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OF INFINITELY DIVISIBLE DISTRIBUTIONS
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Abstract

We study a type of nonnormal small jump approximation of infinitely divisible
distributions. By incorporating compound Poisson, gamma, and normal distributions,
the approximation has a higher order of cumulant matching than its normal counterpart,
and, hence, in many cases a higher rate of approximation error decay as the cutoff for the
jump size tends to 0. The parameters of the approximation are easy to fix, and its random
sampling has the same order of computational complexity as the normal approximation.
An error bound of the approximation in terms of the total variation distance is derived.
Simulations empirically show that the nonnormal approximation can have a significantly
smaller error than its normal counterpart.
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1. Introduction

The simulation of infinitely divisible (i.d.) random variables has many applications. In most
cases, since exact simulation is either unavailable or computationally costly, good approxima-
tion methods are desired. The normal approximation of i.d. distributions, which was studied
in [24] and later developed in [1] under the framework of the small jump approximation, has
received much attention in the literature [2], [11], [12], [13], [17], [20], [22], [23], [33], [34].

Let X be a real-valued i.d. random variable, and let λ be its Lévy measure. Without loss
of generality, we will always assume that X has no normal component. The normal (small
jump) approximation starts with the decomposition X = Xr + �r given r > 0, where Xr
and �r are independent and i.d. with Lévy measures λr(dx) = 1 {|x| < r}λ(dx) and λ − λr ,
respectively. As �r is compound Poisson, its sampling is standard. The key is to approximate
Xr by a normal random variable with the same mean and variance [1]. Thus, we can regard the
approximation as relying on second-order cumulant matching. By a certain measure, the error
of the approximation is bounded by

C|κ|3,Xr
σ 3
Xr

, (1.1)

where C is a universal constant, σXr is the standard deviation of Xr , and, for j ≥ 2, |κ|j,Xr =∫ |x|j λr(dx) [1]. Currently, the smallest available C seems to be 0.4748 [32]. In symmetric
cases, since the third cumulants of Xr and the normal random variable are 0, the bound can
be more or less replaced with C|κ|4,Xr /σ 4

Xr
[1]. The pattern of the bound suggests that, if Xr
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and some Yr have the same cumulants of order 1, …, q − 1 with q ≥ 5, then Xr might be
approximated by Yr with the error being bounded by

C(r)(|κ|q,Xr + |κ|q,Yr )
σ
q
Xr

,

whereC(r) is nearly constant, at least for small r , or, most ideally, is a small universal constant.
Since the qth cumulant of a normal random variable is 0, the bound is consistent with that for
the normal approximation.

Even by rough Fourier analysis, there is good reason to expect the above bound to be true,
and elementary calculations indicate that in many cases it vanishes at a strictly higher rate than
the bound for the normal approximation as r → 0. However, perhaps we first need to ask if an
approximation based on higher-order cumulant matching can possibly be easily implemented.
The motivation behind this question is twofold. First, the approximating distribution should be
easy to identify and preferably i.d. Second, the approximating distribution should be easy to
sample; preferably, the computational complexity of the sampling is of the same order as the
normal approximation. If the answer to the question is positive then another question to ask is
how large can q be. It can be anticipated that the larger q is, the faster the error of approximation
vanishes as r → 0. If both questions are answered then a wide range of available techniques
can be potentially adapted to establish error bounds.

Clearly, cumulant matching is equivalent to moment matching. In fact, our proof of the
above type of bound ultimately relies on moment matching. However, thanks to the Lévy–
Khintchine representation, it is much more convenient to work on cumulants than moments.
In Section 2.1 we present a simple way to construct approximating i.d. distributions with
matching cumulants up to at least the fourth order, i.e. q ≥ 5. In many important cases we
obtain q = 6, and in symmetric cases, q = 10. Each approximating distribution is a convolution
of compound Poisson and normal distributions, with the former made from gamma variables.
Importantly, using standard algorithms [14], [21], the computational complexity of sampling
for the approximation is universally bounded, and, hence, is of the same order as for the normal
approximation.

We refer to the approximation as the Poisson-gamma-normal (PGN) approximation, although
a term like ‘compound Poisson-normal small jump approximation with gamma summands and
higher-order cumulant matching’ would be more accurate. In Section 2.2 we bound its error in
terms of the total variation distance. The bound is nonasymptotic and of the desired type. In
Section 2.3 we give some examples of the PGN approximation. The examples show that the
bound yields a substantially higher rate of precision than the normal approximation as r → 0.
However, they also indicate that the bound may be far from being optimal or even practically
useless. Therefore, in Section 3 we conduct large-scale simulations to show that, empirically,
the PGN approximation can have a significantly smaller error than the normal approximation.

In Section 4 we prove the error bound by combining Fourier analysis, Lindeberg’s method,
and a device in [1]. Of course, on modern treatments of Poisson, compound Poisson, and
normal approximations, there is now an extensive literature, and on gamma and other types
of approximation, there is also a growing literature; see [3], [4], [7], [8], [18], [25], [26],
[29], and the references therein. However, it appears that there has been little work on using
convolutions of different types of simple distributions to improve approximation. We remark
that while in this paper we are only concerned with the univariate case, accompanying results
on the multivariate case have been reported elsewhere; see [10].
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In the rest of this section we define notation and recall some basic facts. A Borel measureλ on
R is the Lévy measure of an i.d. distribution if and only if λ({0}) = 0 and

∫
(u2 ∧ 1) λ(du) <∞

[31, Theorem 8.1]. Denote by sppt(λ) the support of λ. IfX is i.d. with Lévy measure λ, denote
by �X(t) and ψX(t) = exp{−�X(t)} = E[eitX] its characteristic exponent and characteristic
function, respectively, and define

κj,X = dj

dtj
ln E[etX]

∣∣∣∣
t=0
, |κ|j,X =

∫
|u|j λ(du), j ∈ N,

and σX = κ1/2
2,X. Here κj,X is known as the j th cumulant ofX. It is well defined if E[etX] <∞

for all t in a neighborhood of 0. We refer to |κ|j,X as the j th absolute cumulant of X. For
a > 0, E|X|a < ∞ if and only if

∫
1 {|u| > 1}|u|a λ(du) < ∞ (see [31, Theorem 25.3 and

Proposition 25.4]). If sppt(λ) is bounded then E[etX] <∞ for all t [31, Theorem 25.17]. Since
X has no normal component, κj,X =

∫
uj λ(du), j > 1, and var(X) = κ2,X. If, in addition,

�X(t) =
∫
(1+ itu− eitu) λ(du) then κ1,X = EX = 0. If j is even or sppt(λ) ⊂ R+ :=

[0,∞), then κj,X = |κ|j,X. Denote the total variation distance ofX and the random variable Y
by dTV(X, Y ) = sup{|P{X ∈ A}−P{Y ∈ A}| : Ameasurable} and their Kolmogorov–Smirnov
(KS) distance by dKS(X, Y ) = sup{|P{X ≤ x} − P{Y ≤ x}| : x ∈ R}.

Henceforth, we set Xr such that

�Xr (t) =
∫
(1+ itu− eitu)λr(du).

Consequently, EXr = 0 and E|Xr |p < ∞ for all p > 0. Let Z ∼ N(0, 1) be independent
of �r . Then �r and σXrZ + �r are known as the compound Poisson (CP) and normal
approximations of X, respectively [1]. We refer to r as the cutoff for the jump size of
approximations.

2. PGN approximation

2.1. Cumulant matching

In general, we can decompose X = X+ − X− + Xs , where X± and Xs are independent
and i.d., with the Lévy measures of X± being supported on R+, and Xs being symmetric, i.e.
Xs ∼ −Xs . Indeed, the Lévy measure of Xs can be any symmetric Borel measure λs such
that, for A ⊂ R+, λs(A) ≤ min(λ(A), λ(−A)), and the Lévy measures λ± of X± are defined
by λ±(A) = λ(±A)− λs(A). Although we can always set λs = 0, as seen below, it is useful
to exploit λs �= 0.

Without loss of generality, we will therefore only consider the asymmetric case where
sppt(λ) ⊂ R+ and the symmetric case. First, let sppt(λ) ⊂ R+. Given r > 0 and p ≥ −1, let
Yr be an i.d. random variable independent of �r such that

�Yr (t) =
∫ ∞

0
(1+ itu− eitu)γr (du) with γr(du) = m(r)upe−u/s(r) du, (2.1)

where m(r) > 0 and s(r) > 0 are constants to be determined. Then let

Tr = Yr + σ(r)Z with Z ∼ N(0, 1) independent of (Yr ,�r), (2.2)

where σ(r) > 0 is a constant that also needs to be determined.
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To use Tr+�r to approximateX, first a comment on the sampling of Tr , which boils down to
that ofYr . SinceYr = U−EU , whereU ≥ 0 is i.d. with Lévy densitym(r) 1 {u > 0}upe−u/s(r)
and EU = 	(p + 2)m(r)s(r)p+2, the sampling of Yr is reduced to that of U . If p = −1
then U ∼ Gamma(m(r), s(r)), the gamma distribution with shape parameter m(r) and scale
parameter s(r), whose sampling has universally bounded complexity (see [14, pp. 407–420]).
If p > −1 then U ∼∑N

i=1 ξi , where N ∼ Poisson(a) with a = ∫∞
0 m(r)upe−u/s(r) du =

	(p + 1)m(r)s(r)p+1, and ξi are independent and identically distributed (i.i.d.) Gamma(p +
1, s(r)) random variables independent of N . The sampling of Poisson(a) has universally
bounded complexity (see [15] or [21, pp. 228–241]). Then because, conditional on N , U ∼
Gamma(N(p + 1), s(r)), the sampling of U , and, hence, that of Tr , has the same order of
complexity as the sampling of N(0, 1).

