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ABSTRACT

Traditional credibility models have treated the process generating the losses as
stable over time, perhaps with a deterministic trend imposed. However, there is
ample evidence that these processes are not stable over time. What is required
is a method that allows for time-varying parameters in the process, yet still
provides the shrinkage needed for sound ratemaking. In this paper we use an
automobile insurance example to illustrate how this can be accomplished.
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1. INTRODUCTION

The goal of any ratemaking process is to estimate future claims on the basis of
prior experience. The experience will be available for many groups over several
time periods. It has been long known (MOWBRAY, 1914) that both statistical
and business optimality is achieved by first estimating a rate for each group
and then reducing the large values and increasing the small ones. Traditionally
(e.g., BUHLMANN and STRAUB, 1972) the initial estimates are sample means.
Others (e.g. HACHEMEISTER, 1975) have recommended deterministic trend
factors. Most all approaches that are currently used assume that the time series
observations from a single group vary independently around a stable mean or
trend.

Most time series, however, exhibit time-varying levels as well as autocorre-
lations among adjacent observations. The optimal forecasts for such series do
not assign equal weights to all past observations, but discount the information
according to their age; older observations get less weight. See Box and
JENKINS (1976) or ABRAHAM and LEDOLTER (1983) for a thorough discussion.
Evidence for time-varying parameters was presented for automobile losses by
BAILEY and SIMON (1959). A problem with most standard time series
approaches, however, is that they are designed for making forecasts based on
single series of relatively long lengths. Typical insurance problems contain
many (sometimes hundreds) series of short (3-7 years) duration. Because these
short series are occurring in a common external environment (e.g., of rising
health care costs, automobile safety improvements, etc.) many of the features
will be common to all of the series. The importance of both time series and
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cross-sectional effects has also been noted in two recent econometrics papers by
GARCIA-FERRER et al. (1987) and ZELLNER and HONG (1989) who use
shrinkage methods to predict the economic growth rates of several countries.

The purpose of this paper is to bring together a dynamic model for the
time-varying aspects of the problem and a shrinkage technique that takes
account of the multiple group aspect. In Section 2 we review the credibility
model with time-invariant parameters. In Section 3 we discuss univariate
structural time-series models with time-varying trend and seasonal coefficients
and we apply the shrinkage approach of Section 2 to the coefficients in the
structural time series models. The final section illustrates this approach on
actuarial data.

2. THE STANDARD CREDIBILITY MODEL

In all of the situations discussed in this paper the data consists of observations
Y^'\ i=l,...,k, t= 1,.. . , n where k is the number of groups under
consideration and n is the number of periods of observation. Typically, each
value represents the amount paid in claims, divided by some measure of the
size of the group, PJ-'\ The objective is to forecast the value for a future period,
Y^+[, for each group.

A linear data generating model for the observations specifies

(2.1) y « = x,;/?w + e « e,(0

where e^, for t = 1,..., n and i - 1,.. . , k, are independent and xit are p x 1
known design vectors, usually functions of t. Two well-known models take (1)
p = 1 and xit = 1 and (2) p = 2 and xu - (1,0'- The data generating model in
(1) is part of a special case of the Buhlmann-Straub model (BUHLMANN and
STRAUB, 1972); the linear trend in (2) is part of the Hachemeister model
(HACHEMEISTER, 1975). The factor P,w in (2.1) is a measure of the amount of
data that produces the observation 7/'', which in most actuarial situations is
an average, of many observations. The forecast of Y^\h the observation
at a future time period, is provided by the estimate of the mean

The standard credibility model also assumes that the coefficients /?w, for
/ = 1,.. . , k, are independent realizations from a common distribution. That
is,

(2.2) £(O = £ + 0(O where gM~N(0, a2B).

