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On the units of a modular group ring

K.R. Pearson

I t i s shown that a f i n i t e group G i s a normal subgroup of the

group of units of the group r ing of G over the r ing of

integers modulo n i f and only i f G i s abelian or n = 2 and

G is isomorphic to the symmetric group on 3 l e t t e r s .

Let i? be a r ing with iden t i ty 1 , G a f i n i t e group and l e t RG

denote the corresponding group r ing. If a i s a uni t in R and i f g € G

then ag i s a unit in RG , and i s cal led a trivial un i t . In pa r t i cu l a r

ilg | 9 € G} i s always a subgroup of the group (RG)* of uni ts of RG ;

by a s l i gh t abuse of notation th i s se t wi l l also be denoted by G . We

consider the following conditions.

I Every unit in RG i s t r i v i a l .

I I Every unit of f i n i t e order in RG i s t r i v i a l .

I l l Every conjugate in (RG)* of an element of G i s t r i v i a l ;

or equivalently, G i s a normal subgroup of (RG)* .

I t i s clear t h a t , in general , I •* I I =* I I I .

For the case R = Z , the ring of ra t iona l i n t ege r s , these conditions

have been examined by Higman [S] and Berman [ 2 ] . Higman showed tha t I

holds i f and only i f G i s e i the r abelian of exponent dividing 1+ or 6

or hamiltonian of order a power of 2 . Berman showed tha t I I holds i f and

only i f G i s e i the r abelian or hamiltonian of order a power of 2 . In

addi t ion, although i t i s not s ta ted e x p l i c i t l y , h is proof shows tha t ( s t i l l

when R = Z ) I I and I I I are equivalent .

I f R has cha rac t e r i s t i c zero, i t i s c lear tha t any one of these
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three conditions implies the corresponding condition for the case R = Z .

Hence the results of Higman and Berman give some information about the

general case when R has characteristic zero.

In this case we consider the conditions when R = Z , the ring of

rational integers modulo n . The results then give some information about

the case where R has finite characteristic. Because Z G is a finite

ring i t is clear that, when R = Z , 1 and II are equivalent. We prove

the following results.

THEOREM 1. Let G be a finite group. G ie a normal subgroup of

[z G) * if and only if G ie abelian or n = 2 and G = S , the

symmetries group on 3 letters.

THEOREM 2. Let G be a finite nontrivial group. Every unit in Z G

is trivial if and only if n = 2 and \G\ 2 3 or n = 3 and \G\ = 2 .

A resu l t re la ted to Theorem 1 has been proved in [4] by Eldridge. He

has proved that i f G i s a locally f in i te p-group and H i s a subgroup

of G , then H i s normal in (z (?) * i f and only i f H i s central in

G .

§1 contains some preliminary results which are perhaps of independent

interest. Theorem 1 is proved in §§2-4, while Theorem 2 is proved in §5.

1. The behaviour of unit groups under ring homomorphisms

Let R be a ring with identity and l e t (j> : R •+ S be a surjective

r ing homomorphism. I t i s easy to see that <j> maps the group R* of units

of R into the group S* of units of 5 . That R*fy i s not always the

whole of S* may be seen by considering, for example, the canonical

homomorphism from Z to Z/nZ . I t is of in teres t to know conditions

under which § : R* •+ S* i s surjective. When the kernel of (j> i s

contained in the Jacobson radical of R th is is known to be the case (see

(2.1) of [6] or Lemma 1 of [5 ] ) . The following resul t shows that i t i s

also the case when R i s art inian (irrespective of the kernel of ij> ).

THEOREM 3. Let R be a ring with identity such that R/J is

artinian,, where J ie the Jaaobson radical of R . If (j> : R •+ 5 is a
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eurjective ring homomorpkism then <t> induces a surjective group

homomorphiem <j> : R* -*• S* , where R* and S* denote the group of units

of R and S respectively.

