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Abstract

Finite graphs of valency 4 and girth 4 admitting 1/2-transitive group actions, that is, vertex- and edge- but
not arc-transitive group actions, are investigated. A graph is said to be l/2-transitive if its automorphism
group acts 1/2-transitively. There is a natural orientation of the edge set of a 1/2-transitive graph induced
and preserved by its automorphism group. It is proved that in a finite 1/2-transitive graph of valency 4 and
girth 4 the set of 4-cycles decomposes the edge set in such a way that either every 4-cycle is alternating
or every 4-cycle is directed relative to this orientation. In the latter case vertex stabilizers are isomorphic
to22.

2000 Mathematics subject classification: primary 05C25, 20B25.

1. Introduction

Throughout this paper by a graph we mean a finite, simple and undirected graph.
Given a graph X we let V(X) and E(X) be the vertex set and the edge set of X,
respectively. Each edge uv = {u, v} of X gives rise to two arcs (u, v) and (v, u)
of X. Any choice of precisely one of these two arcs for all edges of X results in an
oriented graph whose underlying graph is X. (By an oriented graph we therefore
mean an ordered pair (V, A), where V is a finite nonempty set and A, the set of arcs,
is an antisymmetric relation on V.) Unless stated otherwise graphs are assumed to be
connected. Furthermore, all groups are assumed to be finite. For graph-theoretic and
group-theoretic terms not defined here we refer the reader to [3,4, 18].
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We are going to adopt the terminology and notations of [10, 11] pertaining to the
particular concept of 1/2-transitive group actions on graphs. A graph X is said to be
vertex-transitive, edge-transitive and arc-transitive, respectively, if its automorphism
group Aut X acts vertex-transitively, edge-transitively and arc-transitively. Further, a
graph is l-regular if its automorphism group acts regularly on its arc set. It follows
from [16,7.53, page 59] that the automorphism group of a vertex- and edge-transitive
but not arc-transitive graph must necessarily have two orbits on the arc set, with each
orbit containing an arc corresponding to each edge; that is, in the terminology of [18,
page 24], it acts 1/2-transitively on the arc set having two orbits (of equal length).
We shall thus say, although in a slight discord with the above mentioned meaning
[18, page 24], that a graph X is 1 /2-transitive provided it is vertex- and edge- but not
arc-transitive. More generally, by a 1 /2-transitive action of a subgroup G < AutX
on X we shall mean a vertex- and edge- but not arc-transitive action on X. In this case
we shall say that the graph X is (G, l/2)-transitive.

Recently there has been an outburst of papers dealing with the structure and clas-
sification of 1/2-transitive graphs [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19].
In this paper we continue the study of 1/2-transitive group actions on finite graphs
of valency 4 initiated in [10], where some general results were obtained, including
classification results on 1/2-transitive graphs of valency 4 enjoying certain addi-
tional structural properties, and continued in [11], where the interplay of regular
maps, 1 -regular graphs and graphs of valency 4 admitting 1 /2-transitive group actions
was studied. It follows from [13] that graphs of valency 4 and girth 3 admitting a
1/2-transitive group action are in a one-to-one correspondence (via the line graph
construction) with cubic graphs having a subgroup of automorphisms acting regularly
on the arc set. In particular, 1/2-transitive graphs of valency 4 and girth 3 are in a
one-to-one correspondence with cubic l-regular graphs. Our aim is to prove a similar
result for graphs of valency 4 and girth 4 admitting a 1/2-transitive group action.

Let X be an oriented graph. A path P of X is called directed if every vertex of P of
valency 2 is the tail of one and the head of the other of its two incident arcs. Similarly,
a directed cycle in X is a cycle whose every vertex is the tail of one and the head of the
other of its two incident arcs. An even length cycle C in X is a parallel cycle if it may
be decomposed into two arc-disjoint directed subpaths of equal length intersecting
in two vertices, one of which is the tail and the other the head of the corresponding
incident arcs. An even length cycle C in X is an alternating cycle if every other vertex
of C is the tail and every other vertex of C is the head of its two incident arcs.

Let X be a graph of valency 4 admitting a 1/2-transitive action of some subgroup
G < AutX. Let us assign an orientation, fixed from now on, to a given edge
of X. Then, via the 1/2-transitive action of G, this orientation extends uniquely to
an orientation of the edge set of X, thus giving rise to an oriented graph whose every
vertex has two predecessors and two successors and whose underlying undirected
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graph is X. Concepts peculiar to oriented graphs, such as directed, alternating and
parallel cycles, may thus be extended to 1 /2-transitive graphs, via the above orientation
of the edge set induced by its automorphism group. We may now state one of the two
main results of this paper.

THEOREM 1.1. Let X be a 1 /2-transitive graph of valency 4 and girth 4. Then the
set of4-cycles ofX decomposes the edge set E(X) and, furthermore, either

(i) every 4-cycle is alternating or
(ii) every 4-cycle is directed.

Moreover, in case (ii) the vertex stabilizer (AutX),,, v e V(X), is 22.

In order to prove Theorem 1.1,1 /2-transitive group actions on graphs of valency 4
and girth 4 are studied, resulting in their characterization in Theorem 4.1. In Section 2
certain concepts arising in the study of 1/2-transitive group actions on graphs are
introduced. Next, in Section 3 some exceptional arc-transitive graphs of valency 4
and girth 4 admitting a 1/2-transitive group action are dealt with, setting the stage for
the proofs of Theorem 1.1 and Theorem 4.1 in Section 4. Finally, two infinite families
of 1/2-transitive graphs of valency 4 and girth 4 satisfying, respectively, conditions
(i) and (ii) of Theorem 1.1 are given at the end of this paper.

