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Many naturally occurring and man-made plasmas are collisionless and turbulent. It is
not yet well understood how the energy in fields and fluid motions is transferred into
the thermal degrees of freedom of constituent particles in such systems. The debate
at present primarily concerns proton heating. Multiple possible heating mechanisms
have been proposed over the past few decades, including cyclotron damping, Landau
damping, heating at intermittent structures and stochastic heating. Recently, a
community-driven effort was proposed (Parashar & Salem, 2013, arXiv:1303.0204)
to bring the community together and understand the relative contributions of these
processes under given conditions. In this paper, we propose the first step of this
challenge: a set of problems and diagnostics for benchmarking and comparing
different types of 2.5D simulations. These comparisons will provide insights into the
strengths and limitations of different types of numerical simulations and will help
guide subsequent stages of the challenge.

1. Motivation
Near-Earth space is a dynamic system where plasmas from the Sun and Earth’s

magnetosphere interact. The dynamics of this system affect not only our spacecraft
and astronauts but also wireless communications and, in some extreme cases, electrical
grids on Earth. It is very important to have good predictive capabilities for this system.
An integral part of the system is the medium that connects the Sun and the Earth: the
solar wind.

The solar wind is observed to be turbulent. By this we mean that the energy in
the electromagnetic field and plasma fluctuations at the largest scales is ‘cascaded’ to
smaller scales via nonlinear interactions, creating a broadband spectrum of incoherent
fluctuations in fields and flows. The distribution of energy over a range of scales
usually follows a power law (e.g. Kolmogorov 1941). The solar wind magnetic energy
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spectrum obeys the Kolmogorov power law in the ‘inertial range’ (e.g. Coleman 1968;
Matthaeus & Goldstein 1982; Goldstein, Roberts & Matthaeus 1995), which covers
scales larger than a break scale λb that is comparable to the proton inertial length
di and/or proton gyro-radius ρi, where di = c/ωpi, c is the speed of light and ωpi is
the proton plasma frequency. (Near Earth, di is comparable to ρi.) Near observed
frequencies of about 0.5 Hz, magnetic fluctuation spectra in the solar wind usually
show a break from the well-known k−5/3 form of the inertial range to steeper spectra
of the form k−α with α>2 (e.g. Sahraoui et al. 2009; Alexandrova et al. 2012). Under
the Taylor hypothesis that the observed frequency of solar wind fluctuations should
scale as k · vsw/2pi, where vsw is the solar wind flow velocity, this spectral break
corresponds to kdi' 1. Although it is generally agreed that inertial range turbulence is
well described by magnetohydrodynamic (MHD) models, it is also generally agreed
that the steeper spectra at wavelengths shorter than the spectral break require a
kinetic, that is, velocity-space, description for their complete representation. This
short-wavelength, relatively steep spectral regime is often labelled the ‘dissipation
range’, suggesting that it plays an important role in turbulent dissipation and ion
heating. But the steepening of this regime may also be attributed to fluctuation
dispersion introduced by velocity-space effects and electron dynamics (e.g. Ghosh
& Goldstein 1997; Stawicki, Gary & Li 2001; Boldyrev & Perez 2012), so that we
label this the ‘kinetic range’.

The relative roles of dissipation and dispersion are poorly understood and is an
important topic of study in plasma turbulence research. Dissipation (that is, the
transfer of energy from the field fluctuations to the plasma particles) by fluctuations
at wavelengths near the spectral break is primarily collisionless and must explain
features observed in the solar wind, such as the strong anisotropies of the ion
velocity distributions (e.g. Marsch 2006) which often correspond to temperatures
such that T⊥ > T‖. By ‘temperature’ in this context, we mean the second moment
of the velocity distribution function as measured by spacecraft observations. The
anisotropy is introduced by the collisionless dynamics and eventually thermalized
by collisions. A number of damping mechanisms have been proposed, including
ion–cyclotron damping (Hollweg & Isenberg 2002, and references therein), Landau
damping (Schekochihin et al. 2009, and references therein), particle energization
at current sheets and reconnection sites (e.g. Dmitruk, Matthaeus & Seenu 2004;
Sundkvist et al. 2007; Parashar et al. 2009, 2011; Osman et al. 2011; Wan et al.
2012; Karimabadi et al. 2013) and stochastic heating (e.g. McChesney, Stern & Bellan
1987; Chaston et al. 2004; Chandran et al. 2010; Bourouaine & Chandran 2013;
Xia et al. 2013). If the power in electromagnetic fluctuations at scales ∼ρi becomes
sufficiently large, the ion’s orbit becomes chaotic and it undergoes ‘stochastic’ heating
in the perpendicular direction. Ion–cyclotron damping requires the presence of waves
with frequencies comparable to the proton cyclotron frequency Ωci, while particle
energization at current sheets requires the presence of coherent structures. On the
other hand, models of Landau damping (TenBarge et al. 2013) and stochastic heating
(Chandran et al. 2010) have been applied to both linear waves and coherent structures.

There are problems associated with each of these mechanisms that make it difficult
to propose any of them as the dominant mechanism for heating solar wind protons.
Cyclotron heating requires sufficient energy at k‖di ∼ 1 but plasma turbulence with
a mean magnetic field (like the solar wind) becomes highly anisotropic with most
of the energy residing in high k⊥. There is still no consensus on how to provide
energy to high enough k‖ for this mechanism to be valid. Landau damping inherently
produces high T‖ and hence would provide parallel proton heating instead of the
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observed perpendicular heating. Intermittent structures have been shown to have a
strong correlation with highly anisotropic heating but the cause–effect relation is
not completely understood and the exact details of how the heating takes place are
debated.

While we focus on the solar wind as an example, there are many astrophysical
plasmas for which these processes are important. A few examples are: the early
Universe, the intergalactic medium (e.g. Schekochihin et al. 2010), accretion disks (e.g.
Kunz, Schekochihin & Stone 2014), astrophysical jets (e.g. Romanova & Lovelace
1992), the interstellar medium, planetary magnetospheres, geologically active moons
within planetary magnetospheres or magnetic moons within planetary magnetospheres
(e.g. Saur et al. 2002; Mousis & Gautier 2004; Saur 2004; Kivelson 2006; von Papen,
Saur & Alexandrova 2014).