Owing to its Lévy–Khintchine representation, we refer to Tr+�r as the PGN approximation
of X with cutoff r . To match the cumulants of Xr and Tr , note that ETr = EYr = 0 and

κj,Yr = 	(j +p+1)m(r)s(r)j+p+1, κj,Tr = κj,Yr +1 {j = 2}σ(r)2, j ≥ 2. (2.3)

We next show two results. The first result allows r = ∞ and, hence, applies to any i.d.
random variable with finite fourth cumulant, subject to a mild constraint. However, it only
attains fourth-order matching. The second result asserts that we can obtain fifth-order cumulant
matching provided there exists a slowly varying Lévy density at 0+.

Proposition 2.1. (Fourth-order cumulant matching.) Let 0 < r ≤ ∞ and 0 < κ4,Xr < ∞.
Suppose that λr is not concentrated on a single point. Then

p + 4

p + 3
<
κ2,Xr κ4,Xr

κ2
3,Xr

for all large p. (2.4)

For any p ≥ −1 satisfying (2.4), if

s(r) = κ4,Xr

(p + 4)κ3,Xr
, m(r) = κ3,Xr

	(p + 4)s(r)p+4 , (2.5)

and if Yr is defined by (2.1), then κ2,Xr > κ2,Yr , and, by setting

σ(r) = (κ2,Xr − κ2,Yr )
1/2, (2.6)

κj,Xr = κj,Tr for 2 ≤ j ≤ 4.

Remark. If λ(R+) = ∞ then, for any r > 0, λr �= 0 and is not concentrated on a single point.

Proof of Proposition 2.1. Since λr is not concentrated on a single point and 0 < κ4,Xr <∞,
by Hölder’s inequality, 0 < κ2

3,Xr
< κ2,Xr κ4,Xr < ∞, which implies (2.4). From (2.3), by

setting s(r) and m(r) as in (2.5), κj,Xr = κj,Yr for j = 3, 4 and

κ2,Yr = 	(p + 3)m(r)s(r)p+3 = 	(p + 3)
κ3,Xr

	(p + 4)s(r)
= (p + 4)κ2

3,Xr

(p + 3)κ4,Xr
.

Then, for p ≥ −1 satisfying (2.4), κ2,Yr < κ2,Xr . The rest of the result is then clear.
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Proposition 2.2. (Fifth-order cumulant matching.) Let λ(du) = 1 {u > 0}u−α−1�(u) du, with
α ∈ (0, 2) and �(u) slowly varying at 0+. Let p = p(r) be defined by the equation

1

p + 4
= κ3,Xr κ5,Xr

κ2
4,Xr

− 1.

Then, for all small r > 0, p > −1 and satisfies (2.4). For any r > 0 with such p, set s(r) and
m(r) as in (2.5) and σ(r) by (2.6). Then κj,Xr = κj,Tr , 2 ≤ j ≤ 5.

Proof. For j ≥ 3, as r → 0+, κj,Xr =
∫ r

0 u
j−1−α�(u) du ∼ rj−α�(r)/(j−α) [5, Theorem

1.5.11], so

1

p + 4
∼ (4− α)2
(3− α)(5− α) − 1 = 1

(3− α)(5− α) �⇒ p ∼ α2 − 8α + 11 > −1.

As a result, for all small r > 0, p > −1. Furthermore, as

κ2,Xr κ4,Xr

κ2
3,Xr

∼ (3− α)2
(2− α)(4− α) = 1+ 1

α2 − 6α + 8
,

combining with the previous display, it is not hard to obtain (2.4). By Proposition 2.1, it only
remains to show that, given r > 0 such thatp > −1 and satisfies (2.4), κ5,Xr = κ5,Yr . However,
this follows from κ3,Xr κ5,Xr /κ

2
4,Xr
= (p + 5)/(p + 4) = κ3,Yr κ5,Yr /κ

2
4,Yr

, where the second
equality is due to (2.3).

Now consider the symmetric case. Let X = X(1) −X(2), where X(i) are i.i.d. with Lévy
measure λ supported in R+. Let Xr = X(1)r −X(2)r , and approximate it by Tr = T (1)r − T (2)r ,
where T (i)r are i.i.d. defined in (2.2). Since all the odd-ordered cumulants of Xr and Tr are 0,
it suffices to match their even-ordered cumulants. The next result asserts that in general one
can match their cumulants up to the seventh order, and in some important cases up to the ninth
order.

Proposition 2.3. (Symmetric case.) (i) Let 0 < r ≤ ∞ and 0 < κ4,Xr <∞. Suppose that λr
is not concentrated on a single point. Then

(p + 5)(p + 6)

(p + 3)(p + 4)
<
κ2,Xr κ6,Xr

κ2
4,Xr

for all large p. (2.7)

For any p ≥ −1 satisfying (2.7), if

s(r) =
√

κ6,Xr

(p + 5)(p + 6)κ4,Xr
, m(r) = κ4,Xr

2	(p + 5)s(r)p+5
, (2.8)

and Yr = Y (1)r − Y (2)r with Y (i)r i.i.d. defined by (2.1), then κ2,Xr > κ2,Yr and, by setting σ(r)
as in (2.6), κj,Xr = κj,Tr for 2 ≤ j ≤ 7.

(ii) Let λ(du) = 1 {u > 0}u−α−1�(u) du, with α ∈ (0, 2) and �(u) slowly varying at 0+. Then,
for all small r > 0, there is a unique p = p(r) > 0 satisfying (2.7) and

(p + 7)(p + 8)

(p + 5)(p + 6)
= κ4,Xr κ8,Xr

κ2
6,Xr

. (2.9)

Given r > 0 with such p, set s(r) andm(r) as in (2.8) and σ(r) as in (2.6). Then κj,Xr = κj,Tr ,
2 ≤ j ≤ 9.
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Proof. (i) By the assumption and Hölder’s inequality, 0 < κ2
4,Xr

< κ2,Xr κ6,Xr <∞, so (2.7)
holds for all largep. Since, for even j, κj,Yr = 2κ

j,Y
(1)
r
= 2	(j+p+1)m(r)s(r)j+p+1, it is easy

to see that κ4,Xr = κ4,Yr and κ6,Xr = κ6,Yr . On the other hand, for all odd j, κj,Xr = κj,Yr = 0.
Finally, by a similar argument as used in the proof of Proposition 2.1, κ2,Yr < κ2,Xr , leading to
κj,Xr = κj,Tr for 2 ≤ j ≤ 7.

(ii) Following the proof of Proposition 2.2, as r → 0+,

κ4,Xr κ8,Xr

κ2
6,Xr

∼ (6− α)2
(4− α)(8− α) = 1+ 4

(4− α)(8− α) := h(α).

The function h is strictly increasing on (0, 2). On the other hand,

g(p) := (p + 7)(p + 8)

(p + 5)(p + 6)
=

(
1+ 2

p + 5

)(
1+ 2

p + 6

)

is strictly decreasing on (−1,∞), with g(0) > h(2) > h(α) > h(0) > 1 = g(∞). Therefore,
there is a unique p > 0 satisfying (2.9). We have to show that, for this p = p(r), (2.7) is
satisfied for all small r > 0. By continuity, it suffices to show, that for p > 0,

(p + 7)(p + 8)

(p + 5)(p + 6)
= (6− α)2
(4− α)(8− α) �⇒ (p + 5)(p + 6)

(p + 3)(p + 4)
<

(4− α)2
(2− α)(6− α) .

By calculation, the equality is equivalent to 2p2 = 2p(α2− 12α+ 21)+ 13α2− 156α+ 356,
while the inequality is equivalent to 2p2 > 2p(α2 − 8α + 5) + 9α2 − 72α + 84. Then, as
p > 0 and 0 < α < 2, it is not hard to see that the implication holds. The rest of the proof then
follows the proof of (i).

Propositions 2.2 and 2.3 immediately lead to the next result on i.d. distributions with truncated
stable Lévy measures. It should be pointed out that simple exact sampling methods for stable
distributions are well known [14] and i.d. distributions with truncated stable Lévy measures
with α ∈ (0, 1) can be sampled exactly but with high computational complexity [9].