2. Preliminaries

Let X be a graph and let G < Aut X act 1/2-transitively. There will be instances in
our discussion where information on the vertex stabilizer Gv, v 6 V(X), is relevant.
We shall say that X is (G, 1/2, H)-transitive provided H = Gv for some v e V(X).

There are two essentially different types of 1/2-transitive group actions on graphs
of valency 4. Namely, given a graph X of valency 4 admitting a 1/2-transitive action
ofasubgroupG < Aut X and a vertex v e V(X), the restriction G^(u) of the stabilizer
Gv to the neighbourhood N(v) = [u, w, x, y] of v is isomorphic either to 22 or to 7L\.
In other words, X is either (G, 1/2, 22)-transitive or (G, 1/2, //)-transitive, where
H = Gv contains a copy of 1\. (Note that H is a 2-group.) Let [x, y] and {«, w]
be the two orbits of Gv on N(v). In the first case, G^(u) = ((xy)(uw)) and it is easy
to see that the restriction homomorphism is a monomorphism and so | Gv | = 2 . In
the second case, G^w = {(xy), (uw)) and in general the order \GV\ is not bounded
as may be seen by the lexicographic products C,[2Ki], where C, denotes the cycle of
length/ > 3 (see Section 3). The G-height hG(X) ofXis equal to h, where | C | = 2 \
v e V(X). Moreover, we let the height /i(X) of X be the maximum over all G-heights
hG(X), where G < AutX acts 1/2-transitively on X.

A (G, l/2)-transitive graph X of valency 4, where G < AutX, gives rise to two
oriented graphs—with X as their underlying graph—namely, the two orbital graphs
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of the action of G on V(X) relative to two paired suborbits of length 2. Let DG(X) be
one of these two graphs fixed from now on. For u, v € V(X) we shall write u -*• v
if (M, V) is an arc in DG(X) and shall say that u is a predecessor of v (and the tail
of (M, V)), and that v is a successor of M (and the head of (M, U)). We remark that
by the G-orientation of the edges of X, that is, by the orientation induced by the
1/2-transitive action of G, we shall always mean the corresponding orientation of the
edges in DG(X). A path P in X is a G-directedpath if it is a directed path in DG(X).
A cycle of X is a G-directed cycle, a G-parallel cycle and a G-alternating cycle,
respectively, provided it is a directed cycle, a parallel cycle and an alternating cycle
in DG(X). In particular, if G = AutX the symbol G is omitted and we refer to an
orientation of the edges of X, and to a directed path,^ directed cycle, a parallel cycle
and an alternating cycle of X. It transpires that all G-alternating cycles in X have
the same length and form a decomposition of the edge set of X [10, Proposition 2.4];
half of this length is denoted by rG(X) and is called the G-radius of X. Moreover,
any two adjacent G-alternating cycles of X intersect in the same number of vertices
and this number, called the G-attachment number aG(X) of X, divides 2rG(X) [10,
Proposition 2.6]. If X is 1/2-transitive, we let the radius and the attachment number
of X be, respectively, the AutX-radius and the AutX-attachment number of X. The
following simple observation on attachment numbers is made in [12].

LEMMA 2.1. Let X be a (G, 1 /2)-transitive graph for some subgroup G o/Aut X.
If the G-attachment number aG(X) is at least 3 then the G-height hG{X) equals 1.

IfaG(X) = rG(X) we say that the (G, l/2)-transitive graph X of valency 4 is tightly
G-attached. In particular, a 1 /2-transitive graph X of valency 4 is tightly attached if it
is tightly AutX-attached. A complete classification of tightly attached 1/2-transitive
graphs with odd radius and valency 4 is obtained in [10, Theorem 6.2.].

By a map we mean a cellular decomposition of an orientable closed surface. A
common way of constructing maps is by embedding a graph into a surface. It is
well known that a map M given by an embedding of a graph X into a surface can
be completely described by means of its rotation system, that is, by listing, for every
vertex u of M, the cyclic permutation of the incident outgoing arcs of v induced
by a chosen rotation of the ambient surface. We can therefore identify M with the
pair (X; R), where R is the above rotation system for M. The map M = (X; R)
determines the dual map M* = (X*; P), where X* is the dual graph and P is the one
of two possible rotations determining the geometric dual of M, which is consistent
with the chosen orientation of the surface. We say that M is positively self-dual if
M = (X; R) is isomorphic to M* = (X*, P). The map M is called regular if its
automorphism group Aut M acts transitively (and therefore regularly) on the set of
arcs of X. We say that a regular map M is of type {q, p], where q, p are integers, if
M is of valency p and has face-size q. The relationship between regular and self-dual
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maps and 1/2-transitive group actions on graphs of valency 4 is studied in [11],

3. Exceptional graphs admitting 1/2-transitive group actions

In this section we describe seven infinite families of arc-transitive graphs of va-
lency 4 and girth 4 admitting a 1/2-transitive group action. These graphs arise as
exceptional graphs in Theorem 4.1.

A circulant is a Cayley graph of a cyclic group. Let n be a positive integer and
let 5 = —5 be a symmetric subset of Zn. By Circ(n, 5) we denote the circulant with
vertex set {u, : i e Z.) and edges of the form u,v,+s, i € Zn, s e S. A particular
family of circulants arises in the characterization of graphs of valency 4 admitting
a 1/2-transitive group action with respect to which they have only two alternating
cycles.