We anticipate that most of these processes should be active in the solar wind at any
given moment. The fundamental problem of interest is to quantify their contributions
under various solar wind conditions. Determining the relative contributions of these
mechanisms to turbulent dissipation in the solar wind is the central goal of the
‘turbulent dissipation challenge’. We envision this challenge as consisting of several
steps. The overall goal of the ‘turbulent dissipation challenge’ is stated as follows:

What is the minimum physical model required to produce accurate intermittency,
fluctuation dissipation and particle heating for collisionless plasma turbulence?

With this in mind, we propose a suggestion for the first steps that should be taken to
answer this question: a comparison between different numerical codes simulating the
same initial conditions and plasma parameters. The goal of this first step is to gain
insights into the strengths and limitations of different simulation techniques, which
will help us to design the future stages of this challenge. The eventual goal of the
challenge is to run large three-dimensional simulations, but the high cost of such work
limits the number of attempts that can be made, and so the challenge will initially
focus on the more achievable goal of comparing 2.5D (two-dimensional (2D) grid and
three-dimensional (3D) vectors) simulations with the aim of performing only the most
relevant simulations in three dimensions.

We describe our overall goals in more detail in § 2, and the numerical set-up for the
2.5D challenge problems in § 3. We outline a set of common diagnostics in § 4. We
suggest additional tasks related to observations in § 4.3, and in § 5 we outline future
directions for this challenge.

2. Definition of goals

An underlying issue that has hindered progress towards a more complete under-
standing of dissipation in the solar wind is a lack of comparison between results
from various studies. Most of the numerical studies are done using models that
are vastly different in their underlying assumptions and numerical schemes. For
example, electron magnetohydrodynamics (EMHD) (e.g. Kingsep, Chukbar & Ian’kov
1987; Gordeev, Kingsep & Rudakov 1994; Cho & Lazarian 2004) is the fluid
description of the electron dynamics that treats protons as an immobile neutralizing
background. Hybrid particle-in-cell (hybrid PIC) simulations (e.g. Parashar et al.
2009) treat protons as particles and electrons as a neutralizing fluid (usually massless
and isothermal). Gyro-kinetics (e.g. Brizard & Hahm 2007) is a Vlasov–Maxwell
system in which the gyro-motion of the particles has been averaged out from the
system. Other examples of possible models include magnetohydrodynamics (MHD)
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(e.g. Gurnett & Bhattacharjee 2005), Hall MHD (e.g. Ghosh & Goldstein 1997),
Hall-FLR MHD (e.g. Mjølhus 2009) with finite Larmor radius (FLR) corrections,
reduced MHD (RMHD) (e.g. Zank & Matthaeus 1992), electron reduced MHD
(ERMHD) (e.g. Schekochihin et al. 2009), Landau fluid (e.g. Goswami, Passot &
Sulem 2005; Hunana et al. 2013), hybrid Eulerian Vlasov (e.g. Valentini, Califano &
Veltri 2010) and full PIC (e.g. Karimabadi et al. 2013).

Complicating matters further, studies performed using these different models do not
have the same initial conditions or even the same parameters. Hence it is not possible
to compare the findings of these studies.

Similar problems concerning the variety of methods used and difficulty of
benchmarking these methods are present with spacecraft data analysis. Data can
be chosen from different instruments on many spacecraft, e.g. WIND (Harten &
Clark 1995), CLUSTER (Escoubet, Fehringer & Goldstein 2001), ACE (Stone et al.
1998), Helios (Rosenbauer et al. 1976), Ulysses (Wenzel et al. 1992) and Voyager
(Behannon et al. 1977), to name a few. Even if the data are from the same instruments
and spacecraft, then the intervals chosen could be vastly different, ranging from fast
wind to slow wind to all-inclusive. Moreover, the analysis techniques have not been
methodically benchmarked against one another or simulations.

The above-mentioned problems call for a systematic comparison study where
different types of simulation models are used to study the same initial conditions
under as similar physical and numerical parameter regimes as possible. Artificial
spacecraft data from these simulations can then be used to benchmark different
spacecraft data analysis techniques with simulations as well as with each other.

The first step of the endeavour is to develop a better understanding of the strengths
and limitations of different techniques for simulating intermittent structures and wave
physics. Some work has been done in this direction (e.g. Henri et al. 2013; Keppens
et al. 2013), but a comparison of statistical features of turbulence, dynamics of kinetic
Alfvénic fluctuations as well as plasma heating have to be addressed. Hence we define
the first step of this endeavour to be the following:

With given initial conditions and physical parameters, how do different simulation
models of turbulence compare in capturing the physics of (i) intermittent structures
and (ii) wave physics, in a turbulent setting?

In the sections to follow, we describe a plan for carrying out such comparisons. We
focus on two specific problems with fixed plasma parameters and initial conditions.

(a) The first problem will be designed to generate strong turbulence with intermittent
structures. It will have 3D vectors defined on a 2D computational grid that is
almost perpendicular to the mean magnetic field to emphasize the role of
intermittent structures.

(b) The second problem will be designed to develop a turbulent spectrum of waves.
It will have 3D vectors on a 2D grid that is in the plane containing the mean
magnetic field to emphasize wave processes like such as Landau and cyclotron
damping.

Towards the end of the first stage, depending on the availability of time and
resources, preliminary 3D simulations with minimal departures from the above-
mentioned initial conditions could be performed. This will provide important clues
about the importance of out-of-plane couplings missing in the 2.5D description.

By performing these simulations using different simulation models and performing
the same set of diagnostics, we will be able to quantitatively compare the results
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from different models and gain insights into their relative strengths and weaknesses.
Artificial spacecraft data will be provided to observers in order to establish a system
that will be used to address physics questions at a later stage in the challenge.

