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On the units of a modular group ring

K.R. Pearson

It is shown that a finite group G 1is a normal subgroup of the
group of units of the group ring of & over the ring of
integers modulo 7 if and only if (G 1is abelian or »n = 2 and

G 1is isomorphic to the symmetric group on 3 letters.

Let R be a ring with identity 1 , (¢ a finite group and let RG
denote the corresponding group ring. If o is a unit in R and if g € G
then og is a unit in ARG , and is called a trivial unit. In particular
{19 I g € G} is always a subgroup of the group (RG)* of units of RG ;
by a slight abuse of notation this set will also be denoted by G . We

consider the following conditions.
I Every unit in RG is trivial.
II Every unit of finite order in RG is trivial.

IIT Every conjugate in (RG)* of an element of G is trivial;

or equivalently, G is a normal subgroup of (RG)* .
It is clear that, in general, I = II = III.

For the case R = Z , the ring of rational integers, these conditions
have been examined by Higman [8] and Berman [2]. Higman showed that I
holds if and only if G is either abelian of exponent dividing 4 or 6
or hamiltonian of order a power of 2 . Berman showed that II holds if and
only if G is either sbelian or hamiltonian of order a power of 2 . In
addition, although it is not stated explicitly, his proof shows that (still
when R =2 ) II and III are equivalent.

If R has characteristic zero, it is clear that any one of these
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three conditions implies the corresponding condition for the case R = 2 .
Hence the results of Higman and Berman give some information about the

general case when R has characteristic zero.
In this case we consider the conditions when R = Zn , the ring of

rational integers modulo 7 . The results then give some information about

the case where KR has finite characteristic. Because ZnG is a finite

ring it is clear that, when R = Zn » I and II are equivalent. We prove
the following results.

THEOREM 1. Let G be a finite group. G 18 a normal subgroup of
(ZnG]* if and only if G <is abelian or n =2 and G = S3 s the
symmetric group on 3 letters.

THEOREM 2. Let G be a finite nontrivial group. Every unit in ZnG
is trivial if and only if n=2 and |G| =3 or n=3 ad |G| =2.

A result related to Theorem 1 has been proved in [4] by Eldridge. He
has proved that if G 1is a locally finite p-group and H 1is a subgroup
of G , then H is normal in (ZPG)*' if and only if H 1is central in

G .

§]1 contains some preliminary results which are perhaps of independent

interest. Theorem 1 is proved in §52-4, while Theorem 2 is proved in §5.

1. The behaviour of unit groups under ring homomorphisms

Let R be a ring with identity and let ¢ : R =+ S5 be a surjective
ring homomorphism. It is easy to see that ¢ maps the group R* of units
of R into the group S* of units of S . That R*$ is not always the
whole of S* may be seen by considering, for example, the canonical
homomorphism from Z to 2Z/mZ . It is of interest to know conditions
under which ¢ : R* - S* is surjective. When the kernel of ¢ 1is
contained in the Jacobson radical of R this is known to be the case (see
(2.1) of [6] or Lemma 1 of [5]). The following result shows that it is

also the case when K 1is artinian (irrespective of the kernel of ¢ ).

THEQREM 3. Let R be a ring with identity such that R/J 1is
artinian, where J 18 the Jacobson radical of R . If ¢ : R+ S5 isa
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surjective ring homomorphism then ¢ induces a surjective group
homomorphism ¢ : R* > S* , whare R* and S* denote the group of units
of R and S vrespectively.

Proof. We must show that ¢ is onto. Let X denote the kernel of

Suppose firstly that J = 0 . Then R is an internal direct sum

= " .+
R=R +...%+R_,

where each Ri is a simple artinian ring. By renumbering if necessary we

can assume that

Suppose % € R is such that x¢ € S* ; then there is an element ¥ in R
such that xy-1 € XK and yxz-1 € K . Let

1=el+...+et,
where e; ER'L . Then if
z=xe1+ +xeu+eu+l+... +et s
w=yel+... +yeu+eu+l+... te,

2w=1=wz and 2-&x € K. Thus 2 € R* and 3¢ = x¢ .

Now consider the general case. Suppose & € R is such that
xp € S* . Then x+K € (R/K)* and so zx+(J+K) € [R/(J+K)]* . Since
J € J+K there is a natural homomorphism Y : R/J + R/(J+K) . Because R/J

is semisimple it follows from the above that there exists zq € R such

that z,+J € (R/J)* end x, + (J*K) == + (J+X) . By Lemma 1 of [51],
there exists Yy € R* such that zy +J =Yy +J . Hence there exists
k €K, J €J such that

z+k=y+g= y(l“y_lj)

But y’lj €J , s0 1+4 ' € R* and hence z = y+j € B* . Also z¢ = z¢

since 2-x € K .
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COROLLARY 4. Let R be an artinian ring with identity and let G
be a finite group euch that G <4 (RG)* ., If P a G then
(¢/p) a [R(G/P)]* .