PROPOSITION 3.1 ([10, Proposition 2.4, (ii)]). Let X be a (G, 1 /2)-transitive graph
of valency A for some subgroup G o/Aut X and let r = rG(X). Then X has only two
G-alternating cycles (both spanning V(X))ifandonlyifX = Circ(2r, {1, —1, s, —s})
for some odds € TL\T \ {1, — 1} such that s2 € {1, — 1}. Moreover, X is arc-transitive.

Let r, / > 3 be integers. For r odd and s e Z* satisfying s' e {1, —1}, let X(s; t, r)
denote the graph with vertex set {uf : i e Z,,j e Z,\ and edges of the form uf vi*f',
v^vl+i (i € I,, j e Tr). In particular, set X(t, r) = X(l;t, r). For r and t even,
let Y(t, r) denote the graph with vertex set {uf : i € l,,j € Zr} and edges of the
form uf uf+1, v'j v ^ / 1 ' (i 6 Z,,j € Zr). Moreover, let Z(t, r) denote the graph with
vertexsetfvf : i € 1,,j e Zr] and edges of the form vfi^+1, v

i
iv

i
i^~lv+ (i e Z,\{—1},

j € Zr) and vi1v£+r/2, vi_lv'0
+1+r/2 (j e Zr). It may be seen that the permutation p

mapping according to the rule vf p = uf'1'1, / e Z,, j € Zr, is an automorphism of
X(s; t, r), Y(t, r) as well as Z(t, r). Moreover, the permutation y defined by the rule
«i Y = v7+v ' e 2,,y € lr, is an automorphism of both X(t, r) and Y(t, r). Finally,
the permutation 8 defined by the rule

j [«,-'„ i e ZA{-1}, 7 € Zr;

is an automorphism of Z(t, r). Besides, y~xpy = p"1 and5"'p^ = p"1 and so <p, y)
in the case of graphs X(t, r) and Y(t, r) and (p, 5) in the case of the graph Z(t, r) is
a metacyclic subgroup of automorphisms acting vertex-transitively.

PROPOSITION 3.2. Let X be a tightly G-attached (G, \/2)-transitive graph of va-
lency 4, where G < Aut X, with r > 2 and t > 3 as its respective G-radius and
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the number of G-alternating cycles. If X contains a G-parallel 4-cycle then X is
isomorphic to C,[2Ki] ifr = 2, to Y(t, r) or to Z(t, r) ifr > 4 is even and to X(t, r)
ifr is odd.

PROOF. The fact that X is tightly G-attached is crucial. Supposing first that r is
odd, we have by [10, Proposition 3.3] that X is isomorphic to X(s;t, r) and it is
easily seen that the existence of a G-parallel 4-cycle in X forces s G {1,-1} and so

Suppose now that r is even. The case r = 2 is proved in [10, Proposition 3.1]. Let
r > 4. Let v e V(X) and let u, w be the two neighbours of v on a given G-alternating
cycle of X containing v. By [10, Proposition 3.1] there exists an automorphism p of X
taking u to w whose orbits are the G-attachment sets of X, as well as an automorphism
a cyclically permuting the G-attachment sets of X in such a way that a~x pa = ps

for some s e 1*. For each i e 2,, let Vt be the G-attachment set containing vo'.
Further, for each j e 1r, let v^ = vp> and u{ = wpi. Next, let v' be the fourth
vertex in the G-parallel 4-cycle containing vertices v, u and w. Of course, v' e V2

and one can easily see that u'p = w', where «', w' e V3 are the other two neighbours
of u'. For each j e 2r, we set i/2 = v'p' and v{ = w''p>. Continuing this way we
end up with a graph having vertex set {î  : i € Z,, j e Zr] and edges of the form
Uî i+i- Ui^i+i'"0' (' e 2, \ {—l},jf e 1r). As for the edges with one endvertex in
V,_i and the other in Vo, there are precisely two possibilities, one resulting in a graph
isomorphic to Y(t, r) and the other in a graph isomorphic to Z(f, r). Namely, since
X is a tightly G-attached (G, l/2)-transitive graph, it follows by [10, Proposition 3.1]
that there exists an involutory automorphism, say r, fixing v = t>° and fixing each of
the sets Vitie 1,, setwise. One may easily see that r must obey the rule uj x = v~j,
j e 2r, for i even and vf r = v"'"1, j € 2r, for i odd. Using this automorphism we
then deduce that, for each,/ e 2r, the neighbours of vi,_l in Vo are either u£ and i>o+l

or Vo+r/2 and Vo+1+r/2. In the first case we have X = Y(t, r) and in the second case
X = Z(t, r). D

Let r > 3 be an integer and let X = Cr x Cr be the Cartesian product of two
cycles of length r. There is a unique quadrilateral embedding M of X into the
torus. If r is even then we can orient the edges of X in such a way that each copy
of Cr forms an alternating cycle and every 4-cycle of X bounding a quadrilateral
region in M is directed in the prescribed orientation. From the planar representation
of M one can easily see that there is an automorphism p of X rotating a specific
quadrangle and preserving the above orientation. Moreover, the vertex stabilizer
(AutX)^, v e V(X), contains two reflections a and /} fixing, respectively, the two
alternating cycles meeting at v. Itfollows that X = C2s x C2j, r = 2s, is (G, 1/2,1\)-
transitive, where G = {a, p\ p). We note that, letting the vertex set of X be ~lls x 1ls,
the orientation of the edges of X which admits the 1/2-transitive action of the group
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FIGURE l.

G, satisfies the following rule: the vertex (i,j) is a predecessor of (i,j + 1) and a
successor of (i + 1 , j) if i +j is even, and is a successor of (i, j +1) and a predecessor
of ( /+ l,j)ii i +j is odd.