3. Problem description
The conditions for the first simulations will be chosen to represent the conditions of

ambient fast solar wind at 1 AU. Fast wind fills the majority of the heliosphere and
is the cause of geo-effective magnetic sub-storms in the Earth’s magnetosphere. The
fast wind also generally contains larger-amplitude but more homogeneous fluctuations
than the slow wind, making it ideal for studies of plasma turbulence. Hence we
will set βi ≡ 8πkBn0Ti/B2

0 = 0.6 along with Te = Ti, where n0 is the initial proton
density, and Ti and Te are proton and electron temperatures. We will set me/mi= 0.01
and ωpe/ωce = 1.5, where me and mi are electron and proton masses, ωpe is the
electron plasma frequency and ωce is the electron cyclotron frequency. These latter
two conditions imply that VA/c= 1/15 where VA = B0/

√
4πn0mi is the Alfvén speed.

These parameters give us a Debye length of λD = 0.05di. It should be noted that
these artificial values are used to reduce the computational costs for fully kinetic
plasma codes. At 1 AU, ωpe/ωce ∼ 113 and VA/c ∼ 2 × 10−4 (assuming typical fast
wind values of B0 ∼ 11 nT and n ∼ 15 cm−3). These realistic numbers along with
the realistic mass ratio me/mi = 1/1836 would make the computational cost of the
proposed systems exorbitantly high. Our suggested parameters correspond to an
electron thermal speed of order c/2, implying that relativistic electron effects may
play a role in our simulations. In the case of relativistic codes, varying ωpe/ωce does
not affect the spectral features significantly. However, this ratio will be important
in comparing results between relativistic and non-relativistic codes. This difference
could provide guidance on the interpretation of discrepancies between the two codes.

To further reduce computational costs, we will perform the simulations in 2.5D,
i.e. the simulation dynamics will be in a plane but with 3D components for all the
vectors. By working in 2.5D, we will be able to simulate a much larger range of scales
than would be possible in 3D simulations. Observations show that the anisotropy and
intermittency grow with the width of the inertial range (e.g. Greco et al. 2008; Wicks
et al. 2010, 2012; Wu et al. 2013). Hence, we choose to work with systems with a
fairly large Reynolds number† to compare the codes, which is possible in 2.5D (at
least for the simulations described in 3.1). We understand that full 3D simulations
are required for a complete description of dynamics, but we postpone 3D simulations
until a later stage of the challenge. After the code comparison, large 3D simulations
can be designed using the insights gathered from the first stage of the challenge.

3.1. Case 1: plane nearly perpendicular to B0

These simulations will study the intermittent structures that emerge from the nonlinear
development of a Kelvin–Helmholtz (KH) instability (e.g. Chandrasekhar 1961; Miura
& Pritchett 1982; Henri et al. 2013; Karimabadi et al. 2013). The KH instability gives
rise to large-scale vortices and current sheets. As the vortices roll up, the current
sheets get thinner and give rise to secondary tearing instabilities. This generates a
turbulent ‘soup’ of current sheets ranging in scales from proton to electron scales. The

†Reynolds number is typically defined as R=Uν/L, with U being a characteristic system size speed, ν
the viscosity and L the characteristic system length. In the case of kinetic simulations, (L/di)

3/4 is a good
estimate of R.
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ease of setting up KH and the broad range of turbulent current layers generated by it
make it an ideal candidate for studying how well different codes capture intermittent
physics. In the linear limit, it has been used to test PIC codes by comparing the
linear damping rates to the ones captured in PIC simulations (Haugbølle, Frederiksen
& Nordlund 2013).

We will follow the set-up used in Karimabadi et al. (2013) with a slight
modification for this test. The initial density n0 and magnetic field B0 will be
uniform. The field B0 will be predominantly out of the simulation (xy) plane,
with an inclination such that B = B0[ey sin θ + ez cos θ ] with θ = 2.86◦. To allow
for use of periodic boundary conditions, we will use a double shear layer of
flow. The shears will be present at x1 = 0.25Lx and x2 = 0.75Lx, with the shear
layer flow defined as U = U0(tanh(x − x1)/LV − tanh(x − x2)/LV − 1)ey, where
U0 = 10V∗A, V∗A = B0 sin(θ)/

√
4πn0mi and LV = 4di. The system size will be

Lx = 125di, Ly = 125di, Nx = 2048 and Ny = 2048. Also a perturbation of the
form δU = δU0 sin(2k0y) exp(−(x − xi)

2/L2
V)ey, where xi = x1, x2, k0 = 2π/Ly and

δU0 = 0.15U0, will be added in both shear layers to expedite the growth of the
instability. For PIC codes, particles will be loaded so as to create a net charge in the
transition layer consistent with Gauss’s law and the electric field associated with the
cross-field flow, E=−U × B0/c, which has non-zero divergence.

Fluid codes need to use some kind of resistivity and/or viscosity. In MHD codes,
this can be set such that the Kolmogorov scale appears at the wavenumber that is
equivalent to proton scales in the fully kinetic simulations. Hence viscosity should be
set up to be significant at k∼ 125(2π/Lbox).

3.2. Case 2: 2.5D plane containing B0

These simulations will address the temporal development of wave turbulence in a
collisionless plasma. The specific technique will use several different simulation
models to compute the evolution of initial field fluctuation spectra that are relatively
long-wavelength and relatively isotropic in wavevector distribution. Recent observations
and simulations have demonstrated that the fluctuations of kinetic range turbulence in
the solar wind may consist of various normal modes including kinetic Alfvén waves
(KAWs), magnetosonic waves (e.g. Svidzinski et al. 2009) and whistler waves (e.g.
Saito et al. 2008; Gary, Chang & Wang 2012; Chang, Gary & Wang 2013, 2014). It
is generally agreed that, in solar wind at 1 AU, turbulence near and at wavelengths
shorter than kdi ∼ 1 consist primarily of KAWs (e.g. Howes et al. 2008; Sahraoui
et al. 2009; Shaikh & Zank 2009; Podesta, Borovsky & Gary 2010; Salem et al.
2012; Chen et al. 2013).