Proof. Since RG is artinian ([§], Appendix 2, Proposition 6) we can

apply the theorem to the homomorphism ¢ : RG - R(G/P) which extends the
identity on R , and the canonicel homomorphism from G to G/P .

COROLLARY 5. I1f G < (ZnG)* and m dividese n then G < (ZmG)* .

If R 1is a finite ring
§(r) = |R*|/|R] ,

the proportion of invertible elements in R , has been considered in [4].

If ¢ : R+ S 1is a surjective ring homomorphism, it is shown in (3.2) of

[6] that &(R) = 8(S) if the kernel of ¢ equals the Jacobson radical of
R .

PROPOSITION 6. Let R be a finite ring and let ¢ : R+ S be a
surjective ring homomorphism with kernel XK . Then §&8(R) = §(8) <f and
only if K is contained in the Jacobson radical of R .

Proof. ¢ induces a surjective group homomorphism from R* to S*
whose kernel is R* n (1+K) . It is thus easy to see that &(R) = 8(S) if
and only if 1+K € R* | which in turn is the case if and only if X is a

quasi-regular ideal.

2. OQutline the proof of Theorem 1
If G is abelian, it is clear that G ¢ [ZnG)* . That 53 < (2253)*

is shown in the following lemma. This completes the sufficiency part of

Theorem 1.

LEMMA 7. S, < (z253)* .

Proof. If S3 ={a, b | = b3 = 1, ba = ab®) then

6 : 5,2, ®M,(2,) aiven by

I N B!
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defines a group homomorphism, and so can be extended to a ring homomorphism

6:2,5,>2,8M,(2,) . 0 is onto and its kernel is J = {0, Y} where

Y=1+b+ b2 +a+ab + ab2 . y2 =0 and J is the radical of 2253 .
By Theorem 3, 8 induces a surjective homomorphism from (Z253)* onto
GL(2, z,) whose kernel is 1 +J . Since [GL(2, 22)| = 6 and since 8

is one-to-one when restricted to 53 it follows that (2233]* = 53(1+J) .

Because Y is in the centre of 2,5, , we see that (2253)* =55 % (1+J)
q *
and 5 (z,s 3]

The necessity part of Theorem 1 remains. Suppose that G 9 [ZnG)*
and that G 1is not abelian. In 8§83, 4 we consider the case where n is
a prime and show that n =2 and G = S3 . In view of Corollary 5 above
it follows that G = S3 and n = 2k for some k=21 . If k=2 and

= 2k-l

y _ then (l+ya)2 =1 so that 1 + ya is a unit of order 2 in

%§3. But

(1+ya)b(1+ya) = b + yab + yab2 §S3 .

Hence %k =1 . This will complete the necessity part.

3.
LEMMA 8. If p s a prime, if p does wt divide |G| and if
G a (sz)* , then G is abelianm.

Proof. For suppose, if possible, that G is not abelian. Since

R=120G is gemisimple, there exists a central idempotent e in R such

p

that Re = Mn(GF(pk]] for some 7 =2 and k=1 . Since G 9R* it

follows that Ge 4 (Re)* = 3L (n, pk] . Let 8 : (Re)* » GL(n, pk] be an
isomorphism. Now p divides |SL(n, pk]| (C1], Theorem L4.11) so that

8L (n, pk]e_l is not contained in Ge . Since the centre of GL(n, pk) is
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contained in the centre of Mn(GF(pk)] (1], Theorem 4.8),

Ge < centre (Re)* would mean Ge C centre (Re) and then Re would be

commutative since it is spanned by Ge over Zpe . Thus it follows from
[13], Theorem 4.9, that n =2 , k=1 and p=2 or 3.

If p=2, we get |Ge| =3 since GL(2, 2) =S_ . But then Re

3

has dimension at most 3 over Zpe and so cannot be isomorphic to
M,(z,) -

Thus P = 3 . Now the only normal subgroup of GL(2, 3) which has
order not divisible by 3 and which is not contained in the centre of
GL(2, 3) is isomorphic to the quaternion group H of order 8 . Thus
Ge = H . Since Ge 1s a homomorphic image of (G it follows from

Corollary U4 that H < (2311)* . Let

H=¢i,§ | ==t =17

tig)

Then in Z.H , if x = (i+j+ij)(1-t) we have ac2 0 and therefore

3
1 +x is a unit with inverse 1l - . But
(1+)i(l-xz) =1 - -2 -t + ti + tj + tij £5 .
Thus we have a contradiction.