Treating this second level distribution as a prior distribution, the Bayes
shrinkage estimate of /?(l) is given by

(2.3)

where

(2.4) f ^
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is the weighted least squares estimate in group i,

(2.5) Z^BiB+Vy1,

and

A problem with this solution is that estimates of the quantities B and b must
be obtained. A commonly accepted approach is to use the method of moments
estimates that have been developed in variance components analysis (see
SWAMY, 1971). However, there are a number of drawbacks with this approach.
The estimates of B and Z, are biased and, furthermore, the moment estimate of
the scaled covariance matrix B need not be non-negative definite. These
drawbacks can be overcome, in part, by either using- the iterative estimation
approach of DEVYLDER (1981, 1984), or a true Bayes approach instead of an
empirical Bayes approach. The details of the Bayes analysis can be found in
KLUGMAN (1987). DeVylder proposes estimators B and b of B and b which
depend via Z, = B(B+ V,)'1 on the parameter B to be estimated. He suggests
an iterative procedure where

(2.7) b =
- l

7 /?(<)

B = (H+H')/2a\

and

The iterative procedure starts from an initial arbitrary non-negative definite
symmetric matrix Bo. It stops if, from one iteration to the next, the elements
in B do not change by more than a specified small quantity.

Remark. We can think of credibility models as consisiting of two components:
The first one in equation (2.1) models, for each group separately, the
generation of the observations for given values of the coefficients /?w; we refer
to this as the data generating model. The second component in equation (2.2)
relates the parameters /?w in the data generating model across the k groups; we
refer to this as the shrinkage component. As mentioned above, a shortcoming of
the traditional credibility model in equations (2.1) and (2.2) is that it does not
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allow for time-varying coefficients. As a consequence the age of the observa-
tion does not enter into the analysis.

3. SHRINKAGE ESTIMATION IN MODELS WITH TIME-VARYING COEFFICIENTS

3.1. Analysis of a single series

The following discussion concentrates on a single series (group) and, in order
to simplify the presentation, we have omitted the group index i. In this paper
we use structural time series models to incorporate time-varying coefficients
into the data generating model. These models (see HARVEY and TODD, 1983;
HARVEY, 1984) are of the form

(3.1) Y, = x,'P, + et, e,

As the notation indicates, the et's are normal and independent with mean zero
and variance cr2/P,, and the y,'s are independent and multivariate normal with
mean vector zero and covariance matrix a2 A. Furthermore e, and y, are
mutually independent. Actuaries have used models of this type before. DE
JONG and ZEHNWIRTH (1983), for example, use these models in the credibility
context and show that the data generating equation of traditional credibility
models can be formulated in this form. NEUHAUS (1987) applied this type of
model to the prediction of number of policies, claim frequency and mean
severity, and he discussed how to select the appropriate model and how to
estimate its parameters. A recent application of these models in an insurance
context is described by HARVEY and FERNANDEZ (1989) who combine a
structural time series model for the size of claims with a model for the number
of claims.

The simplest special case of the model in (3.1) assumes that p = 1, x, = 1
and T = 1. This model allows the mean level P, of the series to change over
time according to a random walk, /?, = /?,_, + v(. The exponentially weighted
moving average forecasts that arise from this model (see ABRAHAM and
LEDOLTER (1986), for example) are a special case of the recursive credibility
model discusssed by GERBER and JONES (1975) and its generalization by
SUNDT (1981). If Var(vr) = 0, implying that the coefficients /?, = /? are
time-invariant, then this model simplifies to the data generating equation of the
Buhlmann-Straub model.

Another special case of interest is the model with a time-varying linear trend
component where

(3.2) x, =
Pot

T =
1 1

0 1
and A =

A, 0

0 k
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This model allows the slope /?1( = /?i>r_i + v2r and the intercept
Pot = fio, i-1 +/?i, t-1 + vw t o change over time. With ^ = A2 = 0 the model in
(3.1) reduces to the data generating equation of the Hachemeister model.

If quarterly or monthly data are analyzed, it may be necessary to incorporate
a seasonal component. A model with

(3.3) x, =

1

0

1

0

0

Pot

Pu

yt-i

Jt-2 _

, T =

"1 1

0 1

0 0

0 0

0 0

0 0

0 0

-1 - 1

1 0

0 1

0"

0

- 1

0

0

V, = and A =

"Ai 0 0 0 0"

0 X2 0 0 0

0 0 /l3 0 0

0 0 0 0 0

0 0 0 0 0

can be used for quarterly data. The first two components in /?, correspond to
level and slope at time t. The last three components of/?, correspond to additive
seasonal factors. If the A's are zero, the model reduces to the Hachemeister
linear trend model with seasonal indicators.