The procedure to be followed in this second set of simulations will follow that used
in several previous simulation studies of the kinetic range of solar wind turbulence.
The computations are initialized with a narrowband spectrum of relatively isotropic,
long-wavelength normal modes; nonlinear processes lead to a forward cascade that
develops a broadband, anisotropic spectrum of turbulence. This technique has been
used with PIC simulations to study 2.5D whistler turbulence (e.g. Gary, Saito &
Li 2008; Saito et al. 2008; Saito, Gary & Narita 2010; Saito & Gary 2012),
fully 3D whistler turbulence (e.g. Gary et al. 2012; Chang, Gary & Wang 2011,
2013, 2014, 2015) and 2.5D magnetosonic turbulence (e.g. Svidzinski et al. 2009).
The same technique has also been used with hybrid simulations to examine the
forward cascade of magnetosonic turbulence in 2.5D (e.g. Markovskii & Vasquez
2010; Markovskii, Vasquez & Chandran 2010) and Alfvénic and kinetic Alfvénic
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FIGURE 1. Dispersion curves for KAWs propagating at various angles in a proton–electron
Maxwellian plasma with β = 0.6, Te = Ti, me/mi = 0.01 and VA/c = 1/15. Solid lines
represent real frequency and dashed lines represent the damping.

turbulence in full 3D (e.g. Vasquez, Markovskii & Chandran 2014) geometries.
Tronko et al. (2013) and Howes (2015) have argued that, for incompressible MHD,
the nonlinear cascade is suppressed in 2.5D geometry with the mean field in the
plane of simulation. The implications of their conclusions are even stronger in the
case of kinetic Alfvénic fluctuations and reduced models like RMHD and ERMHD.
It is however unclear how the conclusions would carry over to compressible and/or
kinetic limits. Moreover, computations in the same 2.5D geometry using hybrid
PIC simulations of Alfvénic turbulence (e.g. Verscharen et al. 2012; Comişel et al.
2013; Comişel, Narita & Motschmann 2014) have shown that the cascade proceeds
to kinetic scales anisotropically. Since the turbulent dissipation challenge addresses
dissipative processes at proton scales, we will use an initial condition consisting of
kinetic Alfvén waves in the second set of simulations.

In designing these simulations, we are guided by the following considerations.

(a) As the challenge is focused on the proton inertial scales, the initial condition
should be a spectrum of KAWs around kdi ∼ 1.

(b) The spectral range simulated should be the same over all the simulations, with
in-plane or out-of-plane B0: approximately a decade above di and at least a
decade below di.

(c) The problem should run in reasonable amount of time on modern computing
clusters. With k⊥� k‖, we can reduce the perpendicular extent of the box to save
computational time.

Given the above constraints, we set Lx = 125di, Ly = 31.25di, Nx = 2048 and Ny =
256. This will give us 1x = 0.061di corresponding to about 16 grid points across
di and three grid points across 2de. This will also correspond to the spectral range
extending from kmin ≡ 2π/Lx = 0.05d−1

i to kmax ≡π/1x= 51.5d−1
i .

Figure 1 shows the dispersion curves for various angles of propagation of KAWs in
a Maxwellian proton–electron plasma, calculated using linear Vlasov theory (e.g. Gary
1986, 2005), with β= 0.6, Te=Ti, me/mi= 0.01 and VA/c= 1/15. Almost all of these
curves are dispersive at kdi∼ 1 and have very low and comparable damping rates. We
choose the window 0.46 kdi 6 1.85, which will give us not only dispersive waves and
similar damping rates but also ∼28 grid points across the smallest wavelength in the
initial spectrum. This means that the shorter wavelengths generated by the cascade
will have sufficient resolution across them.
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kxdi kydi |k| θkB

0.05 (1) 0.4 (2) 0.403113 82.874984
0.05 (1) 0.6 (3) 0.602080 85.236358
0.05 (1) 0.8 (4) 0.801561 86.423666
0.05 (1) 1.0 (5) 1.001249 87.137595
0.05 (1) 1.2 (6) 1.201041 87.614056
0.05 (1) 1.4 (7) 1.400893 87.954592
0.05 (1) 1.6 (8) 1.600781 88.210089
0.05 (1) 1.8 (9) 1.800694 88.408860

TABLE 1. The parallel (kx) and perpendicular (ky) wavenumbers in units of kdi as well
as the number of wavelengths in the box (in parentheses). Corresponding |k| and θkB (the
angle between k and B0) are also shown.

kρi kdi θ ωr/Ωci γ /Ωci ωr/kvA γ /ωr

0.221 0.403 82.87 0.0505 −3.905× 10−4 0.1252 −0.008
0.330 0.602 85.24 0.0516 −8.710× 10−4 0.0857 −0.017
0.439 0.802 86.42 0.0531 −1.534× 10−3 0.0663 −0.029
0.548 1.001 87.14 0.0551 −2.368× 10−3 0.0551 −0.043
0.658 1.201 87.61 0.0576 −3.357× 10−3 0.0480 −0.058
0.767 1.401 87.95 0.0606 −4.481× 10−3 0.0432 −0.074
0.877 1.601 88.21 0.0640 −5.722× 10−3 0.0400 −0.089
0.986 1.801 88.41 0.0678 −7.064× 10−3 0.0376 −0.104

TABLE 2. Frequencies and damping rates for the suggested KAW modes.

The next constraint on the choice of |k| values is that the modes need to be periodic
across the box in the x and y directions. With this in mind, we choose the eight
numbers for kx ≡ k‖ and ky ≡ k⊥ shown in table 1. The table shows values in units
of kdi as well as number of wavelengths in the box in parentheses. The complete
eigenvalues for these modes are given in tables 2–5.