Corollary 2.1. Let λ(du) = c 1 {0 < u < r0}u−α−1 du, where c > 0, 0 < r0 ≤ ∞, and
α ∈ (0, 2).

(i) Let X have Lévy measure λ. If p = α2 − 8α + 11 then p > −1 and, for all 0 < r <

r0, by setting (s(r),m(r)) as in (2.5), κ2,Xr > κ2,Yr , and, by setting σ(r) as in (2.6),
κj,Xr = κj,Tr for 2 ≤ j ≤ 5.

(ii) Let X = X(1) −X(2), with X(i) i.i.d. with Lévy measure λ. If p is the (unique) solution
to

(p + 7)(p + 8)

(p + 5)(p + 6)
= (6− α)2
(4− α)(8− α), p ∈ (0,∞),

then, for all 0 < r ≤ r0, by setting (s(r),m(r)) as in (2.8), κ2,Xr > κ2,Yr , and, by setting
σ(r) as in (2.6), κj,Xr = κj,Tr for 2 ≤ j ≤ 9.

2.2. Error bound for the PGN approximation

Define C0 = (sin 1)2/2 = 0.354… Observe that, as |κ|j+1,Xr ≤ r|κ|j,Xr , j ≥ 2, for s(r)
defined in (2.5) or (2.8), s(r) < r/(p + 3). The main result is the following.
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Theorem 2.1. Fix r ∈ (0,∞) and q ≥ 5. Let Tr be defined by (2.1)–(2.2) in the asymmetric
case, and let Tr = T (1)r − T (2)r in the symmetric case, where the T (i)r are i.i.d. defined by (2.1)–
(2.2). Suppose that s(r) < r/(p + 3) and σ(r) > 0. For j ≥ 1, define

Qj(r) =
[
	(j + 1/2)

2Cj+1/2
0

+ σ 2j+1
Xr

∫ ∞
1/r

t2j e−2L(t,r) dt

]1/2

,

where L(t, r) = t2 min{C0κ2,X1/|t | , σ (r)
2/2}. Suppose that κj,Xr = κj,Tr for 2 ≤ j < q. Then

dTV(X, Tr +�r) ≤ |κ|q,Xr + |κ|q,Yr
q! σqXr

[qQq−1(r)+Qq(r)+Qq+1(r)]. (2.10)

Remarks. (i) The bound in (2.10) is on dTV instead of the more commonly used dKS [1],
[24]. However, we have not been able to derive a Berry–Esseen type of bound C(|κ|q,Xr +
|κ|q,Yr )/σ qXr , with C a universal constant depending only on q. It appears that some key
ingredients for the proof of the Berry–Esseen bound for the normal approximation cannot hold
for higher-order approximations. Also, as seen later, the bound sometimes is quite suboptimal.

(ii) The bound will be proved by combining Fourier analysis, the Lindeberg method (cf. [6]
for a modern application of it), and a device in [1] (cf. the proof of Theorem 25.18 of [31]).
Although a bound on dKS may be established solely based on Fourier analysis [24], our proof
seems to be more transparent and suitable for generalization.

(iii) As seen later, in order for the right-hand side (RHS) of (2.10) to be finite, Xr must have a
density, in particular, λ(R) = ∞. The last condition implies that X is not compound Poisson
and has no atom [31, Theorem 27.4]. It also excludes lattice distributions, to which the Poisson–
Charlier approximation applies [3], [24]. Although the condition λ(R) = ∞ is necessary for
X to have a valid normal small jump approximation, it is not sufficient, which is a fact with
several interesting and important implications [1], [12].

To evaluate the RHS of (2.10), we need to evaluate σ(r)2 and |κ|q,Yr . Both can be expressed
in terms of the cumulants of Xr . For the asymmetric case, the proof of Proposition 2.1 shows
that κ2,Yr = (p + 4)κ2

3,Xr
/[(p + 3)κ4,Xr ]. Then, by (2.6),

σ(r)2 = κ2,Xr −
(p + 4)κ2

3,Xr

(p + 3)κ4,Xr
.

Similarly, for the symmetric case, using (2.3) and (2.8),

σ(r)2 = κ2,Xr −
(p + 5)(p + 6)κ2

4,Xr

(p + 3)(p + 4)κ6,Xr
.

Furthermore, if κj,Xr = κj,Tr for 2 ≤ j < q then |κ|q,Yr can also be expressed in terms of the
absolute cumulants of Xr . In the asymmetric case, by (2.3),

|κ|q,Yr = κq,Yr = (q + p)s(r)κq−1,Yr = (q + p)s(r)κq−1,Xr .

Similarly, in the symmetric case, if q is even then

|κ|q,Yr = κq,Yr = (q + p)(q + p − 1)s(r)2κq−2,Yr = (q + p)(q + p − 1)s(r)2κq−2,Xr .

In bound (2.10), the Qj(r) look rather technical. The next result gives their asymptotics as
r → 0+.
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Proposition 2.4. For b ∈ (0, 1) and q ≥ 3, there is M = M(b, q) > 0 such that if

lim sup
s→0

κ2,Ys

κ2,Xs
< b and lim inf

s→0

κ2,Xs

s2 ln(1/s)
> M, (2.11)

then, for any 2 ≤ j ≤ q + 1,

Qj(r)
2 = 	(j + 1/2)

2Cj+1/2
0

+ o(1) as r → 0.

Here is a short proof. By (2.11), for small r > 0, σ(r)2 = κ2,Xr − κ2,Yr > (1− b)κ2,Xr .
Then, from the increasing monotonicity of κ2,Xr in r , there is a constant c = c(b) > 0 such
that, for t ≥ 1/r , L(t, r) ≥ ct2κ2,X1/t . Consequently, if M ≥ (q + 2)/c then, by (2.11), for
t ≥ 1/r , L(t, r) ≥ Mc ln t ≥ (q + 2) ln t , and, hence, for all 2 ≤ j ≤ q + 1,∫ ∞

1/r
t2j e−2L(t,r) dt ≤

∫ ∞
1/r

t2(q+1)−2Mc dt = o(1) as r → 0.

Since σXr = o(1) as r → 0, the proof is complete.

2.3. Examples

Example 2.1. (Truncated stable Lévy measure.) Let λ(du) = c 1 {0 < u < r0}u−α−1 du with
c > 0, 0 < r0 ≤ ∞, and α ∈ (0, 2). By Corollary 2.1, given r ∈ (0, r0), if p = α2 − 8α+ 11,
and s(r), m(r), and σ(r) are set as in (2.5)–(2.6), then κj,Xr = κj,Tr for 2 ≤ j < q = 6. To
apply (2.10), we need to know κ2,Xr , κ6,Xr , and κ6,Yr . For j ≥ 2, κj,Xr = crj−α/(j − α).
Then

s(r) = κ4,Xr

(p + 4)κ3,Xr
= (3− α)r
(p + 4)(4− α) =

r

(4− α)(5− α),

κ2,Yr =
κ3,Yr

(p + 3)s(r)
= κ3,Xr

(p + 3)s(r)
= c(4− α)(5− α)r2−α

(3− α)(α2 − 8α + 14)
,

and κ6,Yr = (6 + p)s(r)κ5,Yr = (6 + p)s(r)κ5,Xr = cA(α)r6−α , with A(α) = (α2 − 8α +
17)/(4− α)(5− α)2. Therefore, by Theorem 2.1,

dTV(X, Tr +�r) ≤ (2− α)3
[

1

6− α + A(α)
]

6Q5(r)+Q6(r)+Q7(r)

6!
(
rα

c

)2

. (2.12)

Since 0 < κ2,Yr /κ2,Xr < 1 is a constant independent of r , and λ satisfies Orey’s condition,
lim infs→0 κ2,Xs /s

2−α > 0 (see [28] and also [31, Proposition 28.3]), the conditions in (2.11)
are satisfied no matter the value of M . Then, by Proposition 2.4, dTV(X, Tr +�r) = O(r2α).
This may be compared to the normal approximation in [1] and [24], where dKS betweenX and
its normal approximation is O(rα/2) when X is asymmetric. Specifically, by (1.1),

dKS(X, σXrZ +�r) ≤
C(2− α)3/2
(3− α)

(
rα

c

)1/2

, C = 0.4748. (2.13)

Furthermore, if X = X(1) −X(2) is symmetric, where the X(i) are i.i.d. with Lévy measure
λ, then by Corollary 2.1(ii), it can be seen that we can set q = 10 and get dTV(X, Tr +�r) =
O(r4α), whereas the dKS between X and its normal approximation in this case is O(rα) [1].
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Figure 1: The bounds in (2.12) and (2.13) as functions of r , for α = 0.3 and 1.5, respectively, with
λ(dx) = 1 {u > 0}u−α−1 dx. The axes are plotted using a base-10 logarithmic scale.