The inference in structural time series models (3.1) is discussed in HARVEY

and TODD (1983). The standard Kalman filter updating equations (see, for
example, JAZWINSKI, 1970; MEINHOLD and SINGPURWALLA, 1983) are used to
obtain/?„,„, the estimate of /?„ that is based on the observations Yx, Y2,..., Yn.
Furthermore, one can obtain its coyariance matrix a2Gn]n, predict
future coefficients /?„+/ from /?„+/!„ = T'fin]o, and future observations Yn+i
from Yn(l) = x'n+]T'p[n]n.

Starting values are needed to initialize the Kalman filter recursions

(3-4) /?,l,-i = Tpt.\\t_x

Gt\t-\ = TGt-^-x

Gt\, = G,|,_!-*:,

k, = GtU-lxl(x

For a single series in (3.1) we start these recursions with a p x 1 vector of zeros
for /?0|0 and a diagonal matrix with very large diagonal elements for G0l0. This
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non-informative initialization reflects our ignorance about starting values in the
absence of prior data. Other initialization approaches are possible (ANSLEY

and KOHN, 1985; KOHN and ANSLEY, 1986; DEJONG, 1988), and their
relationships are discussed in LEDOLTER, KLUGMAN and LEE (1989).

With a non-informative prior distribution the Kalman filter estimate jin]n

is an unbiased estimator of the coefficient at time n, /?„. The estimate is a
weighted average of the n past observations. In general, older observations
receive less weight if there is evidence that the coefficients are time-changing.

The Kalman filter updating equations, and therefore the estimate f)nin and
the forecast Yn(l), depend on the variance ratios A in equation (3.1). These
parameters are estimated by maximum likelihood. The likelihood function
of a2 and A is obtained from the prediction error decomposition
(SCHWEPPE, 1965). Assuming a non-informative initialization the log-likelihood
function can be written as

1 "
(3.5) l(o2, A; data) = c - P- log a2 - - £ log / ,

2 2 t=p+\

1 *' '" '* -if If,,T 2 ••—'
2<T i=p+l

where Y, — x,'ji,\t-i is the one-step-ahead prediction error at time t, and a2f,
is its variance; J3lU-i and / , = P^ + x'tGt[l_{xt can be obtained from the
Kalman filter recursions. The maximization is simplified by the fact that one
can concentrate the log-likelihood function with respect to a2; the numerical
maximization of the concentrated log-likelihood lc(A; data) needs to be carried
out for elements in A only.

3.2. Analysis of multiple series and the introduction of shrinkage

So far we have discussed the analysis of a single series with time-varying
coefficients. In insurance applications we not only have a single series, but we
have n observations from k groups, and the estimation of A can be improved
by incorporating information from the other groups. Here we assume that the
A in the k groups are the same. As the value of n is usually small relative to k,
it is not possible to estimate separate variance ratios for each series. Assuming
independence across the k groups we can add the log-likelihood functions in
(3.5) for the k groups and obtain estimates of a common A via numerical
optimization. An estimate of the variance a2 is obtained from

(3-6) o
(n—p)k 1=1 t=

The estimate of A is used to carry out the Kalman filter recursions. This is
done for each group separately, using a non-informative initialization. The
resulting coefficient estimate ji$n provides us with an estimate of the parameter
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at time n, /?n
w; its covariance matrix is given by a2G^n. The estimate is a

weighted average of the n observations. The estimate of A determines the
weights in this average. Positive variance ratios in A imply that the importance
of each observation in determining the estimate depends on its age. If the
variance ratios are zero, then the Kalman filter estimates simplify to the usual
regression estimates /?w in equation (2.4).

So far there has been no shrinkage, as we have ignored the cross-sectional
correlations. In order to effect shrinkage we introduce a second equation,

(3.7) f$) = bn + <£) where a«~7V(0, G2Bn).

This equation specifies that at time n the coefficient vectors in the structural
time series model for the k groups vary independently around a common value
bn. We combine this equation with the results from the k separate Kalman
filters,

(3.8) $n = $> + y? where vvn
(/)~JV(O, <72G«) .

are independent across groups. These two equations yield the standard
two-stage credibility model in Section 2. The shrinkage estimate based on (3.7)
and (3.8) is given by

(3.9) $ ° = ZiPtfn + (I

where Z, = Bn(Bn+ F))"1 and Vt = G$n. The results in Section 2 can be used
to estimate bn and Bn. In our examples we have used deVylder's iterative
approach discussed in Section 2.