Ideally each kinetic model would, as a first step, set up a single KAW and compare
its properties with the predictions of linear theory. However, this should be treated as a
basic test for the computer codes, as the chances of gaining new physical insights will
be low with this test. A non-trivial set-up is required to compare different computer
models. Hence, for the comparison of different computer models, the initial condition
will be a spectrum of KAWs with the above-mentioned |k| and θkB created using
the prescription in § 3 of Gary & Nishimura (2004). The initial field fluctuations are
written as

δB(x, t= 0)=
∑
α=x,y,z

êα(δBα)0 sin(kxx+ kyy+ φBα), (3.1)

δE(x, t= 0)=
∑
α=x,y,z

êα(δEα)0 sin(kxx+ kyy+ φEα), (3.2)

δvj(x, t= 0)=
∑
α=x,y,z

êα(δvjα)0 sin(kxx+ kyy+ φvjα), (3.3)

where the mode amplitudes are provided by the linear Vlasov code (Gary 1986). The
phases are chosen randomly. We expect the kinetic codes to quickly adjust the phases
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kdi θ (δEx/δEtot)
2 (δEy/δEtot)

2 (δEz/δEtot)
2 (δEk/δEtot)

2 (δEtot/δBtot)
2

0.4031 82.87 2.941× 10−4 9.997× 10−1 1.422× 10−5 9.835× 10−1 4.233× 10−3

0.6021 85.24 3.174× 10−4 9.997× 10−1 3.127× 10−5 9.920× 10−1 4.075× 10−3

0.8016 86.42 3.411× 10−4 9.996× 10−1 5.481× 10−5 9.950× 10−1 3.876× 10−3

1.0012 87.14 3.678× 10−4 9.995× 10−1 8.403× 10−5 9.963× 10−1 3.658× 10−3

1.2010 87.61 3.961× 10−4 9.995× 10−1 1.172× 10−4 9.970× 10−1 3.444× 10−3

1.4009 87.95 4.225× 10−4 9.994× 10−1 1.514× 10−4 9.974× 10−1 3.258× 10−3

1.6008 88.21 4.422× 10−4 9.994× 10−1 1.827× 10−4 9.977× 10−1 3.123× 10−3

1.8007 88.41 4.506× 10−4 9.993× 10−1 2.070× 10−4 9.979× 10−1 3.056× 10−3

TABLE 3. Electric field vectors for the KAW modes. Here, and in the following tables,
subscript z denotes the direction parallel to the mean field B0, the (y, z) plane contains the
wavevector k and the x direction is perpendicular to y, z. Subscript k denotes the direction
parallel to the k vector.

kdi θ (δBx/δBtot)
2 (δBy/δBtot)

2 (δBz/δBtot)
2 (δBz/δEz)

2

0.4031 82.87 9.821× 10−1 2.750× 10−4 1.760× 10−2 2.923× 105

0.6021 85.24 9.603× 10−1 2.735× 10−4 3.938× 10−2 3.091× 105

0.8016 86.42 9.323× 10−1 2.633× 10−4 6.740× 10−2 3.172× 105

1.0012 87.14 9.004× 10−1 2.484× 10−4 9.936× 10−2 3.232× 105

1.2010 87.61 8.671× 10−1 2.303× 10−4 1.326× 10−1 3.286× 105

1.4009 87.95 8.352× 10−1 2.099× 10−4 1.646× 10−1 3.336× 105

1.6008 88.21 8.069× 10−1 1.884× 10−4 1.929× 10−1 3.381× 105

1.8007 88.41 7.835× 10−1 1.669× 10−4 2.163× 10−1 3.420× 105

TABLE 4. Magnetic field for the selected KAW wavevectors.

to the real phases of the fluctuations. The total amplitude of the fluctuations will be
such that |δB|2/B2

0 ∼ 0.1, with the fluctuation amplitudes chosen to have the same
value for every mode. PIC simulations of initially flat narrowband spectra of whistler
fluctuations (Chang et al. 2011, 2015; Gary et al. 2012) show that the fluctuations
evolve to broadband turbulent-like spectra, which decrease with increasing k⊥. These
results suggest that the forward cascade determines the late-time properties of the
spectra, and that those spectral properties are relatively independent of the initial
distributions of fluctuation amplitudes. The wavevectors output from the linear Vlasov
code (Gary 1986) for the given parameters are listed in tables 1–5.

4. Common diagnostics

To facilitate a quantitative comparison between different simulation models, a
common set of diagnostics will be performed on the simulations. In § 4.1 we list the
suggested diagnostics for the simulations described in § 3.1, and in § 4.2 we list the
suggested diagnostics for the simulations described in § 3.2. Although the diagnostics
are listed separately for the two problems, we suggest that these be performed on all
the simulations if possible. Some problem-independent diagnostics are as follows:

(a) We will plot the change in the thermal energy of protons as a fraction of initial
free energy, defined as Etot − EB0 , where Etot = EB + Ei + Ee + EE is the total
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kdi (δvx/δBtot)
2 (δvy/δBtot)

2 (δvz/δBtot)
2 (δvk/δBtot)

2 (δvkB/δBtot)
2

0.4031 0.90 1.033× 10−3 5.361× 10−3 8.045× 10−4 5.589× 10−3

0.4031 1.00 2.964× 10−4 1.341× 10−1 8.165× 10−4 1.336× 10−1

0.6021 0.80 9.782× 10−4 1.044× 10−2 7.957× 10−4 1.062× 10−2

0.6021 1.03 3.071× 10−4 3.023× 10−1 8.077× 10−4 3.018× 10−1

0.8016 0.68 9.232× 10−4 1.569× 10−2 7.964× 10−4 1.582× 10−2

0.8016 1.06 3.131× 10−4 5.411× 10−1 8.085× 10−4 5.406× 10−1

1.0012 0.55 8.654× 10−4 1.997× 10−2 7.988× 10−4 2.004× 10−2

1.0012 1.11 3.176× 10−4 8.518× 10−1 8.110× 10−4 8.513× 10−1

1.2010 0.42 8.085× 10−4 2.249× 10−2 7.997× 10−4 2.250× 10−2

1.2010 1.18 3.208× 10−4 1.233× 101 8.122× 10−4 1.233× 101

1.4009 0.30 7.566× 10−4 2.293× 10−2 7.970× 10−4 2.289× 10−2

1.4009 1.25 3.227× 10−4 1.681× 101 8.098× 10−4 1.680× 101

1.6008 0.21 7.136× 10−4 2.146× 10−2 7.895× 10−4 2.139× 10−2

1.6008 1.35 3.226× 10−4 2.185× 101 8.029× 10−4 2.185× 101

1.8007 0.14 6.811× 10−4 1.860× 10−2 7.768× 10−4 1.851× 10−2

1.8007 1.47 3.208× 10−4 2.735× 101 7.907× 10−4 2.735× 101

TABLE 5. KAW velocity vectors for ions as well as electrons. In each group, the first
line is for ions and the second line is for electrons.

