] = −(x + iy)

[L+, r2∂z] = r2[L+, ∂z] = −r2(∂x + i∂y)

}
, (B4)

where we exploited that L+ does not contain a derivative with respect to r (cf. (3.26))
and, hence, we could take r2 out of the commutator. To compute the first term, we note
that

[L+, ABC] = [L+, A]BC + A[L+, B]C + AB[L+, C], (B5)

where A, B and C are arbitrary operators. Whence,

[L+, zxm∂m] = −(x + iy)xm∂m + z(iε1mk − ε2mk)xk∂m + z(iε1mk − ε2mk)xm∂k

= −(x + iy)xm∂m. (B6)

In the last step, we renamed the indices and used that the Levi–Civita symbol is
antisymmetric, i.e. εijk = −εikj. Using the last three results gives

[L+, Dz] = −(Dx + iDy). (B7)

Appendix C. Direct derivation of the inverse transformation

We derive a closed-form formula for the inverse basis transformation, namely for αm
l,0,q,r

and αm
l,1,q,r.

To this end, we use that (2.9) and (2.21) describe the same potential φ, i.e.

∞∑
l=0

1
l!r2l+1

Q(l)
i1...il x

i1 . . . xil =
∞∑

l=0

l∑
m=−l

4π

2l + 1
qm

l

r2l+1
rlYm

l (θ, ϕ). (C1)

Moreover, at the end of § 3.1, we pointed out that the functions Q(l)
i1 ...il x

i1 . . . xil in the above
multipole expansion are homogeneous and harmonic polynomials of degree l. The same
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is true for the solid harmonics rlYm
l . This implies that

1
l!r2l+1

Q(l)
i1...il x

i1 . . . xil =
l∑

m=−l

4π

2l + 1
qm

l

r2l+1
rlYm

l (θ, ϕ). (C2)

The factor 1/r2l+1 cancels. We can use the notation introduced in (2.17) to express the
left-hand side of the above equation as

1
l!

∑
p+q+r=l

( p + q + r)!
p!q!r!

Q(l)
pqrx

pyqzr =
∑

p+q+r=l

1
p!q!r!

Q(l)
pqrx

pyqzr. (C3)

The numerical factor in front of the Cartesian multipole moment Q(l)
pqr reflects that the

tensor Q(l) is symmetric and that index combinations corresponding to specific values of
p, q and r appear more than once. Hence, (C2) becomes

∑
p+q+r=l

1
p!q!r!

Q(l)
pqrx

pyqzr =
l∑

m=−l

4π

2l + 1
qm

l rlYm
l (θ, ϕ). (C4)

The left-hand side of (C4) is a linear combination of the monomials xpyqzr with p +
q + r = l. If we are able to express the sum of solid harmonics on the right-hand side of
this equation as such a linear combination as well, we can equate coefficients to determine
the Q(l)

pqr. Since the factors in front of the solid harmonics are the spherical multipole
moments qm

l , the components Q(l)
pqr of the Cartesian multipole moment must be a sum of

them. Equation (4.3) informs us that we can express the components Q(l)
pqr with p > 1 as

a sum of the components with p = 0 or p = 1. Thus, we can restrict our attention to the
coefficients in front of the monomials with p equal to zero or p equal to one. Furthermore,
a look at (5.11a,b) tells us that these coefficients (which must be a sum of the spherical
multipole moments) contain the complex conjugate of the αm

l,0,q,r and αm
l,1,q,r. Hence, we

proceed in two steps. First, we express the solid harmonics as a linear combination of
monomials. Second, we isolate the p = 0 or p = 1 part of this sum and, subsequently,
equate coefficients.

Step one begins with (2.25), namely

rlYm
l (θ, ϕ) = (−1)mNm

l rl−m dm

d cosm θ
Pl(cos θ)(r sin θ cos ϕ + ir sin θ sin ϕ)m, (C5)

and we use the following closed-form expression of the Legendre polynomials

Pl(cos θ) = 1
2l


l/2�∑
j=0

(−1) j

(
l
j

)(
2l − 2j

l

)
cosl−2j θ, (C6)

to obtain

rlYm
l (θ, ϕ) =


(l−m)/2�∑
j=0

Rm
l,jr

2jzl−m−2j(x + iy)m, (C7)

where the numerical factor Rm
l,j is defined as

Rm
l,j ≡ (−1)j+m

2l
Nm

l

(
l
j

)(
2l − 2j

l

)
(l − 2j)!

(l − 2j − m)!
. (C8)

https://doi.org/10.1017/S002237782200099X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782200099X


Converting between the Cartesian tensor and spherical harmonic expansion 27

In the next step, we rewrite the expression in parentheses using the binomial theorem.
Furthermore, we apply the multinomial theorem to expand the factor r2j. This yields

rlYm
l (θ, ϕ) =


(l−m)/2�∑
j=0

∑
i1+i2+i3=j

m∑
k=0

im−kRm
l,j

(
j

i1 i2 i3

)

×
(

m
k

)
xk+2i1 ym−k+2i2 zl−m−2j+2i3 . (C9)

We finished step one: we found a way to write the solid harmonics as a linear combination
of monomials.