3.3. Discussion

Adding this second equation to induce shrinkage is somewhat heuristic, but is
needed as by itself the model in equation (3.1) does not incorporate cross-
sectional correlations.

In theory, a cross-correlation structure can be introduced by specifying a
certain covariance structure for the error terms in a multivariate version of the
model in (3.1). However, it is usually quite difficult to identify the exact form
of the cross-correlation structure, especially for the short time series which are
typical with insurance data. We have avoided these modelling issues by
introducing a heuristic shrinkage equation at the last available observation
period.

Model-based approaches to shrinkage are clearly possible. One alternative to
the above heuristic shrinkage approach is a model that introduces a shrinkage
equation for the coefficient vector at the initial time period zero. That is, one
assumes that /?o

w = bo + gft\ where the g§, for i = 1,..., k, are independent
realizations from a normal distribution with mean vector zero and covariance
matrix a2B0. This implies that at the initial time period the standard actuarial
shrinkage model is valid. If the elements in A are zero, implying that the
coefficients in the data generating model are time-invariant, this model and the
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traditional credibility model are identical. For time-varying coefficient models
we start from the standard actuarial shrinkage model at time zero, but assume
that the coefficients for subsequent periods are subject to stochastic change.
For the inference in this model one initializes the Kalman filter in each group
by the same J3§0 = b0 and G§0

 = #o > treats b0 and Bo as unknown parameters,
and simultaneously obtains estimates of A, b0 and Bo. This results in shrinkage
of the Kalman filter estimates P^n at time n towards the common initial mean
b0. But even for modest positive values of A this shrinkage effect disappears
very quickly as n increases, and for moderate n there is hardly any shrinkage. It
is for these reasons that we have rejected this alternative approach and have
concentrated our discussion on the former, somewhat heuristic procedure.

Another model that introduces cross-sectional correlations is one that
assumes that the k coefficients at time t, y?,w, for i = l,...,k, vary indepen-
dently around a common trend component" b, which itself follows a structural
time series model. LEE (1991) studies these common-trend type models in
detail, and we hope to report on this work in a future paper.

The advantage of our admittedly heuristic method is that it is more general
than the traditional credibility approach. It recognizes the fact that most time
series exhibit changing levels, trends and seasonality, and it discounts previous
observations when it determines their estimates. The difference between the two
approaches is shown best in the case of the Buhlmann-Straub model. The
traditional approach shrinks the sample means towards a common average,
whereas our new approach shrinks exponentially weighted averages. Further-
more, it can be shown that for A = 0 our approach coincides with the solution
in Section 2.

4. EXAMPLES

In this section two examples are given, with the second one being analyzed in
detail. These examples provide illustrations of situations in which models that
combine time-varying and shrinkage aspects are likely to improve the
results.

4.1. Worker's compensation

MEYERS (1984) studies yearly loss ratios under Worker's compensation insur-
ance for 319 classes (occupation groups) and three years. A model without
trend component is appropriate since these data are already adjusted for
inflation. Meyers uses the Buhlmann-Straub model in his analysis. However.
MEYERS and SCHENKER (1983) provide evidence that the loss ratios are not
constant, but vary independently from year to year around a common mean. In
the notation of our present paper

(4.1) x,=
LA

T =
0

0
r
1

, and A = 1

0

0

0
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where y?lr is an unchanging long-term average and f}Ol is the level in year t. An
approach that combines this state-space model with shrinkage can be expected
to improve the forecasts for future losses, as many of the 319 classes have very
small sample sizes.

4.2. Automobile bodily injury

The data for the second example are taken from the automobile insurance
industry. Quarterly data on the amount (not adjusted for inflation) paid under
the bodily injury component of automobile insurance policies (LOSS) and the
number of cars covered by these policies (EXPOSURE) were obtained from
31 states. Only states without no-fault laws were included, as under no-fault

1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22

TIME

FIGURE 1. Multiple time series plot of the ratio R = LOSS/EXPOSURE.
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laws many claims that would otherwise be covered by the liability portion of
the insurance are paid under the bodily injury component. Data from the first
quarter of 1983 to the second quarter of 1988 (n = 22) are used in our
analysis.