Proof. We must show t h a t <J> i s on to . Let K denote the k e r n e l of

<f> •

Suppose firstly that J = 0 . Then if is an internal direct sum

where each R. is a simple artinian ring. By renumbering if necessary we

can assume that

K = R ^ + . . . + R. .
M + 1 t

Suppose x £ R is such that x§ £ S* ; then there is an element y in R

such that xy-1 ? K and yx-1 (. K . Let

1 = e, + . . . +
't '

where e . € R. . Then i f

1 ' ' ' « M+l ' ' ' t '

u = we + . . . + ye + e + . . . + e ,
1 u u+i t

3U = 1 = U2 and 3-x £ K . Thus 2 £ R* and 3<t> = x$ .

Now consider t h e genera l case . Suppose x £ R i s such t h a t

xtp £ S* . Then x+K £ (R/K)* and so x+(J+K) £ [R/(J+K)]* . Since

<7 c J+X there is a natural homomorphism ty : R/J •* R/(J+K) . Because R/J

is semisimple i t follows from the above that there exists x £ R such

t h a t x +J £ {R/J)* and X-. + {J+K) = x + {J+K) . By Lemma 1 of [ 5 ] ,

t h e r e e x i s t s y £ R* s u c h t h a t x . + J - y + J • H e n c e t h e r e e x i s t s

k £ K , j £ J s u c h t h a t

But y~ o £ J , so l+y~ J £ R* and hence z = y+j £ R* . Also 3<J> =

since z-x £ K .
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COROLLARY 4. Let R be an artinian ring with identity and let G

be a finite group euah that G < (RG)* . If P " G then

(G/P) o [R{G/P)V .

Proof. Since RG i s art inian ( [8 ] , Appendix 2, Proposition 6) we can
apply the theorem to the homomorphism (j> : RG •* R(G/P) which extends the
iden t i ty on R , and the canonical homomorphism from G to G/P .

COROLLARY 5. If G < [z G)* and m divides n then G o [z G) * .

If R is a finite ring

the proportion of inver t ib le elements in if , has been considered in [6 ] .

If <f> : R •* 5 i s a surjective ring homomorphism, i t i s shown in (3.2) of

[6] tha t 6(if) = 6(S) i f the kernel of 4> equals the Jacobson radical of

R .

PROPOSITION 6. Let R be a finite ring and let <(> : R •* S be a

surjective ring homomorphism with kernel K . Then 6(i?) = 6(5) if and

only if K is contained in the Jacobson radical of R .

Proof. <j) induces a surjective group homomorphism from if* to 5*

whose kernel i s if" n (l+K) . I t i s thus easy to see that 6(R) = 6(5) i f

and only i f l+K c R* , which in turn is the case i f and only i f K i s a

quasi-regular idea l .

2. Outline the proof of Theorem 1

If G i s abelian, i t i s clear that G <J [ZnG) * . That 5 3 <* (Z
2

S
3) *

i s shown in the following lemma. This completes the sufficiency part of

Theorem 1.

LEMMA 7. 5_ <

Proof. I f 5 = (a, b \ a2 = fc3 = 1, ba = ab2 ) then

6 : 5 3 ->- Z2 © M2[Z2) given by2[Z2)

= | 1 . J i l l . M = • [I I})
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defines a group homomorphism, and so can be extended to a ring homomorphism

6 : Z S * Z @ M [Z ) . 9 i s onto ana i t s kernel i s J = {0, y) where

2 2 2

y = 1 + b + b + a + ab + ab . y = 0 and J i s the radical of Zr>ST, •

By Theorem 3, 8 induces a surjective homomorphism from (Z S.) * onto

GL(2, Z ) whose kernel i s 1 + J . Since |GL(2, Z ) | = 6 and since 9

is one-to-one when res t r ic ted t o S i t follows that [z S ) * = S

Became y is in the centre of Z S , we see that (Z
2

S
3) * = 5

and S 3 <» (Z2S3)* •

S , we see that (Z
2

S
3) = 5

3
 x

The necessity part of Theorem 1 remains. Suppose that G < ( K ) '

and that G i s not abelian. In §§3, 4 we consider the case where n i s

a prime and show that n = 2 and G - S . In view of Corollary 5 above

v
i t follows that G = S and n = 2 for some k t 1 . If fc > 2 and

fc i ?
2/ = 2 . then (l+j/a) = 1 so that 1 + ya i s a unit of order 2 in
Z S_ . But
n 3

a) = b + 2/afc + j/ab £ 5 .