There is another infinite family of graphs sharing similar properties with the Carte-
sian product of two even cycles of equal length. Let Y = C2r <8> C2r, r > 3, denote
the graph whose vertex set is the edge set of X = Cr x Cr, with two vertices of Y
being adjacent if the corresponding edges form consecutive sides of a quadrangle in
the quadrilateral embedding M of X into the torus. The graph Y is the so called
medial graph of M. Since the map M is regular and self-dual it follows from [11,
Theorem 4.1 (4)] that the graph Y is (G, 1/2, Z^-transitive for a particular subgroup
G of Aut Y. (This fact can also be checked directly.) Moreover, the G-orientation
of the edges of Y induced by G is such that all 4-cycles of Y are G-directed. The
G-alternating cycles of Y have length 2r and two of them are either disjoint or meet
in two vertices (see Figure 1 for r = 3). Moreover, we let C4 ® C4 be the lexico-
graphic product d[2K{\ (which is isomorphic to the complete bipartite graph K4A).
Alternatively, we may define Y = C2r ® C2r, r > 2, as a particular quotient graph of
X = C2r x C2r, obtained by identifying the vertices (/, j) and (i + r,j + r) of X, for
all i, j € 22r, with the adjacency as well as the orientation of the edges being inherited
from that of X.

The next proposition follows from the above arguments.

PROPOSITION 3.3. LetX = C2r x C2r orX = C2r ® C2rfor some r > 2. Then X
is a (G, 1/2, 7L\)-transitive graph for some subgroup G < AutX, and consequently
h{X) > 2. Moreover, the G-orientation of the edge set ofX is such that every edge
ofX lies on four G-directed 4-cycles ifX = C4 <g> C4 and on two G-directed 4-cycles
otherwise.
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In the next proposition we show that the converse is also true.

PROPOSITION 3.4. Let X be a (G, l/2)-transitive graph of valency 4, for some
subgroup G < Aut X, such that every edge of X lies on precisely two G-directed
^-cycles and hG(X) > 2. Then either X = C2r x C2r, r>2orX = C2r® C2r, r>3.

PROOF. By gluing a 2-cell to every G-directed 4-cycle of X we obtain a 4-valent 4-
gonal map M in a surface S of Euler characteristic 0. As a consequence of transitivity
of quadrangles we have that the two alternating cycles meeting at a vertex v cross
each other at v. It is well known that a simple closed curve in a surface of Euler
characteristic 0 is of one of the following four types: (i) contractible—it bounds a disk,
(ii) nonseparating and orientation changing, (iii) separating and noncontractible—it
bounds a Mobius band, (iv) nonseparating, noncontractible and orientation preserving.
We first show that every G-alternating cycle C of X is of type (iv).

Assuming that C bounds a disk D we get a quadrangulation of D and a contradiction
can be derived using Euler's formula. If C is of type (ii) then the subgraph of X induced
by all the quadrangles incident with C forms a quadrangulation of a Mobius band B
with the boundary of B being formed by another G-alternating cycle whose length
would be twice the length of C, a contradiction. Finally, if C bounds a Mobius band
B, we may assume that the number of quadrangles inside B is minimal, that is, B does
not contain a G-alternating cycle separating a Mobius band. Then B is a union of
quadrangles incident with C. If C meets just one side of each quadrangle of B, then
there is a G-alternating cycle of type (ii) inside B, and a contradiction is derived as
above. If C meets two opposite sides of every quadrangle we take a quadrangle Q in B
and an element ty € G rotating Q. Clearly, rjr maps C onto some G-alternating cycle
C meeting C in the four vertices of Q. Thus the two G-alternating cycles intersect in
at least four vertices and, by Lemma 2.1, we have that hc(X) = 1, a contradiction.

Having seen that every G-alternating cycle of X is of type (iv), we can cut and
open the surface along one such cycle C. We get an annulus A bounded by two copies
C\ and C2 of C. Let us consider a G-alternating cycle C meeting C at a vertex u.
Since C" is of type (iv), it follows that 5 is a torus. By Lemma 2.1, C meets C in
one or two vertices. In the first case C is represented on A by a path joining the two
copies Mi and u2 of u on C\ and C2. In the second case, let v be the second vertex.
Then C is represented by two paths joining «i to v2 and v\ to u2 (see Figure 2),
where w, and vh i = 1, 2, are the respective copies of u and v on Q, i = 1, 2. Now
cutting A along the paths representing C we get the planar representations of toroidal
embeddings of C2r x C2r, r > 2, in the first case and C2r <8> C2r, r > 3, in the second
case. Moreover, note that in the second case {«, v) is the G-attachment set arising
from the G-alternating cycles C and C and so it follows that u and v are antipodal on
both C and C. •
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We say that a graph of valency 4 admitting a 1/2-transitive group action is excep-
tional if it belongs to one of the following families of (arc-transitive) graphs.

(i) the family &x of circulants Circ(2r, {1, — 1, s, —s}), where r > 2 and s € Z£r

satisfies s2 € (1, —1};
(ii) the family &2 of graphs X (t, r), where t > 3 is an integer and r > 3 is an odd

integer;
(iii) the family &i of graphs Y(t, r), where t > 4 and r > 4 are even integers;
(iv) the family &+ of graphs Z(t, r), where t > 4 and r > 4 are even integers;
(v) the family &5 of lexicographic products C,[2#i], where t > 3 is an integer;

of Cartesian products C2r x C2r, r > 2;
of graphs C2r <8> C2r, r > 3.