We now isolate the part of the above sum where the exponent of x, namely p = k + 2i1,
is either zero or one. Note that if p = 0, then k = 0 and i1 = 0. Additionally, since i1 +
i2 + i3 = j, the last statement implies that i3 = j − i2. We conclude that the p = 0 part of
the sum is


(l−m)/2�∑
j=0

j∑
i2=0

imRm
l,j

(
j
i2

)
ym+2i2 zl−m−2i2 =


(l−m)/2�∑
j=0

j∑
k=0

imRm
l,j

(
j
k

)
ym+2kzl−m−2k. (C10)

In the last line, we relabelled the index i2 to k. Since we would like to equate the
coefficients in front of the monomials, we should reorder the above sum such that all
coefficients in front of monomials with specific values of q = m + 2k and r = l − m − 2k
are summed. The result of this reordering is


(l−m)/2�∑
j=0

j∑
k=0

imRm
l,j

(
j
k

)
ym+2kzl−m−2k =


(l−m)/2�∑
k=0

[
(l−m)/2�∑
j=k

imRm
l,j

(
j
k

)]
ym+2kzl−m−2k. (C11)

When isolating the p = 1 part of the sum in (C9), we get


(l−m)/2�∑
j=0

j∑
k=0

mim−1Rm
l,j

(
j
k

)
x1ym−1+2kzl−m−2k

=

(l−m)/2�∑

k=0

[
(l−m)/2�∑
j=k

mim−1Rm
l,j

(
j
k

)]
x1ym−1+2kzl−m−2k. (C12)

Thus, we isolated the p = 0 and p = 1 parts of the expression for a solid harmonic in terms
of monomials.

Before we use (C4) to determine the components Q(l)
pqr via equating the coefficients of

the two polynomials, we rewrite the right-hand side of this equation as follows:

∑
p+q+r=l

1
p!q!r!

Q(l)
pqrx

pyqzr = 4π

2l + 1

l∑
m=0

(qm
l rlYm

l + (−1)mq−m
l rlYm

l
∗). (C13)
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This equation in conjunction with (C11) implies for the p = 0 part of the sums on both
sides of it that

l∑
q=0

1
q!(l − q)!

Q(l)
0q(l−q)y

qzl−q

= 4π

2l + 1

l∑
m=0

(
(l−m)/2�∑
k=0

[
(l−m)/2�∑
j=k

imRm
l,j

(
j
k

)]
ym+2kzl−m−2k

) (
qm

l + q−m
l

)

=
l∑

q=0

(
q/2�∑
k=0

4π

2l + 1

[
(l−q+2k)/2�∑
j=k

iq−2kRq−2k
l,j

(
j
k

)]
(qq−2k

l + q−(q−2k)
l )

)
yqzl−q. (C14)

In the second line, we once more reordered the sum such that all coefficients in front of
the monomials with the same exponents were grouped together. This implies

Q(l)
0q(l−q) =


q/2�∑
k=0

α
∗q−2k
l,0,q,(l−q)q

q−2k
l + α

∗−(q−2k)
l,0,q,(l−q)q

−(q−2k)
l (C15)

for q ∈ {0, 1, . . . , l} and where the complex conjugate inverse basis transformation is
defined as

α
∗q−2k
l,0,q,(l−q) ≡ 4π

2l + 1
q!(l − q)!iq−2k

[
(l−q+2k)/2�∑
j=k

Rq−2k
l,j

(
j
k

)]
. (C16)

Note that α
∗−(q−2k)
l,0,q,(l−q) = α

∗q−2k
l,0,q,(l−q).

The above computation can be repeated for the p = 1 part of the sums with (C12). This
leads to

Q(l)
1q(l−q−1) =


q/2�∑
k=0

α
∗q+1−2k
l,1p,q,(l−q)q

q+1−2k
l + α

∗−(q+1−2k)
l,1,q,(l−q) q−(q+1−2k)

l (C17)

for q ∈ {0, . . . , l − 1} with

α
∗q+1−2k
l,1,q,(l−q) ≡ (q + 1 − 2k)

4π

2l + 1
q!(l − q − 1)!iq−2k

[
(l−q−1+2k)/2�∑
j=k

Rq+1−2k
l,j

(
j
k

)]
. (C18)

Moreover, α
∗−(q+1−2k)
l,1,q,(l−q) = −α

∗q+1−2k
l,1,q,(l−q).

The presented formulae for the α terms allow a computation of the inverse basis
transformation matrix A without inverting the basis transformation matrix B. The
arguments to derive the formulae are an adaptation of findings by Johnston (1960) to our
insight that only the components of Q(l)

pqr with p ≤ 1 are needed.
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