Hence fe = 1 . This wi l l complete the necessity par t .

3.

LEMMA 8. If p ia a prime, if p does not divide \G\ and if

G <t [z G) * 3 then G ia dbetian.
K P

Proof. For suppose, i f possible, that G i s not abelian. Since

R = 2 G i s semisimple, there exists a central idempotent e in R such

that Re = Mn[GF{p )) for some n > 2 and fe > 1 . Since G < i?" i t

follows that Ge < {Re)* = 3L(n, p ) . Let 6 : (#e)* •+ GL [n, p ) be an

isomorphism. How p divides |SL (n, p ] | ( [ / ] , Theorem l i . l l ) so that

^ [n, P )8~ i s not contained in Ge . Since the centre of GL(n, p ) i s
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contained in the centre of M (GF(p )) ([!]» Theorem k.8),

Ge c centre (Re)* would mean Ge c centre (Re) and then Re would be

commutative since i t i s spanned by Ge over Z e . Thus i t follows from

LIU, Theorem U.9, that n = 2 , k = 1 and p = 2 or 3 .

If p = 2 , we get \Ge\ = 3 since GL(2, 2) = 5 . But then Re

has dimension at most 3 over Z e and so cannot be isomorphic to

Thus p = 3 . Now the only normal subgroup of GL(2, 3) which has

order not divis ible by 3 and which is not contained in the centre of

GL(2, 3) i s isomorphic to the quaternion group H of order 8 . Thus

Ge - H . Since Ge i s a homomorphic image of G i t follows from

Corollary h that H < [ZJj]* . Let

H = < i, 3 I i? = 32 = t, t2 = 1, ji = tij) .

Then in ZJi , if x = (i+3+i3')(\-t) we have x = 0 and therefore

1 + x is a unit with inverse 1 - x . But

(l+x)i(l-x) = 1 - j - ij - t + ti + tj + tij £ 5 .

Thus we have a contradiction.

LEMMA 9. If p ia a prime 2 3 , if p divides \G\ and if

Go [Z G]* J then G is dbelian.

Proof. Let H be a p-Sylow subgroup of G . We f i r s t show that H

i s in the centre of G . For l e t g € G , h £ H and l e t h have order

m m
pm wi th m i l . Since (l-h)" = 1 - W = 0 , 1 - h i s n i l p o t e n t and

2 2 2

hence so i s (l-h) . Thus 1 - (l-h) = 2h - h i s a uni t in Z G .

Hence t h e r e e x i s t s g' € G such t h a t [2h-h )g = ^'(2?z-/l ] , or

2hg - h2g = 2g'h- g'h2 .
2

Since h + e , hg and h g are distinct. Thus we get two possibilities,
namely
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o p
( i ) g'h = ft g and g'h = hg , i n which case gh = hg ; o r

( i i ) 2 = - 1 ( t h a t i s , p = 3 ) , g'h = h2g and ^ ' f c 2 = ft^ , i n

which case g hg = h

Suppose , i f p o s s i b l e , t h a t gh t hg ; t h e n p = 3 , g / e , g + h~

and jj'k?" = ft" . S ince gft^" = ft" , i t i s e a s y t o s ee t h a t ( l - f t )g i s

ni lpotent , and so a = 1 + {l-h)g i s a unit . Hence there exists ft' € G

such that aft = V a , which gives

h + gh - hgh = h' + h'g - h'hg .

Since h, gh and hgh are d i s t inc t , we have h'hg = hgh = <? and

ft' = ft"1 . Then ft + gh = ft"1 + h~Xg . Since ft * ft" we get ft"1 = #ft ,
_2

whence g = h and we have a contradiction.