(vi) the family
(vii) the family

Let us remark that the exceptional graphs belonging to #6 and to ^ are the
underlying graphs of reflexible regular maps of type {4,4} (see [6] for the classification
of such maps).

The proof of the next proposition is left to the reader.

PROPOSITION 3.5. The following isomorphisms hold between members of different
families of exceptional graphs.

(i) C2r x C2r, r > 2, w isomorphic to Z(2r, 2r);
(ii) C2r ® C2r, r > 3 is isomorphic to Y(2r, r) if r is even and to X (2r, r) if r is

odd;
(iii) C2r[2Ki ], r > 3, is isomorphic to X (4, r) ifr is odd and to Y(4, r) ifr is even.

Let us emphasize, however, that for each of these pairs of isomorphic graphs in
Proposition 3.5, the associated 1/2-transitive group actions are different.

PROPOSITION 3.6. Every exceptional graph is arc-transitive.

PROOF. In view of Proposition 3.5, it suffices to check that every graph belonging
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to one of the families &it i = 1, 2, 3, 4, 5, is arc-transitive. The arc-transitivity of
lexicographic products C,[2K{] e &$ is obvious. The arc-transitivity of the circulants
in ^"i follows from Proposition 3.1. The arc-transitivity of the graphs X{t, r) € &2 is
deduced from [10, Corollary 3.6]. To see that the graphs Y(t, r) € &$ and the graphs
Z(t, r) e «^4 are arc-transitive, note that the permutation x defined by the rule

i even, j elr;
i odd, j elr,

is an automorphism of Y{t, r) and Z{t,r). Furthermore, the permutation co denned
by the rule

Vi
t_i, i € 1,, j € lr,

is an automorphism of Y{t, r) and the permutation & defined by the rule

( v i , i*0,jelr;

is an automorphism of Z(t, r). Hence the groups (p, y, r, co) and {p, S, r, #), act
arc-transitively on the graphs Y(t, r) and Z(t, r), respectively. •

Let X be any graph of valency 4 with the property that every edge lies on precisely
two 4-cycles. A 2-path of X is called straight if it does not extend to a 4-cycle. A
cycle C of X is said to be straight if every 2-path of C is straight. Using the fact that
each edge of X is on precisely two 4-cycles, it may be seen that an arbitrary 2-path of
X which is extendable to a 4-cycle is uniquely extendable to a 4-cycle. We deduce that
every edge of X is uniquely extendable to a straight 2-path and thus also to a straight
cycle and that, moreover, at every vertex of X two straight 2-paths, and therefore
also two straight cycles, intersect. In particular, straight cycles form a decomposition
of E(X).

In view of the above comments, the proof of the next lemma is straightforward.

LEMMA 3.7. Let X be a graph of valency 4 such that each of its edges lies on
precisely two 4-cycles. Then the straightness of cycles of X is preserved by AutX.
Moreover, if any two adjacent straight cycles ofX meet in at least three vertices, then
the only automorphism of X fixing two adjacent vertices is the identity.

PROPOSITION 3.8. Let X be an exceptional graph. Then

(i) h(X) = h>3 if and only ifX = Ch+l[2Ky] andh>3;
(ii) h(X) = 2 if and only ifX is isomorphic either to C3[2^i] or to C2r x C2r =

Z(2r, 2r) for some r > 2, or to C2r ® C2r = X(2r, r) for some r > 3 odd or to
C2r ® C2r = Y(2r, r)for some r > 4 even;
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(iii) and h(X) = 1 in all other cases.

PROOF. Suppose first that X = C,[2K^\ for some t > 3. To prove h(X) > t - 1
let us take one of the two possible directed orientations of the base cycle C, and
extend it consistently to the edges of X. It is easily seen that the subgroup G of the
orientation preserving automorphisms of X acts (G, 1/2,Z2~^-transitively on X. On
the other hand, the vertex stabilizer (AutX),,, v e V(X), has order 2'. But AutX
acts arc-transitively, forcing h(X) < t and so h(X) = t — 1. (Of course, h(X) = 3
if X = C4 ® C4 and, by Proposition 3.5, we have h{X) = 2r - 1 > 3 if X is either
X(4, r), r > 3 odd, or K(4, r), r > 4 even).

If X = C4 x C4 = Z(4,4), then one can easily see that the vertex stabilizer acts
faithfully on the set of neighbours, thus forcing h(X) = 2, in view of Proposition 3.3.

Next, suppose that X = Circ(10, {1, - 1 , 3, -3}). It is easy to see that X =
K$s — 5K2. Assuming that X is (G, 1/2)-transitive for some G, it follows that the
G-orientation of the edges determines a decomposition @ of E(X) into alternating
cycles (of even length). Since X has 20 edges, $> either consists of two 10-cycles
or it consists of five 4-cycles. In the first case hG(X) = 1 by Lemma 2.1. In the
second case we define a new graph Y whose vertices are the alternating 4-cycles,
two being adjacent if the corresponding 4-cycles share a vertex in common. But two
alternating 4-cycles can have at most one vertex in common. Consequently, Y = K5.
Moreover, Y admits a 1/2-transitive action of the group G, the latter giving rise (via
the corresponding alternating cycles) to a decomposition of E(Y) into even length
cycles, which is clearly not possible as Y has 10 edges. This contradiction shows that
h(X) = 1.