LEMMA 9. IFf p i8 aprime = 3, if p divides |G| and if

G a (zpa]* , then G is abelian.

Proof. Let H be a p-Sylow subgroup of (¢ . We first show that #
is in the centre of G . For let g €G , h € H and let 4 have order

m m
p" with m=1 . Since (1-h¥ =1-# =0, 1-h is nilpotent and

hence so is (l—h)2 . Thus 1 - (l—h)2 = 2k - h2 is a wit in ZpG .

Hence there exists g' € G such that [2h—h2)g = g'(2h—h2) , or
ohg - Hg=29'h- g'H .

Since h# e, hg and heg are distinct. Thus we get two possibilities,

namely
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(1) g'W =#g ena g'h=hg ,in which case gh=1g ; or

(i1) 2= -1 (that is, p =3 ), g'h=h2g and g'h2= g , in
which case g ‘hg = KT .
Suppose, if possible, that gh # hg ; then p=3, g#te, g# h_l

and ghg_l =nt

nilpotent, and so & =1 + (1-h)g is a unit. Hence there exists h' € G

Since ghg_l =nt , it is easy to see that (1-h)g is

such that ok = h'a , which gives
h+gh- hh="Fr + h'g - 2'hg .
Since h, gh and hgh are distinet, we have h'hg = hgh = g and
o= HLl. Then h+ gh = Wl h_lg . Since h# K1 we get nl= gh ,
-2

whence g = A and we have & contradiction.

We can now show that G 1is abelian. For suppose, if possible, that
x,y €G and xy #yx . If h# 1 is an element of H then A 1is in
the centre of ¢ and B =1+ (1-h)x is a unit. Thus there exists 2z € G
such that By = 2B , and so

y tay - ey = 2 + ax - hax .
Since zy #yr , y# e and x # Wl so that y, zy and hxy are
distinct. Thus %y = har and & = xyx'l . Now y +ay = :x:yx‘l +xy ,

which means ¥ = xyz © or xy = yx .

4. n=2 and |G| is even
We are left with G 9 (ZZG)* and |G| even. We show that either G
is gbelian or G = S3 .
In what follows we will often have a situation similar to the

following. Suppose

Ty otz =y by,

where x., ¥ € ZQG and x x, are distinct. Then the ¥; must be

l, e oy

a permutation of the xj and so this leads to n! possible cases.
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LEMMA 10. If h € G hasorder Z" with m=2 then h ie in the
centre of G .

Proof. Let g € ¢ . Since 1 + (1+h)h is a unit, there exists

z € G with (1+h+h2)g = z(l+h+h2) . This gives ghg L = K vhere
8 = *t1 . Thus (1+h)g is nilpotent and so there exists w € G with

[1+(1+h)glg = w[1+(1+h)g] .

If gh# hg then ghg t = %1 and this leads to a contradiction.

LEMMA 1. If any two elements of order 2 in G commte then G
i8 abelian.

Proof. Let b € G have order 2 . We show that b is in the centre

of G. Forlet g €G. If for © €G , B denotes che1 then, for
all tz1,

((1+b)g)t = (1+b) (1+¥) ... (1+bgt—l]g‘t .

There exists an integer # such that gn =1 and so

n-1
((l+b)g)n+l = (1+b) (1+#7) ... [1+bg ](1+b)g,n+1 =0,

n-1
since b, bg, v, o all commute and (l+b)2 =0 . Thus

o =1+ (1+4b)g is a unit and there exists &k € ¢ with og = ho .

Consideration of the six cases gives gb = bg .

Suppose %, Yy € G and zy # yr . Then let b € G have order 2 .
Since B =1+ (1+b)x is a unit, there exists 2z € ¢ with By = 28 and

2 n
this yields yx = by . Now y° =y and y #y so that y =y if

and only if 7 is even. Thus x has even order, say 281: where t is

odd and & 2 1 . Then if z=xt, z has order 28 and

yz = btxty bzy . Now if 8 = 2 this contradicts Lemma 10 while if
8 = 1 this contradicts the paragraph sbove. Hence G is abelian.