We can now show that G i s abelian. For suppose, i f possible, that

x, y € G and xy + yx . If ft # 1 i s an element of # then ft i s in

the centre of G and 3 = 1 + (l-ft)a; i s a uni t . Thus there exists z t. G

such that $y = 26 , and so

y + xy - hxy = z + zx - hzx .

Since xy ^ yx , y f e and x t- ft so that y, xi/ and hxy are

dis t inc t . Thus ftrj/ = hzx and 2 = xyx~ . Now y + xy = xyx~ + xy ,

which means y = xyx or xy = yx .

4. n = 2 and \G\ i s even

We are le f t with G o {ZJi}* and | c | even. We show that ei ther G

is abelian or G - S .

In what follows we wil l often have a s i tuat ion similar to the

following. Suppose

where x •, y. € Zo£ and x i 5 . . . , x are d i s t inc t . Then the y. must be

a permutation of the x . and so th i s leads to n! possible cases.
0
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LEMMA 10. If h. (. G has order d" with m > 2 then h ie in the

oentre of G .

Proof. Let g € G . Since 1 + {l+h)h is a unit, there exists

z € G with [l+h+h2)g = z{l+h+h2) . This gives ghg'1 = fcS where

a = ±1 . Thus (l+^)gr is nilpotent and so there exists w € G with

If gh ± hg then g/zg" = V and this leads to a contradiction.

LEMMA 11. If any two elements of order 2 in G commute then G

ie abelian.

Proof. Let b £ G have order 2 . We show that b is in the centre

of G . For le t g f G . If for x € G , bX denotes xbx'1 then, for

a l l t > 1 ,

* = (1+20(1+2?) . . . fl+2? )<?* .

There exists an integer w such that g = 1 and so

= 0 ,

«-l
since b, tr , . .. , b* all commute and (l+fc) = 0 . Thus

a = 1 + {l+b)g is a unit and there exists h £ G with ag = ha .

Consideration of the six cases gives gb = bg .

Suppose x, y € G and xy + yx . Then let b € G have order 2 .

Since B = 1 + (l+i>)a; i s a unit, there exists z € G with 3y = z& and

2 n
this yields yx = hci/ . How yx = y and J/ / J/ so that j / = !/ if

g

and only if n is even. Thus x has even order, say 2 t where t is

t s
odd and 8 > 1 . Then i f a = x , z has order 2 and

2/s = b x y = bzy . Now if 8 2 2 this contradicts Lemma 10 while if

8 = 1 this contradicts the paragraph above. Hence G is abelian.

LEMMA 12. If x, y £ G both have order 2 and if xy # yx then
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xy has order 3 •

Proof. Let xy = b and le t b have order m . Then (b, x) i s a

dihedral group of degree m and m 5 3 . Wow ((l+x)£>(l+x)) = 0 and so

B = 1 + (l+x)b(l+x) i s a unit . Thus there exists g € G such that

$b = g& . Since g € (b, x> and <y has the same order as b , i t follows

from a knowledge of the dihedral group that g = b^ for some j . From

&b = bH we get xb2 + x = xZT1""7 + xi1""7' . If fc1"-7' = 1 we get
li 1— 7 2

b = 1 , which contradicts Lemma 10, and so b = b . If we substi tute
this in 3£> = bJ8 we get b = 1 and m = 3 •

LEMMA 13. Let a £G have order 2 and suppose there exists b d G

of order 2 such that ab i- ba . If a € G has order 2 then aa + oa .
2

Proof. For suppose ao = ca ; then (a+c) = 0 and there exists

d f G such that

[l+a+c)ab = d{l+a+c) ,

and this leads to a contradiction.

COROLLARY 14. Let a, b i G both have order 2 with ab t ba . If

o, d (. G both have order 2 then ad t dc .

Proof. By the lemma, ao 1 ca . Then from the lemma with a, b, c

replaced by c, a, d respectively we get cd t- dc .

LEMMA 15. If G is not abelian then \G\ is not divisible by k .

Proof. If k divides \G\ then G contains a subgroup of order

h . This cannot be cyclic, by Lemma 10, so contains two commuting elements

of order 2 . I t then follows from Corollary ll* and Lemma 11 that G is

abelian.