We may now assume that X is neither C,[2Ki], t > 3 nor X(4, r), r > 3 odd, nor
F(4, r), r > 4 even, nor Circ(10, (1, - 1 , 3, -3} nor C4 x C4 = Z(4,4). We first
show that h(X) < 2. Observe that every edge of X lies on exactly two 4-cycles. This
implies that the action of the vertex stabilizer (AutX)K, v € V(X), acts faithfully on
the set of neighbours [uit u2, «3, «4} of v. Suppose that Uivu2 and M3UM4 are the two
straight 2-paths at v. Then the sets {uu u2] and {«3, u4} are blocks of imprimitivity
of (AutX),,. Thus (AutX)u < D%, where D8 denotes the dihedral group of order 8.
Consequently, A(X) < 2. To compute h(X), we go through a case to case analysis for
each of the exceptional families &t, i = 1,2, 3,4,6,7.

If either X = C2r x C2r = Z(2r, 2r) or X = C2r <g> C2r for some r > 3, then
h(X) = 2 in view of Proposition 3.3.

Suppose that X = Circ(2r, {1,-1,5, — s}), where r > 5 is odd and s € lL*lr satisfies
s2 = ±1. It is easily seen that each edge of X lies on precisely two 4-cycles. Also,
observe that X has two straight cycles, namely the Hamilton cycles voviv2 • • • v2r-i
and vovsv2s • • • v2r-s and by Lemma 3.7, we have h(X) = 1.

Suppose now that X = X(t,r), where t ^ 4 and r odd. It follows from the
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definition of X(t, r) that the intersection of the two straight cycles meeting at v%
contains the vertex vj" for every m e 2. Since r is odd, the set {v|J" : m e 1} contains
at most two elements if and only if / = 0 (mod r). But if t > 2r then the above
intersection contains the vertices v° and u°r- Consequently, if / ^ r and / ^ 2r we
have that h(X) — 1, by Lemma 3.7. Next, since X(2r, r) = C2r ® C2r we have
h(X) = 2 for t — 2r. On the other hand, note that the graph X(r, r) is isomorphic to
Y = Cr x Cr. Assume that hG(Y) ^ 1 for some subgroup G of Aut Y. Then there is
an element of G fixing a vertex u of K, fixing pointwise one of the two straight cycles
meeting at v and reflecting the other one. Since r is odd this automorphism inverts
an edge, contradicting the 1/2-transitive action of G. Thus h(Y) = 1 and so we have
h(X) = 1 for t = r.

Suppose now that X = Y(t, r), where t ^ 4 and r > 4 is even. It follows from
the definition of Y(t, r) that the intersection of the two straight cycles meeting at u°
contains the vertex v%"V2 for every m e Z . Since r is even, the set [v%"')/2 : m € 1}
equals [v%] if and only if / = 0 (mod 2r) and it contains precisely two vertices, that
is, u° and v'0

/2, if and only if t = 0 (mod r) but t # 0 (mod 2r). Observe that this
intersection contains the vertex vr/2 for all t > r and the vertex v°r for all r > 2r.
Moreover, if t = r this intersection contains the vertices vr

rj* and u^4 if r/2 is even
and the vertices u'£2)/4 and v^2)l* if r/2 is odd. Hence if f £ 2r, Lemma 3.7 implies
that h(X) = 1. If t = 2r, then Y(2r, r) = C2r <g> C2r and so h(X) = 2.

Finally, if X = Z(t, r), t ^ r, we can apply an argument which emulates the one
used in the previous paragraph almost word by word. The details are omitted. •

4. Main results

THEOREM 4.1. Let X bea(G, 1/2) -transitive graph of valency 4 and girth 4, where
G < Aut X. Then either every 4-cycle ofX is G-alternating or every 4-cycle ofX is
G-directed or X is one of the exceptional graphs above. Moreover, if every 4-cycle of
X is G-directed then either hG(X) = \orX is exceptional.

PROOF. We assign to a 4-cycle C in X a binary sequence of length 4, on symbols 0
and 1, by the following rule: a vertex of C is labeled by 1 if it is the head of one arc
and the tail of the other arc in DG{X) and it is labeled by 0 if it is either the head of
both arcs or the tail of both arcs in DG(X). There are then precisely four possible
binary sequences (modulo a cyclic rotation): 0000, 1111, 1100 and 1010, where the
first, the second and the third correspond to G-alternating, G-directed and G-parallel
4-cycles in X, respectively. We shall now analyze the structure of X subject to the
existence of one of these types of 4-cycles.

Case 1: X contains a 4-cycle of type 1010, that is, a G-parallel 4-cycle.
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Let r = rG(X) be the G-radius of X and consider two adjacent G-alternating cycles
C = vovi • • • v2r-ivo and C = uou1 • • • u2r-\u0 meeting at the vertex v0 = UQ. Let
vi and v2r-i be the two successors, and «i and u2r-i the two predecessors of v0. By
vertex-transitivity we must have that every vertex in X is contained on some 4-cycle
of type 1010 as the vertex having both successors on that 4-cycle. In particular, this
means that the 2-path uou\u2 is extendable to a 4-cycle of type 1010. But the fourth
vertex of this cycle must be either V\ or u2r-i and it has to be a successor of u2. Hence
u2 = v2 or «2 = u2r_2. In both cases it is easily deduced that the two alternating cycles
C and C either coincide or have precisely every other vertex in common. (See also
[10]). In the first case, by Proposition 3.1, X is exceptional. In the second case, X is a
tightly G-attached graph with girth 4 and so, by Proposition 3.2, isomorphic either to
X(t, r) or Y(t, r) or Z(t, r) for a suitable t or to C,[2Kt], and so exceptional. (Note
that the vertex stabilizer is isomorphic to 22 in all of these cases except when r = 2
and X = C,[2K\\ when the vertex stabilizer is isomorphic to V2~

l.)
Case 2: X contains a 4-cycle of type 1100.
As in Case 1, let r = rG(X) and consider two G-alternating cycles