The ratio R? = LOSS^/EXPOSURE*0, where t = 1,..., 22 (quarters) and
i = 1,..., 31 (states) is our dependent variable that needs to be predicted. The
multiple time series plot of the ratios R^ in Figure 1 shows presence of
seasonality and a need for a logarithmic transformation. The presence of
seasonality is seen more clearly in Figure 2 where we have plotted estimates of
the multiplicative seasonal indices for the 31 states. We use the following
procedure to obtain the seasonal indices: For each univariate series we
calculate centered yearly moving averages to estimate the trend component; we
then obtain, for each time period t, an estimate of the seasonal factor from the
ratio of the observation and the corresponding centered moving average; next,
we average the seasonal factors for each quarter to obtain seasonal indices for
the four quarters; finally, we normalize these indices so that they sum to four.
The dot plot of these normalized seasonal indices in Figure 2 shows a seasonal
pattern; in the fourth quarter the ratios R^ tend to be highest.

-Quarter 1

-Quarter 2

-Quarter 3

_ + + + + + + Quarter 4
0.80 0.88 0.96 1.04 1.12 1.20

FIGURE 2. Dot plot of the seasonal indices for the 31 states.

A multiple time series plot of the transformed observations, F,w = log R(,'\
is given in Figure 3. This plot indicates that a linear trend model with additive
seasonal components provides a good description of the transformed observa-
tions.

In the standard actuarial model it is usually assumed that the variance of the
error component is related to the exposure P,((); that is, Var (e,w) = cr2/P/''. We
now want to check whether this is a reasonable assumption. Since the
exposures P\l) do not change much over time, we calculate an average exposure
P w for each state. Due to size differences among the states, these averages are
quite different. Next, we adjust each time series F,w for trend and seasonality
and calculate an estimate of its variance. The residuals from a regression of Y^
on time t and additive seasonal indicators are used to calculate the variance
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3-

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

TIME

FIGURE 3. Multiple time series plot of Y = log (LOSS/EXPOSURE).

estimate. In Figure 4 we plot the resulting mean square errors against the
reciprocal of the average exposures. The linear relationship confirms that
Var (e,w) = CT2//>,W is a reasonable assumption.

Based on this preliminary analysis we are led to consider the structural time
series model with a linear trend and additive seasonal components,

(4.2) F,(0 = x/fl(0 + e,(0 e,(0

where xt, T and A are given in
~N(0,a2A)
equation (3.3). Our model allows for

time-varying coefficients and reduces to a linear trend regression model with
quarterly indicators if Ai = A2 = A3 = 0.

https://doi.org/10.2143/AST.21.1.2005402 Published online by Cambridge University Press

https://doi.org/10.2143/AST.21.1.2005402


84 JOHANNES LEDOLTER, STUART KLUGMAN, CHANG-SOO LEE

0 . 0 7 -

0 . 0 6 -

0 . 0 5 -

0 .04 •

0 .03-

0 .02-

0.01 -

0 .00-

*

* *

*

*

*

* * * * * * *

0 . 0 0 0 0 . 0 0 5 0 . 0 1 0 0 . 0 1 5 0 . 0 2 0 0 . 0 2 5 0 . 0 3 0 0 . 0 3 4

PBAR-INVERSE
FIGURE 4. Plot of the mean square error from the linear trend regression with seasonal indicators

against the reciprocal of average exposure; k = 31 states.

The maximum likelihood estimation approach in Section 3 is applied and,
assuming independent groups, estimates of a1 and the three variance ratios are
obtained. It is found that a1 = 3.8089* 10~3, lx = 0.0495, 12 = 0.0044 and
A3 = 0.00008. The estimate 13 is close to zero and the log-likelihood deficiency
(ratio), lc(h,~h, A3)-/<.(![, 12>O)> is quite small. This implies that the
seasonal coefficients do not change much over time. Contours of the log-
likelihood function of ly and X2, for X3 = 0.00008, are plotted in Figure 5.
This plot, as well as the large log-likelihood deficiency lc{Xx, 12, 0)-/c(0, 0, 0)
= 19.16, shows that a standard least squares approach which assumes time
constant intercept and slope coefficients would be inappropriate.

In order to check the adequacy of the structural time series model in
equation (4.2) we calculated the standardized one-step-ahead forecast errors for
periods 6 through 22. Standardization of the forecast error by its standard
error df,1/2 assures that its variance does not depend on time. We found that
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0.020

0.015-

X2 0 010 •

0 .005-

0.000

0.00 0.30

FIGURE 5. Contour plot of the concentrated log-likelihood function. The variance ratio that
determines the variability in the seasonal component is set at its estimate A3 = 0.00008. Probability

coverage of the contours is obtained from the Chi-square approximation.

the standardized one-step-ahead forecast errors were serially uncorrelated for
essentially all 31 groups.