LEMMA 16. Suppose G is not abelian. Then G contains two

elements a, b of order 2 such that ab 4- ba . The only elements of

order 2 in G are a, b , and aba and, if K is the subgroup

generated by these elements of order 2 , then K = {l , a, b, aba, ab, ba}

and K = S .

Proof. The existence of a and b i s given by Lemma 11. We know
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from Lemma 12 that ab has order 3 and hence aba has order 2 .

Suppose that c i s an element of order 2 which is dis t inct from a, b

and aba , and l e t d = ab , f = ac and l e t H be the subgroup generated

by d and / ; we know that d and / have order 3 . Also

df = (aba)c , af = bo , dj = a(bc)a , drf^ - b(aoa) all have order

3 . Thus, for a l l i, j ,

(1) f^f7' = £Xfid~i .

I t now follows as on page 321 of [7] that any element of H can be written

as d%, dVfd° , d%fXd? or dlfdlf~1d< . I t can then be verified by using

( l ) tha t H has exponent 3 • Hence H i s abelian, by Lemma 8, and

df = fd . If x = 1 + (X+d) [l+f+f2] then x3 = 1 and bxb = x2 , which

gives xbx = bx and means that x i G . Since f, df and df are

d i s t i n c t , x must then equal one of them, and this yields f = d or a ,

which in turn yields a = b or aba and i s a contradiction.

I t i s routine to verify that K i s as stated and i s isomorphic to

In what follows we assume G i s nonabelian. Let N be the radical

of S = Z2C , l e t <j> : S •* S/N = 5 be the canonical map, l e t

S = S[e tj>) + . . . + S [e <f>)
J- t

where the e.(j) are central primitive orthogonal idempotents in 5 and l e t

LEMMA 1 7 .

(i) At least one n- > 2 .

(ii) If n. 2 2 then n. = 2 , k. = 1 and
Lr Ir Is

(C<j>)(e.cj>) = ( 5 ( e . < ( > ) ) * = G L ( 2 , 2 ) .
t- is

Proof. (i) We know from Theorem 3 t h a t 4> : S* -+ 5* i s onto and has

k e r n e l 1 + 11 . I f g € G n (l+ff) then l+£ € ff and so
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2k 2k
(l+g) = 1 + g = 0 for some k ; hence g has order 2 "by Lemma 16.
But 1+a \ N , since otherwise (l+a)b = b+ab € N , and this i s impossible

because (b+ab) = {b+ab) t 0 . Similarly 1+b \ N and 1+aba £ N .

Thus G n (1+/V) = {l} and G<$> ~ G . Hence 5 is not commutative, so at

least one n. 2 2 .

Suppose n. 2 2 . Now (G§) [e .<j>] < [s[e .$)) * and, s ince
Ts 1r %r

S(e.tj>) i s s p a n n e d by (G<$>) [e . <J>] o v e r Z , (G<j>) (e .(j)) i s n o t c o n t a i n e d
t* If C. If

in the cen t re of (s(e .<()))* . I f n. 2 3 or i f w. = 2 and fe. > 1 i t
Is- 1/ 1s 1r

follows from Theorem h.9 of [ / ] t h a t (G4>)(e.<}>} conta ins a subgroup ff

with ff - S L \ n . , 2 but in t h i s case It
vSi. w . , 2 ( [ I ] , Theorem

U . l l ) , and th is contradicts Lemma 15- Thus n. = 2 and k. = 1 . Since

S(e.(J)J is spanned by (C<j>) (e .<J>] over Z and has dimension h , i t
'Z' Ts £i

follows t h a t {G<p){e-<t>) = (s(e.<j>))* , s ince otherwise | (G<t>) (e •§) | £ 3 •

LEMMA 18. G is an internal direct product G = K ® L for some

abelian group L of odd order.

Proof. Let <jj. : 5 •+ S{e .<(>) be given by sty. = s(e .̂(j>) , and l e t L.
Is Is If If If

be t h e ke rne l of <Jn|>. .
If

Suppose n. = 2 . Since GfjnJ/. - S and U does not divide |G| ,

\L.\ must be odd. Hence L. n K = {l) or < o& > .