C = vovi • • • v2r-\Vo and C = MO«I • • • u2r-iu0

meeting at the vertex v0 = "o- Let ^i and v2r_i be the two successors, and «i and
«2r-r the two predecessors of v0. By vertex-transitivity we must have that every vertex
in X is contained on some 4-cycle of type 1100 as the vertex having both successors
on that 4-cycle. In particular, this means that die 2-path uou\u2 is extendable to a
4-cycle of type 1100. It follows that either u2uiuoviu2 or u2uiuQv2r-iu2 is such a
cycle. Without loss of generality we may assume that the first possibility happens.
Then v\ is a predecessor of u2. For symmetry reasons we have that ur_2Mr-i wovr_i «r_2

is also a 4-cycle of type 1100. Let w be a predecessor of u\. Then either wuiUoViw
or wMi «o^2r-i w is a 4-cycle of type 1100. If the first possibility happens we have that
wuiu2viw is a 4-cycle of type 1010 and as in Case 1 the graph X is exceptional. If the
latter happens then w = u2r-2 and so it follows that «i = u2r_3. Thus C and C have
two consecutive vertices of C in common and we can deduce that the two vertex sets
coincide, that is, V(C) = V(X) = V(C'). As in Case l,by Proposition 3.1, the graph
X is exceptional. (In fact in this case one can see that X = Circ(10, (1, —1, 3, —3}.)

Case 3: X contains 4-cycles of types 0000 and 1111, that is, G-alternating and
G-directed 4-cycles.

If two adjacent G-alternating cycles have two vertices in common then the graph
is tightly G-attached and therefore exceptional. (In fact it must be isomorphic to
Ct[2Ki]. Assume that two adjacent G-alternating cycles intersect in one vertex only.
We let Y = Alt(X) be the graph whose vertices are the G-alternating cycles of X, with
two vertices joined by an edge if and only if the corresponding G-alternating cycles
have a common vertex. It may be seen that Y admits a 1/2-transitive action of the
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group G and that every edge of X is contained on a G-directed 4-cycle. Moreover, Y
has half the number of vertices of X and so the corresponding stabilizer of the action
of G on Y contains a copy of l\. But then every edge of Y must lie on at least two
G-directed 4-cycles. Let u, v be a pair of adjacent vertices in Y with u -*• v in the
G-orientation on Y, and let u\, u2 and vi, v2 be the two predecessors of u and the
two successors of v, respectively. Since the vertex stabilizers Gu and Gv contain a
copy of 1\, we may easily see that the bipartite graph induced by the sets {«i, M2}
and {ui, v2] is regular and so isomorphic either to K2,2 or to 2Kt. In the first case,
{ul,u2,vuv2} induces a G-alternating 4-cycle in Y, forcing Y = C4[2Af i] = C4 ® C4,
and consequently X = C4 x C4, an exceptional graph. In the second case, we see that
the edge uv, and hence every edge of Y, is contained on precisely two G-directed 4-
cycles. By Proposition 3.4, we have that either Y = C2r x C2r, r > 2, or Y = C2r<g> C2r,
r > 3. Now going back to X we have that X = C4r ® C4r,r > 2, in the first case, and
X = C2r x C2r, r > 3, in the second case. Thus X is again exceptional. (Observe
that, with the exception of the case X = C4 x C4, the vertex stabilizer of the above
1/2-transitive group action on X, which induces alternating cycles of length 4, is
isomorphic to 22.)

Case 4: All 4-cycles in X are of type 1111, that is, G-directed.
We show that either hG{X) = 1, that is, the vertex stabilizer is isomorphic to 12,

or X is isomorphic to one of the graphs C2r x C2r, r > 2, or C2r ® C2r, r > 3.
Clearly, r = rG(X) > 3. Consider two G-alternating cycles C = vov\ • • • u2r_iVo and
C" = «0Mi • • • «2r-i«o meeting at Vo = u0. Let Ui and u2r-i be the two successors, and
Mi and M2r_i the two predecessors of v0. There exists a vertex JC of X such that U] —• x
and x ->• Mi, giving rise to a directed 4-cycle voVixuiVo- If there was another vertex
v such that Ui -*• y and y -*• ut then MiXUiVMi would be a forbidden 4-cycle of type
1010. Similarly, MIJCUIVMI would be a forbidden 4-cycle of type 1100 if V\ -*• y and
Mi -> v or if y -> Vi and v —• u\. Finally, if MI ->• y and y -*• v\ then v^Vywu^VQ
would be a forbidden 4-cycle of type 1010. We have therefore proved that Mi and
V\ have a unique common neighbour x. It follows that in X a directed 2-path is
extendable to a unique (directed) 4-cycle. This implies that every edge of X lies on
either one or two directed 4-cycles. We now show that the assumption that the vertex
stabilizer G^ is not isomorphic to 22 forces the latter possibility.

So, assume that G^, is not isomorphic to 22. Then there exists a € G whose
restriction to {v0} U N(v0) is the permutation (vo)(vi)(u2r_i)(MiM2r_i). If xa = x,
then we must have x -*• u2r-i and so x u{ vQu2r_ix is a forbidden 4-cycle of type 1010.
Thus w = xa ^ x. It follows that Vov1w M2r_ i v0 is another directed 4-cycle containing
the edge vovi. We conclude that the graph X is specified by the characteristic property
that every edge is contained on precisely two 4-cycles, both of them of directed
orientation. Now the proof is completed using Proposition 3.4. •

As an immediate consequence of Theorem 4.1 and Proposition 3.6 we have the
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following result.