energy, which includes contributions from electromagnetic fluctuations as well
as plasma and EB0 is the energy in the mean magnetic field, available at the
beginning of the simulation. Where possible, anisotropy as defined by T⊥/T‖,
with ⊥ and ‖ defined with respect to the mean field, will also be plotted. As an
example, figure 2 shows the change in thermal energy as well as the temperature
anisotropy for three hybrid simulations of an Orszag–Tang vortex (OTV) with
different equation of state for the electrons (for details see Parashar, Vasquez &
Markovskii 2014). This way of plotting makes the results independent of the units
used in the simulation code and hence makes a comparison of proton heating in
different codes simple.

(b) Power spectra for magnetic field should also be compared from all the models.
The spectra will be decomposed into EB(k⊥) and EB(k‖) and the slopes of these
spectra will be computed.

We now describe the measures for intermittency and wave physics.

4.1. Intermittent structures
There are multiple different measures used to quantify intermittency of turbulence,
e.g. kurtosis of derivatives, scale-dependent kurtosis, filtered kurtosis, probability
distribution functions (PDFs) of increments (e.g. Greco et al. 2008; Parashar et al.
2011), local intermittency measure (LIM) (Farge et al. 1990; Farge 1992; Bruno et al.
1999), phase coherence index (e.g. Hada et al. 2003; Koga et al. 2007) and partial
variance of increments (PVI) (e.g. Greco et al. 2008), and structure functions (e.g.
Bruno & Carbone 2013). In particular we will use scale-dependent kurtosis, PDFs
of increments and structure functions to quantify intermittency in the simulations
described in § 3.1. We now describe these in more detail.
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FIGURE 2. Change in thermal energy as fraction of initially available free energy as
well as the anisotropy of proton heating for three hybrid simulations of OTV with: cold
isothermal (CI), warm isothermal (WI) and warm adiabatic (WA) electrons. The system
is turbulent after t∼ 70ω1

ci. From Parashar et al. (2014). Copyright American Institute of
Physics.

(a) (b) (c)

FIGURE 3. (a,b) The out-of-plane current from a 20482 MHD simulation, showing the
PDFs for this current. The PDFs clearly show super-Gaussian tails. (c) The currents
corresponding to values consistent with the super-Gaussian tails in panel (b). It is clear
that the strongest currents are associated with the super-Gaussian tails.

4.1.1. PDFs of increments
The PDFs of turbulent quantities are typically Gaussian (e.g. Frisch 1996) but the

PDFs of increments of a turbulent quantity are not Gaussian. By taking the increments,
say for the magnetic field, B(s+ δs)− B(s), the gradients (and hence the intermittent
structures) are highlighted in the quantity of interest. The strength of the gradients
highlighted depends on the lag δs. Hence the increment for a smaller lag δs represents
steeper gradients and hence most intermittent structures. When δs becomes comparable
to the correlation length of the system, the PDFs typically revert back to approximate
Gaussianity.

It has been shown that the non-Gaussian tails on the PDFs of increments correspond
to the number of intermittent structures (e.g. Greco et al. 2008, 2009; Salem et al.
2009; Wan et al. 2010). We show an example of this from an MHD simulation in
figure 3. Hence by comparing PDFs of a fixed increment (δs ∼ 1di), from multiple
models, the number of intermittent structures resolved in each model can be compared.
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4.1.2. Scale-dependent kurtosis
The nth-order moment of the PDFs of a variable φ, also called the nth-order

structure function, is defined as

Sn
φ(`)= 〈|φ(x+ `)− φ(x)|n〉 = 〈δφn

` 〉. (4.1)

The kurtosis, the fourth-order moment or fourth structure function, measures the
Flatness of the PDFs of a given function φ. It is defined as

χφ = 〈δφ4
` 〉/〈δφ2

` 〉2, (4.2)

where φ is the quantity of interest. The lag ` is properly interpreted as a spatial lag,
which should be normalized either to the correlation scale (as in Greco et al. 2009)
or to the ion inertial scale (as in Wu et al. 2013). Such normalizations facilitate the
comparison across codes, with different system sizes, and with spacecraft data in the
super-Alfvénic solar wind. With single-spacecraft data, the lag would be defined in
terms of a time lag, multiplied by a solar wind speed. In 2.5D or 3D simulations, one
could use all simulation data with separations in one Cartesian direction corresponding
to `.

Departures from Gaussianity are measured by χ . For a Gaussian function, χ is
equal to 3, and it is generally greater than 3 for increments of turbulent quantities.
Greater non-Gaussianity is expected with smaller `. A higher value of kurtosis
reveals the presence of larger concentrations of coherent structures. Measuring χφ as
a function of ` for different variables is a straightforward diagnostic to implement on
the simulation data. Since χφ is a dimensionless ratio, its value is independent of the
units and/or normalizations used in the simulation codes.

4.1.3. Structure functions and their scaling exponents
Within the inertial range, the structure functions defined in (4.1) scale as power

laws,
Sn
φ(`)= 〈δφn

` 〉 ∝ `ζn . (4.3)

The scaling exponents ζn are measures of intermittency in hydrodynamic and MHD
turbulence. Estimating the kurtosis (defined above) requires calculating structure
functions up to the fourth order. When it is numerically feasible, it would be
worthwhile to go up to sixth order and measure the first six scaling exponents
for v, B and density over the scale range 2di < ` < 20di in order to provide a
more complete description of the intermittent fluctuations. Measuring these scaling
exponents will also make it possible to tie into a larger literature on intermittency (e.g.
Bruno & Carbone 2013; Salem et al. 2009; Chandran, Schekochihin & Mallet 2015).
Structure functions are also widely used in the analysis of solar wind fluctuations
from spacecraft data, for both inertial range (e.g. Salem et al. 2009) and dissipation
range fluctuations (e.g. Osman et al. 2014).