The estimates of Xx, 12 and 13 are used to calculate the estimates p^n,for
n — 22 (the last available time period) and i = 1,.. . , 31 (states). Dot diagrams
of the k = 31 estimates of intercept, slope and seasonal coefficients (only the
first one is shown), together with their standard errors, are given in Figure 6.
The standard errors are obtained from the diagonal elements in a2G^n.

We notice considerable variability among the k = 31 intercept estimates.
Furthermore, we find that the between group variability is much larger than
the uncertainty that is associated with each estimate (that is, the within group
variability as measured by the standard error of the estimate). This result
indicates that there should be no or little benefit to shrink the intercept
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In t e r cep t :

-- + + + + + + Estimate
3.60 3.90 4.20 4.50 4.80 5.10

+ + + + + + Standard
0 0.02 0.04 0.06 0.08 0.10 Deviation

Slope:

-_+ + + + + Estimate
0.01 0.02 0.03 0.04 0.05

+ + + + + Standard
0 0.005 0.010 0.015 0.020 Deviation

Seasonal:

+ + + + + Est imate
-0.10 -0 .05 0.00 0.05 0.10

+ + + + Standard
0 0.03 0.06 0.09 Devia t ion

FIGURE 6. Dot plots of the estimates and their standard errors for the intercept, slope, and seasonal
coefficients in model (4.2); k = 31 states.

estimates. The dot plots of the slope estimates and their standard errors show a
different picture; the within group variability is quite large when compared
with the variability between the slope estimates. These pictures suggest that
shrinkage procedures should pool the slope estimates towards a common value.
The same conclusion is reached for the seasonal factors (the third, fourth and
fifth component of the beta vector). They, too, should be shrunk towards
common means.

Next, we apply shrinkage and calculate the shrinkage estimate discussed in
equation (3.9) of Section 3. That is, we compute

(4-3) ft* =
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where Z, = Bn(Bn+ Vyl and Vt = G%. DeVylder's modification in (2.7) is
used to estimate bn and Bn. The only minor difference is that we are using the

2 3maximum likelihood estimate a2 = 3.8089* 10~3 from the Kalman filter as the
estimate of a2. In Figure 7 we compare the estimates before and after
shrinkage. The graphs confirm what we had anticipated from the results in
Figure 6. The slopes and seasonal components are shrunk towards their
respective means, whereas the intercepts are essentially unchanged.
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FIGURE 7. Intercept, slope and first seasonal coefficient estimate in model (4.2) before and after
shrinkage; k = 31 states.

Forecast comparisons

The prediction of future values is a major reason for fitting models to data. We
must now investigate whether the proposed new approach leads to forecast
improvements. In particular, we address the following two questions:

(1) Has shrinkage of the coefficients improved the forecasting performance of
our time-varying trend component model? To address this issue we
compare forecasts that are calculated from the shrinkage estimates /?n

w in
(4.3) [method 1] and forecasts that are calculated from the standard
Kalman filter estimates fi^n [method 2].
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(2) Has our generalization of incorporating time-varying trend components
helped the forecasting? To investigate this question we compare the
forecasts that use the shrinkage estimates #,(l) in (4.3) [method 1] with
forecasts that are calculated from the shrinkage estimates in the standard
regression model with constant linear trend and seasonal indicators [Hache-
meister, method 3].

A true test of the forecast performance of a model is obtained by an
out-of-sample comparison of forecasts and actual observations. Here we use
the last four observations R% through R^2, for i = 1,..., 31, as our hold-out
sample. This is a reasonable choice as actuarial practice bases predictions of
future premiums on about four to five years of past data. For each state we
calculate four one-step-ahead forecast errors Rt — R,-y(\), t = 19, ...,22,
where R,(\) = exp[y,(l)] is obtained by applying the inverse transformation
to the forecast of the logarithmically transformed data. For each state
separately, we then compute the mean square error MSE, the mean absolute
deviation (error) MAD, and the mean absolute percent error MAPE. For each
measure (MSE, MAD, MAPE) and for each method (methods 1 through 3) we
calculate a weighted average that combines the information from the 31 states.
The average exposures P w , i — 1,.. . , 31, are used as weights. The results are
given in Table 1. Table 1 also shows the results of a further refinement of
method 1 (Kalman filter with shrinkage). In method 1R we shrink the last
4 components of the 5-dimensional coefficient vectors, but leave the first
components (intercepts) unchanged.