Although the bound in (2.12) vanishes at a higher rate than that in (2.13) as r → 0, the
asymptotic result says little about how the bounds compare if r is not too small. This is
especially the case when α < 1. In Figure 1, for c = 1 and r0 = ∞, the bounds are plotted as
functions of r . The bound in (2.12) is evaluated numerically; see Appendix A for details. As
can be seen from the plots, for α = 1.5, the bound in (2.12) is smaller than that in (2.13) once
r < 0.6, whereas, forα = 0.3, this happens only if r < 2×10−8. Therefore, (2.12) may provide
little evidence on whether the PGN approximation is better than the normal approximation in
practice. To address this issue, we resort to numerical simulation in the next section.

Example 2.2. (Tempered stable.) Let λ(du) = 1 {u > 0}u−α−1 exp{−uθ } du, where α ∈
(0, 2) and θ > 0. Then, for j ≥ 2,

κj,Xr =
∫ r

0
uj−α−1 exp{−uθ } du = 1

θ

∫ rθ

0
u(j−α)/θ−1e−u du.

The last integral can be numerically evaluated as an incomplete gamma function [27]. However,
it has no closed-form formulae. The following method can be used if we want to avoid
this problem. Recall that, for any odd n ≥ 1, e−u ≥ fn(u) for u ≥ 0, where fn(u) =∑n
i=0(−u)i/i!. Let n = 2�α/(2θ)�+1, which is the smallest odd number greater than α/θ−1.

Let F(u) = 1 {0 < u < r0}fn(uθ ), with r0 = sup{r > 0 : fn(u) > 0 for all 0 ≤ u < rθ }.
Decompose λ = λ1 + λ2, where λ1(du) = 1 {u > 0}u−α−1F(u) du. It is easy to evaluate∫ r

0 u
jλ1(du). Then we can apply the PGN approximation to λ1, with all parameters set in

closed form. Meanwhile, since u−α−1[exp{−uθ } − F(u)] = O(u(n+1)θ−α−1) as u→ 0+, λ2
has finite mass, and, hence, corresponds to a compound Poisson random variable that can be
sampled exactly. If X, X′, and X′′ denote i.d. random variables with Lévy measures λ, λ1, and
λ2, respectively, and �r and Tr are the i.d. random variables from the PGN approximation to
X′, then, by Proposition 2.2, dTV(X, Tr +�r +X′′) ≤ dTV(X

′, Tr +�r) = O(r2α).

Example 2.3. Let λ(du) = c 1 {0 < u < 1}u−1 ln(1/u) du. Since∫
u<r

u2 λ(du) = c
∫ r

0
u ln

(
1

u

)
du = cr2[2 ln(1/r)+ 1]

4
,
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by Proposition 2.1 of [1], the normal approximation is valid in the sense that its error in terms
of dKS tends to 0 as r → 0. However, since, for |t | � 1, L(t, r) = C0t

2
∫
u<1/|t | u

2 λ(du) ∼
cC0 ln |t |, it can be seen that the RHS of (2.10) is finite only when c is large enough, and even
in that case the RHS of (2.10) decreases to 0 very slowly as r → 0.

3. A numerical study

As seen in Section 2.3, the bound (2.10) is sometimes a poor indicator of the precision of
the PGN approximation in practice. To address this issue, we conducted a simulation study
to empirically compare the errors of the PGN and normal approximations in terms of the KS
distance. We exclusively considered the approximations to stable distributions for two reasons.
First, besides gamma distributions, they are the only class of nonnormal i.d. distributions
whose Lévy measures and distribution functions are both known (semi-)explicitly. Second,
unlike gamma distributions, they have valid normal approximations [1]. The simulations were
implemented in the R language (see http://www.R-project.org), with itsstabledist package
used for all computations involving stable distributions.

The Lévy measure of a stable distribution with exponent α ∈ (0, 2) was parametrized as

λ(du) = [M+ 1 {u > 0} +M− 1 {u < 0}]|u|−1−α du,

where M± ≥ 0 such that M := M+ +M− > 0. For simplicity, the stable distribution to be
approximated (‘target distribution’) was centered in the sense that

�X(t) =

⎧⎪⎪⎨
⎪⎪⎩
γ α|t |α

[
1− i sgn(t) β tan

(
πα

2

)]
, α �= 1,

γ |t |
[

1+ i sgn(t)

(
2

π

)
β ln |t |

]
, α = 1,

where γ > 0 and β ∈ [−1, 1] (see [30, p. 5]). Then, by [16, pp. 568–570],

�X(t) =
∫
φ(t, u)λ(du) with φ(t, u) =

⎧⎪⎨
⎪⎩

eitu − 1, 0 < α < 1,

eitu − 1− itu, 1 < α < 2,

eitu − 1− it sin u, α = 1,

and

γ =
[

Mπ

2	(α + 1) sin(πα/2)

]1/α

, β = M+ −M−
M

.

Given r > 0, Example 2.1 provides all the parameters for the PGN and normal approxi-
mations to Xr . The PGN approximation was sampled according to the description following
(2.2). On the other hand, �r was sampled by the representation

�r ∼ d(r)+ r
N∑
i=1

εiU
−1/α
i ,

where d(r) is a constant, and N , εi ∈ {±1}, and Ui ∼ Unif(0, 1), i = 1, 2, . . . , are mutually
independent, with N being Poisson distributed with mean

∫
|u|≥r λ(du) = Mα−1r−α and

P{εi = 1} = M+/M . To determine d(r), use �X(t) = �Xr (t)+��r (t). It follows that

id(r)t =
∫
φ(t, u)λ(du)−

∫ r

−r
(eitu − 1− itu)λ(du)−

∫
|u|≥r

(eitu − 1)λ(du),
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giving d(r) = (M+ −M−)d0(r), where

d0(r) =

⎧⎪⎪⎨
⎪⎪⎩

r1−α

(1− α), α �= 1,∫ ∞
0

u−2(u 1 {u < r} − sin u) du, α = 1.

As in the previous section, M− = 0 or M− = M+. Equivalently, β = 1 or β = 0.
The simulations became quite numerically unstable for small α, so we started with α = 0.2.
Also, for α = 1.0, the R routines provided by the stabledist package appeared to become
numerically unstable in the asymmetric case but showed no serious problems in the symmetric
case. Therefore, in the simulations for the asymmetric case, we chose α = 1.01 instead of
α = 1.0, while, for the symmetric case, we chose α = 1.0. With this exception, we let α range
from 0.2 to 1.8 with a step size of 0.2.

For each value ofα, at a given value of r , we sampled 106 triplets (Tr , σXrZ,�r). The paired
sums Tr + �r and σXrZ +�r formed samples from the PGN and normal approximations to
X, respectively. Meanwhile, �r formed a sample from the CP approximation of X. Denote
by F̂PGN, F̂Norm, and F̂CP the corresponding empirical distributions. For θ ∈ (0, 1), let xθ be
the (unique) quantile of X such that P{X ≤ xθ } = θ . The empirical KS distance between the
PGN approximation and the target distribution was defined as D̂PGN = maxθ |F̂PGN(xθ ) − θ |
with θ ∈ {i/200 : i = 1, . . . , 199}. Likewise, D̂Norm and D̂CP were calculated for the normal
and CP approximations, respectively. This step was repeated 2500 times. The resulting 2500
triplets (D̂PGN, D̂Norm, D̂CP)were used to estimate dKS(X, Tr +�r), dKS(X, σXrZ+�r), and
dKS(X,�r), respectively, and their pairwise ratios. The focus here was the ratio of dKS(X, Tr+
�r) to dKS(X, σXrZ + �r). However, to make sure that our implementation of the normal
approximation was correct, we also estimated the ratio of dKS(X, σXrZ +�r) to dKS(X,�r).
In the following, all errors are in terms of the KS distance from target distribution.

We first compared the approximations with M+ = 1 and the cutoff r fixed at 5. To
compare with Example 2.1, we included α = 0.3 and 1.5 in the simulations. The results
are summarized in Table 1. The top half of the table displays the sample means of D̂PGN (‘PGN
dKS’), D̂Norm (‘Norm dKS’), and D̂CP (‘CP dKS’), respectively. The bottom half of the table
displays D̂PGN/D̂Norm (‘P-N dKS ratio’), the upper 99% t-confidence limit of E[D̂PGN/D̂Norm]
(‘CL0.99(RP-N)’), D̂Norm/D̂CP (‘N-C dKS ratio’), and the upper 99% t-confidence limit of
E[D̂Norm/D̂CP] (‘CL0.99(RN-C)’), respectively. Since all of the standard errors are less than 1%
of the corresponding sample means, they are omitted for brevity. To compare the performances
of the approximations when the distribution is asymmetric (β = 1), and when the distribution
is symmetric (β = 0), the sample means under these two conditions are displayed in pairs,
with the results under the symmetric condition placed in parentheses. The results given in the
table show that, generally speaking, except for small α, the error of the PGN approximation is
significantly smaller than that of the normal approximation. For example, in the asymmetric
case, for α = 0.3 and r = 5, the sample mean of D̂PGN is about 1

3 of that of D̂Norm. This may
be compared with Figure 1, which shows that the bound in (2.12) for the PGN approximation
is smaller than that in (2.13) for the normal approximation only if r is extremely small. The
results for α = 1.5 in the table can also be compared with Figure 1. This indicates that the
bound in (2.12) is quite conservative.