COROLLARY 4.2. Let X be a 1 /2-transitive graph of valency 4 and girth 4. Then
either

(i) every 4-cycle is alternating or
(ii) every 4-cycle is directed.

Moreover, in case (ii) X is of height 1.

We are now ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1. Using Corollary 4.2 together with the fact that in a 1/2-
transitive graph of valency 4 the set of alternating cycles decomposes the edge set
[10, Proposition 2.4], we may assume that 4-cycles in X are all directed. Further
h(X) = 1. We now show that the set of these cycles decomposes E(X). If not then
Corollary 4.2 implies that every edge of X lies on k > 2 directed 4-cycles. If X > 2,
then X is isomorphic to C^[2Ki]. Thus A = 2 and applying [11, Proposition 2.2]
we conclude that X is the medial graph of a regular map of type {4,4}. It follows
from the classification of regular maps of type {4,4} (see [6, page 103]) that all of
these maps are positively self-dual. Hence X is arc-transitive by [11, Theorem 4.1], a
contradiction. •

The conclusion of our analysis is that 1/2-transitive graphs of valency 4 and girth 4
fall into two disjoint classes. Graphs belonging to the first class have alternating 4-
cycles, in other words their radius is 2. Recently, an infinite family of such graphs has
been constructed in [9] as follows. For each n = 2k +1 > 17 let Xn denote the Cayley
graph Cay(An, [a, a—1, b, b'1}), where a is then-cycle (0, 1 , . . . ,« — 1) and b = tat
is a conjugate of a by t = (02) (47). Then Xn is a 1/2-transitive graph of valency 4
and radius 2 (with the automorphism group An x Z2). Graphs belonging to the second
class have directed 4-cycles and their height equals 1. It follows from the results
proved in [11] that every such graph is the medial graph of an irreflexible regular map
of valency 4. Controlling irreflexibility of maps, however, is not at all an easy task.
Also, there are examples of irreflexible regular maps that give rise to arc-transitive
medial graphs. Nevertheless, there exists an infinite family of graphs belonging to
the second class above. Let s be any even number and let r = 1 + s + s2 + s3.
It follows from [14, Theorem 3.1] that the graph X(s;4, r), defined in Section 3, is
1/2-transitive. Moreover, it is obvious that its girth is 4 and that all of its 4-cycles are
directed.

References

[1] B. Alspach, D. Marusic and L. Nowitz, 'Constructing graphs which are 1/2-transitive', J. Austral.
Math. Soc. Sen A 56 (1994), 391^t02.

https://doi.org/10.1017/S1446788700008788 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008788


170 Dragan Manisic and Roman Nedela [16]

[2] B.Alspach and M.-Y.Xu, '1/2-arc-transitive graphs of order 3p', J. Algebraic Combin. 3 (1994),
347-355.

[3] N. Biggs and A. T. White, Permutation groups and combinatorial structures (Cambridge University
Press, Cambridge, 1979).

[4] A. Bondy and U. S. R. Murty, Graph theory with applications (American Elsevier, New York,
1976).

[5] I. Z. Bouwer, 'Vertex and edge-transitive but not 1 -transitive graphs', Canad. Math. Bull. 13 (1970),
231-237.

[6] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups (Springer, New
York, 1972).

[7] S. F. Du and M. Y. Xu, 'Vertex-primitive 1/2-arc-transitive graphs of smallest order', Comm.
Algebra 27 (1999), 163-171.

[8] D. F. Holt, 'A graph which is edge transitive but not arc transitive', J. Graph Theory 5 (1981),
201-204.

[9] A. Malni£ and D. MaruSic', 'Constructing 1/2-transitive graphs of valency 4 and vertex stabilizer
Z2 x Z2\ Discrete Math. 245 (2002), 203-216.

[10] D. MaruSic', 'Half-transitive group actions on finite graphs of valency 4', J. Combin. Theory Sen B
73 (1998), 41-76.

[11] D. MaruSiS and R. Nedela, 'Maps, one-regular graphs and 1/2-transitive graphs of valency 4',
European J. Combin. 19 (1998), 345-354.

[12] D. MaruSic' and C. E. Praeger, 'Tetravalent graphs admitting half-transitive actions; alternating
cycles', J. Combin. Theory Ser. B 75 (1999), 188-205.

[13] D. MaruJiC and M.-Y. Xu, 'A 1/2-transitive graph of valency 4 with a nonsolvable group of
automorphisms',/ Graph Theory IS (1997), 133-138.

[14] M. Sajna, 'Half-transitivity of some metacirculants', Discrete Math. 185 (1998), 117-136.
[15] D. E. Taylor and M.-Y. Xu, 'Vertex-primitive 1/2-transitive graphs', J. Austral. Math. Soc. Ser. A

57(1994), 113-124.
[16] W. T. Tutte, Connectivity in graphs (University of Toronto Press, Toronto, 1966).
[17] R. J. Wang, 'Half-transitive graphs of order a product of two distinct primes', Comm. Algebra 21

(1994), 917-927.
[18] H. Wielandt, Finite permutation groups (Academic Press, New York, 1964).
[19] M.-Y. Xu, 'Half-transitive graphs of prime cube order', J. Algebraic Combin. 1 (1992), 275-282.

IMFM, Oddelek za matematiko Katedra Matematiky
Univerza v Ljubljani Univerzita Mateja Bela
Jadranska 19 975 49 Banska Bystrica
1000 Ljubljana Slovensko
Slovenija e-mail: nedela@bb.sanet.sk
e-mail: dragan.marusic@uni-lj.si

https://doi.org/10.1017/S1446788700008788 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008788