TABLE 1

WEIGHTED AVERAGES OF ACCURACY MEASURES. AVERAGE EXPOSURES ARE USED TO COMBINE

THE INFORMATION FROM K = 31 STATES

Method 1 Method 3
Kalman filter model Method 2 Hachemeister
(4.2) with shrinkage Kalman filter model constant linear trend

(4.2) without shrinkage & seasonal indicator
1 1R model with shrinkage

MSE 32.28 31.88 39.24 38.02

MAD 3.75 3.70 4.20 4.32

MAPE 5.12 4.99 5.35 5.40

In addition to the comparison of the aggregate measures, we compare the
measures for each state separately. We assign a score of 1 if in state i the first
method leads to a lower MSE (MAD, MAPE) than the second. The proportion
of states where method 1 outperforms method 2 (method 3) is given in
Table 2.
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TABLE 2

PROPORTION OF STATES WHERE ONE METHOD OUTPERFORMS THE OTHER

Comparison MSE MAD MAPE

Method 1 vs. Method 2
Method 1 R vs. Method 2

Method 1 vs. Method 3
Method 1 R vs. Method 3

Method 2 vs. Method 3
Method 1 R vs. Method 1

58
71

61
65

55
52

55
65

58
55

52
48

58
61

61
55

55
52

Comments, (i) For shrinkage methods we calculate the forecasts Y, (I) after
shrinking the estimates that are obtained at time t. We carry out a new
shrinkage if we go to another forecast origin, (ii) The Kalman filter methods 1
and 2 require estimates of the variance ratios A,, X2

 a n d h • I n order to avoid
the numerical maximization of the log-likelihood for each forecast origin t, we
use the estimates that are obtained from the complete data set (n = 22).
(iii) The transformation R,(l) = exp[Y,(l)] results in the median of the
predictive distribution of Rt+t. The mean of the predictive distribution can be
obtained by incorporating the variance of the predictive distribution into the
inverse transformation (see GRANGER and NEWBOLD, 1976). Because differ-
ences are usually relatively minor and because it is not obvious whether the
mean of the posterior distribution is preferable to the median we have not
pursued this adjustment.

Interpretation of results

Table 1 shows that we can improve the one-step-ahead forecast performance if
we allow the trend and the seasonal components to change over time.
Comparing the results of the two shrinkage methods (methods 1 and 3) we find
that the structural time series model in (4.2) leads to a 15.1. (16.1), 13.2 (14.4),
and 5.2 (7.6) percent reduction in MSE, MAD, and MAPE, when it is
compared to the Hachemeister model with fixed trend and seasonal compo-
nents. The numbers in parentheses reflect the improvements if shrinkage is not
applied to the intercepts in the structural time series model. Table 2 leads to a
similar conclusion. The one-step-ahead forecasts from the structural time series
model with shrinkage outperform the forecasts from the Hachemeister model
in roughly 60 percent of the states (the proportion varies from 55 to 65 percent,
depending on the accuracy measure that is used in the comparison).

Tables 1 and 2 also show that shrinkage of the coefficients improves the
forecasts in the structural time series model (4.2). The size of the improvements
that are due to shrinkage (method 1 vs method 2) is roughly the same as the
one we obtain by allowing the trend and seasonal coefficients in the two
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shrinkage methods to change over time (method 1 vs method 3). There is very
little difference between the forecasts from the structural time series model
without shrinkage and the Hachemeister shrinkage model with fixed trend and
seasonal coefficients (method 2 vs method 3).

This example shows the feasibility of an approach that applies shrinkage to
the coefficient estimates in structural time series models and illustrates its
potential for forecast improvements. GARCIA-FERRER et al. (1987) and
ZELLNER and HONG (1989) reach a similar conclusion in their analysis of
macroeconomic data. They find that individual country growth rate forecasts
are improved by shrinking the forecasts to a common average. However, their
shrinkage methods are somewhat different from the ones considered in this
paper. Furthermore, they apply shrinkage primarily to forecasts and not to
estimates in time-varying coefficient models.
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