The results given in Table 1 also confirm that the normal approximation has a significantly
smaller error than the CP approximation. In fact, from the confidence limits shown in the table,
the ratio of reduction of error by the normal approximation compared to the CP approximation
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Table 1: Errors of the approximations in terms of the KS distance from the target distribution at cutoff
r = 5 with β = 1 (asymmetric) or 0 (symmetric) and M+ = 1. The numbers in parentheses indicate

values under the symmetric condition.

α r PGN dKS Norm dKS CP dKS

0.2 5 (5) 3.84e−2 (8.71e−4) 3.99e−2 (8.72e−4) 5.72e−2 (9.34e−4)
0.3 5 (5) 2.82e−3 (8.31e−4) 8.75e−3 (8.53e−4) 7.00e−2 (8.49e−3)
0.4 5 (5) 5.14e−3 (8.39e−4) 2.08e−2 (1.64e−3) 1.50e−1 (3.63e−2)
0.5 5 (5) 7.45e−3 (8.44e−4) 3.33e−2 (3.54e−3) 2.35e−1 (8.36e−2)
0.6 5 (5) 8.96e−3 (8.66e−4) 4.47e−2 (6.13e−3) 3.05e−1 (1.41e−1)
0.8 5 (5) 9.60e−3 (9.23e−4) 6.14e−2 (1.16e−2) 4.10e−1 (2.51e−1)
1.0∗ 5 (5) 7.79e−3 (9.22e−4) 6.88e−2 (1.54e−2) 4.75e−1 (3.35e−1)
1.2 5 (5) 5.26e−3 (8.72e−4) 6.72e−2 (1.61e−2) 5.10e−1 (3.93e−1)
1.4 5 (5) 2.87e−3 (8.22e−4) 5.79e−2 (1.38e−2) 5.20e−1 (4.30e−1)
1.5 5 (5) 2.02e−3 (8.32e−4) 5.05e−2 (1.17e−2) 5.20e−1 (4.44e−1)
1.6 5 (5) 1.42e−3 (8.38e−4) 4.15e−2 (9.19e−3) 5.15e−1 (4.55e−1)
1.8 5 (5) 8.74e−4 (8.23e−4) 1.98e−2 (3.70e−3) 5.00e−1 (4.70e−1)

α P-N dKS ratio CL0.99(RP-N) N-C dKS ratio CL0.99(RN-C)

0.2 9.62e−1 (9.99e−1) 9.63e−1 (1.00e+0) 6.97e−1 (9.42e−1) 6.98e−1 (9.47e−1)
0.3 3.23e−1 (9.77e−1) 3.25e−1 (9.80e−1) 1.25e−1 (1.01e−1) 1.25e−1 (1.03e−1)
0.4 2.47e−1 (5.10e−1) 2.47e−1 (5.16e−1) 1.39e−1 (4.52e−2) 1.39e−1 (4.56e−2)
0.6 2.00e−1 (1.41e−1) 2.01e−1 (1.42e−1) 1.47e−1 (4.36e−2) 1.47e−1 (4.37e−2)
0.8 1.56e−1 (7.92e−2) 1.57e−1 (8.03e−2) 1.50e−1 (4.64e−2) 1.50e−1 (4.65e−2)
1.0∗ 1.13e−1 (6.00e−2) 1.14e−1 (6.08e−2) 1.45e−1 (4.58e−2) 1.45e−1 (4.59e−2)
1.2 7.83e−2 (5.41e−2) 7.86e−2 (5.49e−2) 1.32e−1 (4.10e−2) 1.32e−1 (4.11e−2)
1.4 4.96e−2 (5.95e−2) 4.99e−2 (6.04e−2) 1.11e−1 (3.21e−2) 1.11e−1 (3.22e−2)
1.5 4.01e−2 (7.11e−2) 4.04e−2 (7.21e−2) 9.71e−2 (2.64e−2) 9.72e−2 (2.64e−2)
1.6 3.42e−2 (9.13e−2) 3.46e−2 (9.27e−2) 8.06e−2 (2.02e−2) 8.06e−2 (2.02e−2)
1.8 4.42e−2 (2.24e−1) 4.48e−2 (2.27e−1) 3.96e−2 (7.88e−3) 3.96e−2 (7.91e−3)

∗ α = 1.01 for β = 1.

is greater than that by the PGN approximation compared to the normal approximation. Also, the
bound in (2.13) for the normal approximation is quite conservative compared to the numerical
results. For example, in the asymmetric case, for α = 0.8, the sample mean of D̂Norm is about
0.06, whereas the bound in (2.13) gives 0.54. In the other sets of simulations, the greater ratio
of reduction of error by the normal approximation and the conservativeness of the bound in
(2.13) were observed as well.

At cutoff r = 5, the error of the normal approximation varies with α. One question to ask is
how the PGN approximation compares to the normal approximation when the error of the latter
is fixed at a specified level. In the second set of simulations, we let r vary according to α, such
that the empirical KS distance between the normal approximation and the target distribution
was roughly 1%. The value of r was selected as follows. For each r , ten values of D̂Norm were
sampled, each based on 106 observations from the normal approximation at cutoff r . Starting
with a large r , we reduced r by half if the average of the ten sample values of D̂Norm was
greater than 1.05%. We kept doing this until the average was within (0.95%, 1.05%) or was
less than 0.95%. In the former case r was selected. In the latter case we got two values of r , one
giving an average greater than 1.05%, the other giving an average smaller than 0.95%. Then a
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Table 2: Errors of the approximations, with β = 1 (asymmetric) or 0 (symmetric),M+ = 1, and r set so
that the empirical KS distance between the normal approximation and the target distribution was roughly

1%. The numbers in parentheses indicate values under the symmetric condition.

α r PGN dKS Norm dKS CP dKS

0.2 4.38e+1 (2.00e+3) 9.33e−3 (4.38e−3) 9.78e−3 (1.00e−2) 5.50e−2 (5.61e−2)
0.4 2.34e+0 (2.03e+1) 1.70e−3 (2.03e−3) 9.55e−3 (9.70e−3) 9.00e−2 (1.12e−1)
0.6 1.37e+0 (7.03e+0) 8.55e−4 (1.12e−3) 1.02e−2 (1.03e−2) 1.40e−1 (1.78e−1)
0.8 1.12e+0 (4.69e+0) 8.35e−4 (8.74e−4) 1.01e−2 (1.05e−2) 1.80e−1 (2.42e−1)
1.0∗ 1.07e+0 (3.91e+0) 1.47e−3 (8.37e−4) 1.06e−2 (1.01e−2) 2.25e−1 (3.00e−1)
1.2 1.03e+0 (3.71e+0) 8.21e−4 (8.29e−4) 9.83e−3 (9.67e−3) 2.55e−1 (3.54e−1)
1.4 1.12e+0 (4.10e+0) 8.24e−4 (8.32e−4) 1.02e−2 (9.86e−3) 3.10e−1 (4.10e−1)
1.6 1.37e+0 (5.08e+0) 8.24e−4 (8.32e−4) 1.00e−2 (9.42e−3) 3.75e−1 (4.56e−1)
1.8 2.54e+0 (9.38e+0) 8.36e−4 (8.38e−4) 1.01e−2 (9.70e−3) 4.65e−1 (4.90e−1)

α P-N dKS ratio CL0.99(RP-N) N-C dKS ratio CL0.99(RN-C)

0.2 9.54e−1 (4.37e−1) 1.05e+0 (4.81e−1) 1.78e−1 (1.78e−1) 1.89e−1 (1.87e−1)
0.4 1.78e−1 (2.09e−1) 1.79e−1 (2.11e−1) 1.06e−1 (8.69e−2) 1.06e−1 (8.70e−2)
0.6 8.41e−2 (1.08e−1) 8.52e−2 (1.10e−1) 7.27e−2 (5.78e−2) 7.28e−2 (5.79e−2)
0.8 8.27e−2 (8.34e−2) 8.39e−2 (8.46e−2) 5.62e−2 (4.33e−2) 5.63e−2 (4.33e−2)
1.0∗ 1.39e−1 (8.26e−2) 1.40e−1 (8.38e−2) 4.70e−2 (3.38e−2) 4.71e−2 (3.38e−2)
1.2 8.36e−2 (8.58e−2) 8.49e−2 (8.71e−2) 3.86e−2 (2.73e−2) 3.86e−2 (2.74e−2)
1.4 8.10e−2 (8.44e−2) 8.22e−2 (8.57e−2) 3.29e−2 (2.40e−2) 3.29e−2 (2.41e−2)
1.6 8.25e−2 (8.83e−2) 8.37e−2 (8.96e−2) 2.67e−2 (2.07e−2) 2.68e−2 (2.07e−2)
1.8 8.31e−2 (8.64e−2) 8.44e−2 (8.77e−2) 2.17e−2 (1.98e−2) 2.17e−2 (1.98e−2)

∗ α = 1.01 for β = 1.

bisection search was used to get a value of r with the corresponding average of D̂Norm within
(0.95%, 1.05%).