While higher-order statistics are needed for a full description and comparison of
turbulence properties, one must also realize that there are inherent difficulties. The
main problem is perhaps that, for any model (or even experimental data), higher-
order moments become more difficult to estimate (e.g. De Wit 2004); this problem is
even worse for odd moments that involve substantial cancellations (e.g. Podesta et al.
2009). In addition, there will be difficulties when comparing across different codes,
and examining these will be a greater focus of this challenge. It is already known
that differences are encountered across code types (e.g. Haugbølle et al. 2013; Henri
et al. 2013).
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4.1.4. Choice of second- and higher-order statistics
In view of the above difficulties, meaningful comparisons across code types

should begin with examination of the first few moments of the PDFs. Second-order
moments (spectra, correlation functions) are already a point of emphasis in §§ 4.2.1
and 4. Third-order moments are non-positive-definite and therefore very difficult (e.g.
Podesta et al. 2009). Therefore the higher-order moment of greatest importance in the
comparisons will be initially the fourth-order one, i.e. the scale-dependent kurtosis
described above. Until such comparisons are established, it makes little sense to focus
on multifractal scalings, which can be addressed once the fourth-order comparisons
are understood.

4.2. Wave physics
Here we list suggested diagnostics for wave simulations described in § 3.2.

4.2.1. Spectral anisotropy
Turbulent plasmas with mean magnetic field typically show a distribution of energy

in high k⊥ modes (e.g. Higdon 1984; Goldreich & Sridhar 1995; Montgomery &
Matthaeus 1995; Oughton, Dmitruk & Matthaeus 2006), etc. This property has also
been observed to hold at kinetic scales (e.g. Chen et al. 2010; Chang et al. 2013). It
will be instructive to compare the spectral anisotropy in the k⊥–k‖ plane produced by
different models.

4.2.2. Dispersion analysis
An obvious test for the presence of waves is to look for the appropriate dispersion

in the energy spectrum. A k–ω dispersion analysis of the simulation data will show
excess of undamped energy along the dispersion curves of the normal modes of
the system. As an example, figure 4 shows the spectrum of the magnetic field as a
function of k‖, ω and k⊥, ω from a 2.5D hybrid simulation with β= 0.04, large system
size, mean field in the plane of simulation and driven at |k| = 2, 3 (from Parashar
2011). The two-fluid dispersion curves for parallel and perpendicular propagation
have been over-plotted. Outside the driving wavenumbers, there is clearly enhanced
energy along the dispersion curves, indicating the presence of waves.

4.2.3. Damping rate
One of the most important features to check is if the damping rate of the waves

is appropriately captured by the simulation codes. A comparison of numerically
calculated damping rates to the average damping rate calculated from linear Vlasov
theory is an important consistency check. It should be noted that, given the noisy
nature of PIC algorithms, the damping rate comparisons are not expected to be
extremely accurate. We will follow the procedure of Chang et al. (2014), who
showed that the integrated damping rate of whistler turbulence is consistent with the
predictions of linear kinetic dispersion theory of whistler turbulence.

4.2.4. Compressibility
Several distinct compressibilities can be defined for a plasma (e.g. Gary & Smith

2009). The plasma compressibility of the jth plasma species is defined as

Cj(k)≡ |δnj(k)|2
n2

0

B2
0

|δB(k)|2 . (4.4)
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FIGURE 4. The k, ω spectra of magnetic energy from a 2.5D hybrid PIC simulation, β =
0.04 driven at large scales of the system. The normal modes of the system are excited and
we see enhanced energy along the dispersion curves of Alfvén, slow and magnetosonic
modes (from Parashar 2011).

For a quasi-neutral plasma consisting of only electrons and protons, Ce∼Cp, hence
it is sufficient to study the compressibility of only a single species. Similarly, the
compressibility of the magnetic field can also be computed:

C‖(k)≡ |δB‖(k)|
2

|δB(k)|2 . (4.5)

The compressibility of different modes (Alfvén–kinetic Alfvén and magnetosonic–
whistler) can be calculated from linear dispersion theory and compared with
simulations (e.g. Saito et al. 2008) and observations (e.g. Gary & Smith 2009;
Salem et al. 2012). The differences between these quantities are useful not only in
identifying the fluctuating constituents of observed short-wavelength turbulence (e.g.
Salem et al. 2012) but also as a means of testing a code’s capability to accurately
capture the wave physics of a turbulent simulation.

4.2.5. The electric to magnetic field ratio
The electric to magnetic field ratio, |δE|/|δB| (Salem et al. 2012), provides a

complementary test for wave-mode identification purposes. The |δE|/|δB| ratio is
constant in the inertial range as the electric and magnetic field fluctuations are well
correlated (Bale et al. 2005). Indeed, the electric field E in this range is essentially
equivalent to v × B. At scales smaller than the ion gyro-scale, |δE|/|δB| increases
as a function of k owing to the dispersive nature of the modes. In linear theory,
|δE|/|δB| depends on the propagation angle of the mode, in both the inertial and
dissipation range.

As for the compressibility, a direct comparison of the |δE|/|δB| expected from
linear dispersion theory with the |δE|/|δB| captured by the simulations will be a
useful tool to understand the nature of the fluctuations.

4.3. Comparison with observations
At this initial stage, we cannot expect to see close similarities between the simulations
and observations. However, it will still be instructive to make direct comparisons.
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Many of the diagnostics described above cannot be performed on spacecraft data
because spacecraft make 1D cuts through the solar wind. Thus most spacecraft
observations are unable to provide k, ω diagrams or assumption-free multi-dimensional
spectra. Instead we suggest that the modellers take artificial 1D cuts across simulations
and use these to compare with the results of solar wind observations. These ‘artificial
observations’ can also be provided to observers for more direct comparisons with
solar wind observations.