Suppose that L. n K = < ab > for a l l i such that n. = 2 . Then i f

Also, i f n. = 1 s then, since S<j>4> • is commutative,
t? J

0 3 0

Thus hfyty. = abafyty. for a l l i , which means t h a t 2><j> = atatj) and
"Z 2
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contradicts the fact that <J> is one-to-one on G (see the proof of (i) ,

Lemma 17).

Thus for some i , n. - 2 and L. n K = {l} . Since L. and K

are both normal in G , and since

\G\ = I ^ I K S ^ ) ] * ! = \L.\\K\ ,

we must have G = K ® L . . Further, it follows from Lemma 8 that L . is

abelian.

LEMMA 19. G = K .

Proof. Since L is abelian and of odd order, Z L is isomorphic to

a direct sum of fields F ® . . . ®F . Then
X Is

Z2G = [Z2L)K = (_© F J ( X ) = ©

say. Now i f N. the radical of F-S~ , then, as in Lemma 7,

F.S JN. - F. © M• [F.) . Thus if J i s the radical of M , then

M/J - © [
i = l ••

[F ) \ .

It now follows from Lemma 17 that F. - Z for all i . But then Z L is

isomorphic to t copies of Zp and \L\ = 1 .

5. Proof of Theorem 2

Suppose that every unit in 2 G is t r iv ia l . It follows from Theorem

1 that either G is abelian or else n = 2 and G = S . In the lat ter

2
case, if Y is the sum of a l l the elements of G then Y = 0 so

(l+Y)(l~Y) = 1 ^ d 1 + Y is a non-trivial unit. Thus G is abelian.

We next notice that if m divides n then every unit in Z G is

t r iv ia l . For let 8 : Z G -* Z G be the homomorphism extending the
n tn

canonical homomorphism from Z to Z and the identity on G . Then if
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6 is a unit in Z G , i t follows from Theorem 3 that there is a unit a

in Z G such that a6 = B • Since a is t r i v i a l , $ must be also.

2
Let p be a prime dividing n . Notice that p does not divide

n , for otherwise, if y is the sum of al l the elements of G then

2
[(n/p)y] = 0 and so 1 + (n/p)y is a non-trivial unit.

Let H be a subgroup of G of order k ; then Z H has only

t r iv ia l units.

If p divides k and if y is the sum of al l the elements in H

then Y = 0 in Z // so that 1 + y is a unit. Because i t is

non-trivial if k > 2 , we must have p = k = 2 .

If p + k and if fe is a prime we know from Theorem it. 7 of [3] that

Z U = Zp © {[(fc-l)/u] copies of GF(pP)}

where \i is the order of p modulo fc . Thus Z # has

units. But Z ff has only (p-l)fe t r iv ia l units. Since p divides

k - 1 by Fermat's Theorem and fe divides pV - 1 , we must have

fe-1
M = fe - 1 and p = k . This l a t t e r equation means that either p = 2

and k = 3 , or p = 3 and & = 2 .

Firstly consider what happens if p = 3 ; then G must be a

2-group. But, again using Theorem U.7 of [3 ] , Z C^ = 2Z © GF(9) has 32

units and only 8 t r i v i a l uni ts , while Z [C x-C ) ~ hZ has 16 units

and only 8 t r i v i a l units. Thus G must be of order 2 . Also, in

Z6C2 ' (3+3a;) = ° s o 1 + (3+3r) is a non-trivial unit; thus n = 3 •

The only remaining possibil i ty is that n = 2 . But, again using

Theorem It.7 of [3] , Z C - Z © GF(1») ©GF(6U) has 189 units and only

9 t r i v i a l ones while Z [C xC ) = Z2©itGF(lt) has 2U3 units but only
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9 t r i v i a l u n i t s . Thus G must be cyclic of order 2 or 3 .

Conversely, i t i s eas i ly checked tha t i f n = 2 and \G\ S 3 or i f

n = 3 and \G\ = 2 then Z G has only t r i v i a l u n i t s .
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