After a value of r was selected, the simulations proceeded as those of Table 1. The results
are summarized in Table 2, which also reports the selected values of r . The mean values of
D̂Norm realized by the simulations are included to make sure that the values of r were selected
appropriately. In general, the mean value of D̂Norm fell into the interval (0.95%, 1.05%).
However, due to random fluctuations, the mean value could fall outside of (0.95%, 1.05%),
even though during the selection of r , the average of the ten sampled values of D̂Norm fell into
the interval. Similar to Table 1, except for small values of α, the error of the PGN approximation
is significantly smaller than that of the normal approximation.

In the above simulations, M+ = 1. In the last set of simulations, we set M+ = 0.1 to
see how the approximations performed. The results are summarized in Table 3. Again, we
attempted to set r so that the empirical KS distance between the normal approximation and
the target distribution was roughly 1%. However, although theoretically the approximation
error vanishes as r → 0, in our simulations, the numerical precision of the approximation
deteriorated for small M+, especially when α was small as well, and the minimum empirical
KS distance for the normal approximation could be significantly larger than 1%. In this case,
we set r so that the empirical KS distance was as small as possible. The results of Table 3 show
that, for α ≤ 0.4, the empirical KS distance for the normal approximation sometimes could
not reach 1%. When this happened, the empirical KS distance for the PGN approximation did
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Table 3: Errors of the approximations, with β = 1 (asymmetric) or 0 (symmetric), M+ = 0.1, and r
set so that the empirical KS distance between the normal approximation and the target distribution was
roughly 1%, or as low as possible if this could not be attained numerically. The numbers in parentheses

indicate values under the symmetric condition.

α r PGN dKS Norm dKS CP dKS

0.2 2.44e−1 (1.71e−1) 1.47e−1 (2.38e−2) 1.73e−1 (3.19e−2) 3.70e−1 (1.45e−1)
0.4 2.29e−2 (6.71e−2) 1.26e−2 (2.37e−3) 3.12e−2 (1.00e−2) 1.86e−1 (1.17e−1)
0.6 2.90e−2 (1.46e−1) 8.51e−4 (1.08e−3) 9.95e−3 (9.79e−3) 1.35e−1 (1.74e−1)
0.8 6.10e−2 (2.56e−1) 8.39e−4 (8.71e−4) 9.56e−3 (1.00e−2) 1.70e−1 (2.38e−1)
1.0∗ 1.04e−1 (3.91e−1) 1.47e−3 (8.37e−4) 9.60e−3 (1.01e−2) 2.15e−1 (3.00e−1)
1.2 1.53e−1 (5.37e−1) 8.35e−4 (8.33e−4) 1.00e−2 (9.42e−3) 2.55e−1 (3.52e−1)
1.4 2.20e−1 (7.81e−1) 8.38e−4 (8.26e−4) 1.04e−2 (9.64e−3) 3.10e−1 (4.09e−1)
1.6 3.17e−1 (1.27e+0) 8.28e−4 (8.28e−4) 9.75e−3 (1.03e−2) 3.70e−1 (4.59e−1)
1.8 6.84e−1 (2.73e+0) 8.33e−4 (8.29e−4) 9.74e−3 (1.04e−2) 4.60e−1 (4.91e−1)

α P-N dKS ratio CL0.99(RP-N) N-C dKS ratio CL0.99(RN-C)

0.2 8.53e−1 (7.32e−1) 8.54e−1 (7.39e−1) 4.66e−1 (2.19e−1) 4.66e−1 (2.20e−1)
0.4 3.60e−1 (2.39e−1) 3.69e−1 (2.43e−1) 1.66e−1 (8.59e−2) 1.68e−1 (8.62e−2)
0.6 8.56e−2 (1.10e−1) 8.67e−2 (1.11e−1) 7.37e−2 (5.63e−2) 7.38e−2 (5.64e−2)
0.8 8.79e−2 (8.69e−2) 8.92e−2 (8.82e−2) 5.62e−2 (4.20e−2) 5.63e−2 (4.21e−2)
1.0∗ 1.53e−1 (8.26e−2) 1.54e−1 (8.38e−2) 4.47e−2 (3.38e−2) 4.47e−2 (3.38e−2)
1.2 8.35e−2 (8.84e−2) 8.47e−2 (8.97e−2) 3.93e−2 (2.68e−2) 3.94e−2 (2.68e−2)
1.4 8.07e−2 (8.58e−2) 8.19e−2 (8.71e−2) 3.36e−2 (2.36e−2) 3.36e−2 (2.36e−2)
1.6 8.51e−2 (8.07e−2) 8.64e−2 (8.19e−2) 2.64e−2 (2.24e−2) 2.64e−2 (2.24e−2)
1.8 8.58e−2 (8.01e−2) 8.70e−2 (8.13e−2) 2.12e−2 (2.11e−2) 2.12e−2 (2.11e−2)

∗ α = 1.01 for β = 1.

not reach 1% either. Since in our simulation each pair (Tr +�r, σXrZ +�r) shared the same
sampled value of �r , this suggests that the deterioration of the numerical precision might be
largely due to the error in �r . However, a thorough solution to the issue is beyond the scope
of this paper. On the other hand, regardless of this issue, Table 3 again shows that the error of
the PGN approximation can be significantly smaller than that of the normal approximation.

4. Technical details

4.1. Proof of Theorem 2.1

Denote by S the space of smooth and rapidly decreasing functions on R. It is classical that
the Fourier transform h→ ĥ(t) = ∫

eitxh(x) dx is a homeomorphism of S onto itself (see [19,
p. 103]). Let fX be the probability density of X. If it exists then ψX = f̂X. Let∫ ∞

0
t2(q+1)e−2L(t,r) dt <∞. (4.1)

Otherwise,Qq+1 = ∞ and (2.10) is trivial. We need two lemmas. Note that the second lemma
does not require matching of cumulants.

Lemma 4.1. (i) Let ξ be i.d. with �ξ(t) =
∫
(1+ itu − eitu) ν(du) and E|ξ |j < ∞ for all

j ≥ 1. Given ε > 0, let Z ∼ N(0, ε2) be independent of ξ . Then ψξ+Z ∈ S.
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(ii) Under condition (4.1), fXr ∈ Cq(R), and, for 0 ≤ j ≤ q, f (j)Xr
(x)→ 0 as |x| → ∞.

Lemma 4.2. Let Tr be defined as in Theorem 2.1 with s(r) < 1/(p+3) and σ(r) > 0. Fix ε >
0. GivenA, B ≥ 0 withA+B = 1, letW be i.d. with�W(t) = A�Xr (t)+ B�Tr (t)+ε2t2/2.
Let ξ = W/ν, where ν = √

Aκ2,Xr + Bκ2,Tr . Then fξ ∈ S and, for j ≥ 1,

∫
|f (j)ξ (x)| dx ≤ jIj−1(r)+ Ij (r)+

(
1+ ε

2

ν2

)
Ij+1(r),

where, for j ≥ 0,

Ij (r) = νj+1/2
[
	(j + 1/2)

2D(r)2j+1 +
∫ ∞

1/r
t2j e−2H(t,r) dt

]1/2

with D(r) = √
2AC0κ2,Xr + B(C0κ2,Yr + σ(r)2) and

H(t, r) = AC0t
2
∫
u<1/|t |

u2 λ(du)+ Bσ(r)
2t2

2
.

Assume that the lemmas are true for now. SincedTV(X, Tr+�r) = dTV(Xr+�r, Tr+�r) ≤
dTV(Xr, Tr), to show Theorem 2.1, it suffices to show that, for any measurable A ⊂ R,

�(A) ≤ M
q! (|κ|q,Xr + |κ|q,Yr ), (4.2)

where �(A) = |P{Xr ∈ A} − P{Tr ∈ A}| and M = σ−qXr [qQq−1(r)+Qq(r)+Qq+1(r)].
We start with smoothingXr and Tr while maintaining the same order of cumulant matching.

LetZ andZ′ be i.i.d.∼ N(0, 1) and independent of (Xr, Tr). Fix ε > 0. Let h be a measurable
function with ‖h‖∞ ≤ 1. The goal now is to bound

�ε = E[h(Xr + εZ)− h(Tr + εZ′)].
For n ≥ 2, let Ui = Ui,n and Vj = Vj,n, i, j = 1, . . . , n+ 1, be independent and i.d. with

�Ui (t) = n−1�Xr+εZ(t), �Vi (t) = n−1�Tr+εZ′(t).