LEMMA 12. If =x,y € G both have order 2 amd if xy # yx then
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xy has order 3 .
Proof. Let xy = b and let b have order m . Then (b, z) is a

dihedral group of degree m and m = 3 . Now ((1+x)b(1+x))2 = 0 and so
B =1+ (1+x)b(1l+x) is a unit. Thus there exists g € ¢ such that
Bb = gB . Since g €{(b, £} and g has the same order as b , it follows

from a knowledge of the dihedral group that g = bJ for some J . From
Bb =178 we get ab° +z=ab TV + b’ L 1 BV =1 we get

bh

1 , which contradicts Lemma 10, and so bl_J = b2 . If we substitute
this in Bb = bIB we get b3 = 1 and m= 3 .

LEMMA 13. Let a € G have order 2 and suppose there exists b € G
of order 2 such that ab # ba . If ¢ € G has order 2 then ac # ca .

Proof. For suppose ac = ca ; then (a+c)2 = 0 and there exists

d € G such that
(1+a+ec)ab = d(1+ate) ,

and this leads to a contrediction.

COROLLARY 14. Let a, b € G both have order 2 with ab # ba . If
e, d € G both have order 2 then cd # de .

Proof. By the lemma, ac # ca . Then from the lemma with a, b, ¢

replaced by ¢, a, d respectively we get ed # dec .
LEMMA 15. If G 1is not abelian then |G| is mot divisible by L .

Proof. If U4 divides |G| then G contains a subgroup of order
L . This cannot be cyclic, by Lemma 10, so contains two commuting elements
of order 2 . It then follows from Corollary 14 and Lemma 11 that & is

abelian.

LEMMA 16. Suppose G <is not abelian. Then G contains two
elements a, b of order 2 such that ab # ba . The only elements of
order 2 in G are a, b, and aba and, if K 1is the subgroup
generated by these elements of order 2 , them K = {1, a, b, aba, ab, ba}
and K = 53 .

Proof. The existence of @ and b is given by Lemma 11. We know
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from Lemma 12 that ab has order 3 and hence aba has order 2 .
Suppose that ¢ 1is an element of order 2 which is distinct from a, b
and aba , and let d=ab , f =ac and let H be the subgroup generated
by d and f ; we know that d and f have order 3 . Also

df = (aba)e , d2f = be , df2 = a(be)a , d2f'2 = b(aeca) all have order

3 . Thus, for all %, J ,

(1) Paf = gt

It now follows as on page 321 of [7] that any element of H can be written

as dl, ded‘j, dLJ“—ldJ or di'fd7f‘-1dk . It can then be verified by using
(1) that H has exponent 3 . Hence H 1is abelian, by Lemma 8, and

df=fd. If =1+ (1+d)(1+f+f2) then x> =1 and bxb = & , which

gives :z:bx—l = bx and means that x € G . Since f, df and df2 are
distinct, x must then equal one of them, and this yields f =d or d2 s

which in turn yields ¢ =b or aba and is a contradiction.

It is routine to verify that X is as stated and is isomorphic to

In what follows we assume G 1is nonabelian. Let N be the radical

of § = ZZG , let ¢ : S ~>S/N = S be the canonical map, let

5 = E(el¢) + .+ E(etqa) ,

where the eid) are central primitive orthogonal idempotents in S and let

5(e;9) = Mn.[GF‘(2kiN

1
LEMMA 17.
(i) At least one n, = 2.
(i1) If n; =2 then ni=2, ki=l and
(G¢)(ei¢) = (g(ei‘b))* = GL(2, 2) .

Proof. (i) We know from Theorem 3 that ¢ : S* ~» S* is onto and has

kernel 1+ N . If g € G n (1+N) then 1+g € N and so
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Qk 2k
(1+g)® =1+ g~ =0 for some k ; hence g has order 2 by Lemma 16.

But 1+a § N , since otherwise (1+a)b = b+ab € N , and this is impossible
because (b+ab)3 = (b+ab)2 # 0 . Similarly 1+b f N and l+aba £ N .
Thus G n (1+8) = {1} and Gé ~ G . Hence S is not commutative, so at
least one n, =2 2.

(1Z) Suppose n, 22 . TNow (G¢)(ei¢J q [E(ei¢))* and, since
E[ei¢) is spanned by (G¢)(ei¢) over 22 , (G¢)(ei¢) is not contained
in the centre of C§[ei¢))* . If my, 23 orif n, =2 and ki > 1 it

follows from Theorem 4.9 of [1] that (G¢)(ei¢] contains a subgroup &

({11, Theorem

SL[ni, 2ki}

k.
with # = SL(ni, 2 lJ but in this case 4 |
4.11), and this contradicts Lemma 15. Thus n, = 2 and ki =1 . Since

S(ei¢] is spanned by (G¢)(ei¢) over Z, and has dimension Lo, it

follows that (G¢)(ei¢] = C§(Qi¢))* , Since otherwise I(G¢)(ei¢]l =3.