Spacecraft are also unable to observe all of the properties of the plasma that can be
calculated from a simulation, for example magnetic and electric fields are not typically
measured at scales equivalent to |k|∼ 100d−1

i (although some spacecraft are able to do
so). We therefore recommend a downsampling or reduction in the parameters that are
directly compared to observations, for example, current is not usually calculated from
solar wind data since 3D magnetic field gradients are impossible to calculate from
single spacecraft, instead magnetic and electric fields and particle velocity, density and
temperature are the best data products to use.

The derived parameters that are most suitable for direct comparison between
simulations and observations are magnetic field power spectra, compressibilities and
magnetic helicity. Structure functions, and therefore PVI, kurtosis, the scaling of
higher-order structure functions and the PDF of increments, can all be calculated
from both types of data. Correlations between different quantities such as reduced
energy and cross-helicity calculated from artificial observations can be compared to
real observations also.

This will help set up the communication between simulation modellers and the
observers for future ‘critical simulations’.

5. Envisioned roadmap

The simulations outlined in this paper will be only the first step in a multi-step
process that will lead to a better understanding of proton scale dissipative processes.
Although the exact path taken by this community effort will be decided based on the
outcome of this step, we here outline a roadmap for the challenge.

5.1. Code comparison
Comparing the results, specifically the statistical properties, from multiple different
models in a turbulent setting will enable us to look critically at the fundamental
assumptions, strengths as well as limitations, of multiple simulation models. A few
sketchy comparisons exist (e.g. Parashar 2011) but a thorough comparison is required.

5.2. Designing critical 3D simulations
Through a comparison of the 2.5D simulations and a few preliminary 3D simulations,
a partial outcome of this effort will be important insights about the relative importance
of 3D couplings that are missing in the 2.5D picture. Based on these insights,
appropriate 3D simulations can be designed.

For the next step of designing the simulations, significant input from observers
will be required. Highlighting a few critical solar wind intervals, parametrizing them
and listing important unanswered questions will be required before the final, critical
simulations can be designed and performed.
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5.3. Diagnostics for reconnection 3D
An important unsolved problem is the role of reconnection in solar wind turbulence.
We anticipate that future stages in this challenge will address this question, but
a significant parallel effort will be required to design appropriate analysis tools
applicable to 3D simulations. For example, identifying a reconnection site is relatively
easy and very well documented (e.g. Servidio et al. 2009, 2010) but the nature of
reconnection sites changes significantly in 3D (e.g. Daughton et al. 2011). Hence,
novel diagnostic techniques will need to be developed.

5.4. Important physics questions
Once the critical simulations have been designed and opened to the community for
analysis, effort will be devoted towards understanding the nature of kinetic processes
in such systems. Here we provide a partial list of questions that the community could
focus on.

(a) What fraction of the total dissipation power in the solar wind comes from
low-frequency turbulence, and what fraction comes from high-frequency waves
through, for example, cyclotron heating?
An answer to this question might require studies beyond the scope of this multi-
year project, as the nature of fluctuations at kinetic scales will depend on many
large-scale parameters and the nature of the cascade under given conditions.

(b) What kinetic mechanisms damp low-frequency turbulence at small scales?
This is the main emphasis of our present effort. Carefully designed large and fully
3D simulations are our best bet to address this question.

(c) How is the turbulent heating power divided between protons and electrons, and
between parallel and perpendicular heating?

(d) How do proton/electron/alpha heating rates in numerical simulations compare to
rates inferred on the basis of linear wave damping or nonlinear mechanisms such
as reconnection or stochastic heating?

(e) What are the quantitative measures of intermittency of fluctuations and dissipation
in the solar wind and in different types of numerical simulations?

(f ) Can observations rule some mechanisms out? This is where the proposed
comparisons with observations become critical. Cuts from the critical 3D
simulations will be taken and provided to observers as ‘artificial spacecraft
data’. Analysis performed on these artificial data sets by multiple different
groups not only will help benchmark observational techniques, but also will help
benchmark physics contained in simulations with reality. Hence, it is one of the
critical parts of longer-term goals of the challenge.

6. Conclusion
A quantitative improvement in our understanding of the dissipative processes active

in collisionless plasmas such as the solar wind will benefit from a better understanding
of the strengths and limitations of different types of numerical simulations. To aid
in the development of this understanding, we have proposed two 2.5D ‘challenge
problems’ that can be studied using different simulation techniques. The first problem
is to study the evolution of KH instability in a plane that is nearly perpendicular
to the mean magnetic field. The second problem is to study kinetic Alfvén waves
in the plane containing B0. We also carefully described the diagnostics that should
be performed on all simulations. To investigate the generation of, and dissipation
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at, intermittent structures, we require the measurement of the PDF of increments,
kurtosis and PVI of the simulations over a range of scales. For the wave dissipation
task we have determined that dispersion relations can be tested in simulations, but
when comparing to observations other techniques must be used, and we encourage
those analyzing simulations to make mock spacecraft trajectories and also measure
the properties of the particle distributions, the magnetic fluctuation spectra, helicity
and compressibility.

Initially, all of these simulations will be performed in 2.5D owing to a desire to
have large Reynolds numbers but maintain high accuracy with the various methods
employed by the modelling community. Once these initial studies are complete, we
aim to encourage well-targeted, large, 3D simulations to access the truly 3D nature
of turbulence and dissipation. These simulations will ideally be the largest possible
simulations with initial conditions designed to mimic real solar wind conditions and
based upon the results found from studies designed as described above. The data
obtained from these critical simulations will be made open to the public in order
for the wider research community to make quantitative comparisons between different
dissipative processes.

The ‘turbulent dissipation challenge’ aims to help coordinate community efforts,
so that we can collectively achieve greater progress on these important and difficult
questions. We hope that the plasma modelling and solar wind observation research
communities will take up this challenge and use the conditions and measurement
techniques described here as a place to start a coherent and well-benchmarked
campaign of studies to make considerable advances in our understanding of the
dissipation of turbulence and collisionless plasma heating.
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