For k = 1, . . . , n+ 1, let

Wk =
∑

1≤j<k
Vj +

∑
k<j≤n+1

Uj , gk(x) = Eh(Wk + x).

Since Xr + εZ ∼ W1 and Tr + εZ′ ∼ Wn+1, then �ε = g1(0)− gn+1(0), giving

|�ε| ≤ |E[g1(U1)−gn+1(Vn+1)]|+|E[g1(U1)−g1(0)]|+|E[gn+1(Vn+1)−gn+1(0)]|. (4.3)

We bound the expectations on the RHS separately. By Wk + Vk = Wk+1 + Uk+1,

h(W1 + U1)− h(Wn+1 + Vn+1) =
n+1∑
k=1

[h(Wk + Uk)− h(Wk + Vk)].
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For each k, since Wk , Uk , and Vk are independent, by conditioning, Eh(Wk +Uk) = Egk(Uk)

and Eh(Wk + Vk) = Egk(Vk). Then taking the expectation on both sides of the displayed
identity yields

E[g1(U1)− gn+1(Vn+1)] =
n+1∑
k=1

E[gk(Uk)− gk(Vk)]. (4.4)

Define ν = σXr . Let ξk = Wk/ν. By Lemma 4.1, fξk ∈ S. As a result,

gk(x) = E[h(νξk + x)] =
∫
h(νu)fξk

(
u− x

ν

)
du (4.5)

is smooth. By Taylor’s expansion around 0,

gk(Uk)− gk(Vk) =
q−1∑
j=1

g
(j)
k (0)

j ! (U
j
k − V jk )+

1

q! [g
(q)
k (θ(Uk)Uk)U

q
k − g(q)k (θ(Vk)Vk)V

q
k ],

where θ(x) ∈ [0, 1]. By assumption, κj,Xr = κj,Tr for 1 ≤ j < q. Since κj,Uk =
n−1κj,Xr+εZ = n−1(κj,Xr + ε2 1 {j = 2}), and likewise κj,Vk = n−1(κj,Tr + ε2 1 {j = 2}),
then κj,Uk = κj,Vk for 1 ≤ j < q. As a result, EU

j
k = EV

j
k for 1 ≤ j < q and, hence,

E[gk(Uk)− gk(Vk)] = 1

q!E[g
(q)
k (θ(Uk)Vk)U

q
k − g(q)k (θ(Vk)Vk)V

q
k ],

�⇒ |E[gk(Uk)− gk(Vk)]| ≤ ‖g
(q)
k ‖∞
q! [E|Uk|q + E|Vk|q ]. (4.6)

Since by (4.5) we have g(q)k (x) = (−ν)−q ∫
h(νu)f

(q)
ξk
(u− x/ν) du, then

‖g(q)k ‖∞ ≤ ν−q
∫
|f (q)ξk

(u)| du <∞. (4.7)

By �Wk(t) = (k − 1)�V1(t)+ (n+ 1− k)�U1(t),

�Wk(t) =
n+ 1− k

n
�Xr (t)+

k − 1

n
�Tr (t)+

ε2t2

2
.

Then we can apply Lemma 4.2 with ν2 = κ2,Xr = κ2,Tr ,A = (n+1−k)/n, andB = (k−1)/n
therein. By the definitions of D(r) and H(t, r) in Lemma 4.2,

D(r)2 = 2AC0ν
2 + B(C0κ2,Yr + σ(r)2) ≥ C0ν

2

and

H(t, r) = AC0t
2
∫
u<1/|t |

u2 λ(du)+ Bσ(r)
2t2

2

≥ (A+ B)t2 min

{
C0

∫
u<1/|t |

u2 λ(du),
σ (r)2

2

}
= L(t, r).
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By the definition of Qj(r) in Theorem 2.1 and the definition of Ij (r) in Lemma 4.2, Ij (r) ≤
Qj(r). By condition (4.1), Qj(r) <∞ for 0 ≤ j ≤ q + 1. Thus, (4.7) and Lemma 4.2 give

‖g(q)k ‖∞ ≤ ν−q
[
qQq−1(r)+Qq(r)+

(
1+ ε

2

ν2

)
Qq+1(r)

]
:= Mε <∞.

Since Mε is independent of k, by (4.4) and (4.6),

|Eg1(U1)− Egn+1(Vn+1)| ≤ Mε

q!
n+1∑
k=1

(E|Uk|q + E|Vk|q).

Since the Lévy measure of Xr has bounded support, E|Xr + εZ|q < ∞. Meanwhile, from
(2.3), E|Yr + εZ|q <∞. Then, by Lemma 3.1 of [1],

n+1∑
k=1

E|Uk|q → |κ|q,Xr+εZ = |κ|q,Xr ,
n+1∑
k=1

E|Vk|q → |κ|q,Tr+εZ′ = |κ|q,Yr .

Thus, for the first term on the RHS of (4.3),

lim sup
n→∞

|Eg1(U1)− Egn+1(Vn+1)| ≤ Mε

q! (|κ|q,Xr + |κ|q,Yr ). (4.8)

To bound the other terms on the RHS of (4.3), first note that |E[g1(U1) − g1(0)]| ≤
‖g′1‖∞E|U1|. As in (4.7), ‖g′1‖∞ <∞. Sinceg1(x) = Eh(Xr+εZ+x), ‖g′1‖∞ is independent
of n. On the other hand, by EU1 = 0 and the Cauchy–Schwartz inequality, E|U1| ≤ σU1 =
σXr+εZ/

√
n, so E[g1(U1)−g1(0)] → 0 as n→∞. Likewise, E[gn+1(Vn+1)−gn+1(0)] → 0.

Together with (4.3) and (4.8), this implies that

|Eh(Xr + εZ)− Eh(Tr + εZ′)| ≤ Mε

q! (|κ|q,Xr + |κ|q,Yr ).

Let G be the union of a finite number of (ai, bi) and h(x) = 1 {x ∈ G}. By Lemma 4.1(ii),
P{Xr = ai} or bi , some i = 0. Let ε→ 0. Then h(Xr + εZ)− h(Xr)→ 0 almost surely. On
the other hand, since Tr is the sum of Yr and an independent nonzero normal random variable,
by Lemma 4.1(i), fTr ∈ S. As a result, h(Tr + εZ′) − h(Tr) → 0 almost surely. Finally,
Mε → M . Then, by dominated convergence, (4.2) holds for G.

LetA be measurable. Given δ > 0, fixR > 0 such that P{|Xr | ≥ R}+P{|Tr | ≥ R} < δ. Let
B = A ∩ (−R,R). Then �(A) ≤ �(B)+ δ. There is an open G ⊃ B such that �(G \ B) < δ,
where � is the Lebesgue measure. Here G is the union of at most countably many disjoint
open intervals (ai, bi). Let Gk =⋃k

i=1(ai, bi). Then �(B) ≤ �(Gk) + P{Xr ∈ B�Gk} +
P{Tr ∈ B�Gk}. From the above paragraph, (4.2) holds for Gk . Next, B�Gk ⊂ (G \ Gk) ∪
(G\B), and P{Xr ∈ G \ B} ≤ ‖fXr‖∞�(G\B)with a similar inequality holding for Tr . Then

�(B) ≤ M
q! (|κ|q,Xr + |κ|q,Yr )+ P{Xr ∈ G \Gk} + P{Tr ∈ G \Gk}
+ (‖fXr‖∞ + ‖fTr‖∞)δ.

By Lemma 4.1, ‖fXr‖∞ + ‖fTr‖∞ <∞. Letting k→∞ and then δ→ 0, it is seen that (4.2)
holds for A.
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4.2. Proofs of Lemmas 4.1 and 4.2

We need the following elementary result for the proofs.

Lemma 4.3. (i) 1− cos x ≥ C0x
2 for |x| ≤ 1.

(ii) infp>0(1/	(p))
∫ p

0 u
p−1e−u du = 1

2 .

Proof. (i) For x ∈ [0, 1], since sin x is concave, sin x ≥ x sin 1, giving 1 − cos x =
2[sin(x/2)]2 ≥ 2[(x/2) sin 1]2 = C0x

2. For x ∈ [−1, 0], the proof follows from symmetry.
(ii) The inequality can be written as infp>0 P{ξp ≤ p} = 1

2 , where ξp ∼ Gamma(p, 1).
By the central limit theorem, P{ξp ≤ p} → 1

2 as p → ∞. Therefore, it suffices to show
that, for every p > 0, P{ξp ≤ p} > 1

2 , or, equivalently,
∫ p

0 u
p−1e−u du >

∫∞
p
up−1e−u du.