LEMMA 18. G <s an internal direct product G = X Q& L for some
abelian group L of odd order.

Proof. L .: 5+ 5(e. i sV, = sle.d) , L.
160 et §. : 5~ S(el¢) be given by sy, 8(21¢) and let I,

be the kernel of ¢wi .

Suppose n, = 2 . Since G¢wi = 53 and L does not divide |G} ,

ILiI must be odd. Hence L, nK = {1} or (ab).

Suppose that Li nK={ab) for all 7 such that n, = 2 . Then if

n., =2,
boy, = (a-ab)dy, = (a-1)¢p; = (1-a)dy, = (aba)dy, .
Also, if nj =1 , then, since S¢?j is commutative,
bd’ll/j = (a'ab)@l/j = (aba)¢¢'j .

Thus b¢wi = aba¢wi for all % , which means that b¢ = abad and
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contradicts the fact that ¢ is one-to-one on G (see the proof of (i),

Lemma 17).
Thus for some <% , n, =2 and Li n K= {1} . Since Li and X

are both normal in (G , and since
|G| = |Li||(§(ei¢))*| = 'LL”K| s
we must have G = K ® Li .  Further, it follows from Lemma 8 that Li is
abelian.
LEMMA 19. G =K .
Proof. Since L 1is abelian and of odd order, 2.l is isomorphic to

2
a direct sum of fields Fl ® ... ®Ft . Then

t t
Z2.G = ZLK:(@ Rhm= ® Pﬁ}=M,
2 =1 * g=1 L "3

say. Now if Ni the radical of FiS , then, as in Lemma T,

3
F,S N, = F; ®M,(F,} . Thus if J is the radical of ¥ , then

t )
M/J = i?l [Fi ® M, (Fi)J
It now follows from Lemma 17 that Fi = 22 for all 7 . But then 22L is

isomorphic to ¢ copies of 22 and |L| =1 .

5. Proof of Theorem 2
Suppose that every unit in ZnG is trivial. It follows from Theorem
1 that either G is abélian orelse n =2 and G = S3 . In the latter
case, if Y 1is the sum of all the elements of & then Y2 =0 so
(1+y)(1-y) =1 and 1 + Yy is a non-trivial unit. Thus G is abelian.

We next notice that if m divides =n then every unit in ZmG is
trivial. For let 6 : ZnG - ZmG be the homomorphism extending the

canonical homomorphism from Zn to Zm and the identity on G . Then if
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B is a unit in ZmG , it follows from Theorem 3 that there is a unit a

in ZnG such that a6 = B . Since a is trivial, B must be also.

Let p Dbe a prime dividing # . Notice that p2 does not divide

n , for otherwise, if Yy is the sum of all the elements of (G then

[(n/p)Y]2 =0 and so 1+ (n/p)y is a non-trivial unit.

Let H be a subgroup of (G of order k ; then ZpH has only

trivial units.

If p divides k and if vy 1is the sum of all the elements in #

then Yp =0 in ZpH so that 1 + Yy 1is a unit. Because it is

non-trivial if k > 2 , we must have p = k = 2 .

If p#k and if k is a prime we know from Theorem 4.7 of [3] that

p

where i is the order of p modulo k . Thus ZpH has

units. But ZpH has only (p-1)k trivial units. Since

kX - 1 by Fermat's Theorem and k divides pu - 1 , we must have

k-1

ZH= Zp @ {[(k-1)/u] copies of GF(pu)}

H divides

32

=k-~1 and p = k . This latter equation means that either p =2
and k=3 ,o0r p=3 and k=
Firstly consider what happens if p = 3 ; then G must be &
2-group. But, again using Theorem L.7 of [3], ZSCh = 22 ® GF(9) has
units and only 8 trivial units, while (C XC2) 16 units
and only 8 +trivial units. Thus G must be of order 2 . Also, in
ZgCs » (3+3x)2 =0 so 1+ (3+3x) is a non-trivial unit; n=3.
The only remaining possibility is that #n = 2 . But, again using

Theorem 4.7 of [3], Z.,.C, = Z2 @ GF(L) ® GF(64) has 189 wunits and only

279

9 +trivial ones while (C xC ) = 22 ® 4GF(L) has 243 wunits but only

373
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9 trivial units. Thus G must be cyclic of order 2 or 3.

Conversely, it is easily checked that if »n = 2 and |G| < 3 or if
n=3 and |G| = 2 then Z,G has only trivial wunits.
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