Applying the change of variable u ← pu to the first integral and u ← p/u to the second
integral, the inequality is equivalent to

∫ 1
0 u
−p−1[u2pe−pu − e−p/u] du > 0, which holds if,

for all u ∈ (0, 1), u2pe−pu > e−p/u, or, equivalently, 2 ln u+ 1/u−u > 0. The last inequality
follows directly from calculus.

Proof of Lemma 4.1. (i) From the assumption,
∫ |u|j λ(du) <∞ for all j ≥ 2. Then,

by dominated convergence, �ξ ∈ C∞(R) with �(j)ξ (t) = ∫
(1 {j = 1} − eitu)(iu)j ν(du)

for j ≥ 1. By |1 − eix | ≤ |x| for x ∈ R, |� ′ξ (t)| ≤ κ2,ξ |t |. Clearly, |�(j)ξ (t)| ≤
|κ|j,ξ for j ≥ 2. Since ψξ+Z(t) = exp{−�ξ(t) − ε2t2/2}, then, for j ≥ 0, ψ(j)ξ+Z(t) =
Pj (�

′
ξ (t), . . . , �

(j)
ξ (t),t) ψξ (t) exp{−ε2t2/2}, where Pj (z) is a multivariate polynomial in

z = (z1, . . . , zj+1) of order j . It follows that |ψ(j)ξ+Z(t)| = O(|t |j e−ε2t2/2) and, hence, for any

p ≥ 0, |t |p|ψ(j)ξ+Z(t)| → 0 as |t | → ∞, which completes the proof.
(ii) For |t | ≥ 1/r ,

Re[�Xr (t)] =
∫
|u|<r

(1− cos tu) λ(du) ≥
∫
|u|<1/|t |

(1− cos tu) λ(du).

Then, by Lemma 4.3, 1− cos tu ≥ C0t
2u2 for 0 ≤ u < 1/|t | and, hence,

Re[�Xr (t)] ≥ C0t
2
∫
u<1/|t |

u2 λ(du) ≥ L(t, r).

On the other hand, by the Cauchy–Schwartz inequality,∫
|t |≥1/r

|t |q |ψXr (t)| dt ≤
(∫

dt

1+ t2
)1/2(∫

|t |≥1/r
(1+ t2)t2q |ψXr (t)|2 dt

)1/2

≤ √π
(∫

(1+ t2)t2qe−2L(t,r) dt

)1/2

.

Then, by (4.1), |t |q |ψXr (t)| ∈ L1(R) and the proof follows from Proposition 28.1 of [31].

To prove Lemma 4.2, we need a type of inequality known in the literature (cf. [4, Lemma
11.6]). Since the expression of (f̂ )(j) becomes rapidly complicated as j increases, the following
specific form is used to reduce the maximum order of the derivative involved.

Lemma 4.4. Let f ∈ S and ψ = f̂ . Then, for j ≥ 1,∫
|f (j)| ≤ 1√

2

[(∫
|tjψ(t)|2 dt

)1/2

+ j
(∫
|tj−1ψ(t)|2 dt

)1/2

+
(∫
|tjψ ′(t)|2 dt

)1/2]
.
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Proof. By the Cauchy–Schwartz and Minkowski inequalities,

∫
|f (j)| ≤

(∫
dx

1+ x2

)1/2(∫
|f (j)(x)|2(1+ x2) dx

)1/2

≤ √π
[(∫

|f (j)(x)|2 dx

)1/2

+
(∫
|xf (j)(x)|2 dx

)1/2]
.

Then, by Plancherel’s theorem and the fact that the Fourier transforms of f (j)(x) and xjf (x)
are (−it)jψ(t) and (−i)jψ(j)(t), respectively (see [19, pp. 100–102]),

∫
|f (j)| ≤ 1√

2

[(∫
|tjψ(t)|2 dt

)1/2

+
(∫
|(tjψ(t))′|2 dt

)1/2]
.

The proof is complete by applying Minkowski’s inequality to the last integral.

Proof of Lemma 4.2. We only consider the case where sppt(λ) ⊂ R+. The proof for the
symmetric case is similar. For brevity, write f = fξ , ψ = ψξ , and � = �ξ . By Lemma 4.1,
f , ψ ∈ S. Write M = ε2 + Bσ(r)2. Then

Re[�(t)] = Re

[
�W

(
t

ν

)]
=

∫ (
1− cos

(
tu

ν

))
[Aλr(du)+ Bγr(du)] + Mt

2

2ν2 .

If |t | ≤ ν/r then |tu|/ν ≤ 1 for 0 ≤ u < r , so, by Lemma 4.3, 1 − cos(tu/ν) ≥ C0t
2u2/ν2.

Consequently,

Re[�(t)] ≥ C0t
2

ν2

∫ r

0
u2[Aλr(du)+ Bγr(du)] + Mt

2

2ν2

= AC0κ2,Xr t
2

ν2 + BC0m(r)s(r)
p+3t2

ν2

∫ r/s(r)

0
up+2e−u du+ Mt

2

2ν2 .

Since s(r) < r/(p + 3), by Lemma 4.3(ii),

∫ r/s(r)

0
up+2e−u du ≥

∫ p+3

0
up+2e−u du ≥ 	(p + 3)

2
.

Then, as 	(p + 3)m(r)s(r)p+3 = κ2,Yr ,

Re[�(t)] ≥ AC0κ2,Xr t
2

ν2 + BC0m(r)s(r)
p+3	(p + 3)t2

2ν2 + Mt
2

2ν2

≥ AC0κ2,Xr t
2

ν2 + BC0κ2,Yr t
2

2ν2 + Bσ(r)
2t2

2ν2

= D(r)2t2

2ν2 .

If |t | > ν/r then r > ν/|t | and

Re[�(t)] ≥ AC0t
2

ν2

∫
u<ν/|t |

u2λ(du)+ Bσ(r)
2t2

2ν2 = H
(
t

ν
, r

)
.
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Therefore, for j ≥ 0,∫
|tjψ(t)|2 dt = 2

∫ ∞
0

t2j e−2 Re[�(t)] dt

≤ 2
∫ ν/r

0
t2j e−D(r)2t2/ν2

dt + 2
∫ ∞
ν/r

t2j e−2H(t/ν,r) dt

≤ 2
∫ ∞

0
t2j e−D(r)2t2/ν2

dt + 2ν2j+1
∫ ∞

1/r
t2j e−2H(t,r) dt

≤ ν
2j+1	(j + 1/2)

D(r)2j+1 + 2ν2j+1
∫ ∞

1/r
t2j e−2H(t,r) dt

= 2Ij (r)
2. (4.9)

Next,ψ ′(t) = −� ′(t)ψ(t), with� ′(t) = (i/ν) ∫ (1−eitu/ν)u [Aλr(du)+Bγr(du)]+Mt/ν2.
As |1− eix | ≤ |x| for all x ∈ R,

|� ′(t)| ≤ t

ν2

∫
u2 [Aλr(du)+ Bγr(du)] + Mt

ν2

= Aκ2,Xr t

ν2 + Bκ2,Yr t

ν2 + (ε
2 + Bσ(r)2)t

ν2

= (Aκ2,Xr + Bκ2,Tr )t

ν2 + ε
2t

ν2

=
(

1+ ε
2

ν2

)
t.

As a result, ∫
|tjψ ′(t)|2 dt =

∫
|tj� ′(t)ψ(t)|2 dt

≤
(

1+ ε
2

ν2

)2 ∫
|tj+1ψ(t)|2 dt

≤ 2

(
1+ ε

2

ν2

)2

Ij+1(r)
2. (4.10)

The proof is complete by combining Lemma 4.4, (4.9), and (4.10).

Appendix A

To evaluate the RHS of (2.12), we need to evaluate Qj(r), j = 5, 6, 7, which involves
the integral of t2j e−2L(t,r) over t ∈ [1/r,∞). One way to obtain good numerical precision
is to employ incomplete gamma functions [27]. For λ(du) = c 1 {u > 0}u−α−1 du, κ2,Xs =∫ s

0 u
2λ(du) = c ∫ s

0 u
1−α du = cs2−α/(2− α), s > 0. Then it is not hard to obtain 2L(t, r) =

min{At2, B|t |α}, where A = σ(r)2 and B = 2cC0/(2 − α). Let t0 = (B/A)1/(2−α). Then
2L(t, r) = At2 1 {|t | ≤ t0} + B|t |α 1 {|t | > t0}, and, hence, letting t1 = max{1/r, t0},∫ ∞

1/r
t2j e−2L(t,r) dt =

∫ t1

1/r
t2j e−At2 dt +

∫ ∞
t1

t2j e−Btα dt

= 1

2Aj+1/2

∫ At21

A/r2
uj−1/2e−u du+ 1

αB(2j+1)/α

∫ ∞
Btα1

u(2j+1)/α−1e−u du.
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The integrals on the last line can be expressed as incomplete gamma functions. For symmetric
λ(du) = c 1 {|u| > 0}|u|−α−1 du, the formula is the same, except that B = 4cC0/(2− α)
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