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Abstract: Thermal convection in the Sun and cool stars is often modeled with the 
assumption of an effective Prandtl number a ~ 1. Such a parameterization results in 
masking of the presence of internal shear layers which, for small a, might control the 
large scale dynamics. In this paper we discuss the relevance of such layers in turbulent 
convection. Implications for heat transport - i.e. for the Nusselt number power law - are 
also discussed. 

1. Introduction 

Astrophysical plasmas are almost inviscid fluids. In stellar convection zones these 
fluids are optically thick almost everywhere, and radiative heat transport is there 
an efficient diffusion process. Therefore, thermal convection in stars is a low Prandtl 
number flow, with the Prandtl number a = U/K defined as the ratio of the viscous, 
u, and thermal, K, molecular diffusion coefficients. In the solar case, for instance, 
the molecular viscosity is so small compared to the thermal diffusion that a can 
reach values of a = 10 - 9 , meaning that viscous dissipation is only relevant for 
layers of several centimeters thick. Nobody can expect such small Prandtl numbers 
to be of any relevance for describing the large scale dynamics of the solar convection 
zone, but viscous dissipation cannot simply be neglected as it will break the energy 
balance. Therefore, the real question is about modeling the viscous diffusion term 
or, stated otherwise, a parameterization for a. 

The relevance of the Prandtl number in fully developed turbulent convection 
has been widely questioned in the past - see, for instance, the footnote on page 
424 of Monin and Yaglom (1971). At large scales, molecular diffusion is negligible 
as compared to turbulent diffusion, so it might be plausible to describe the large 
scale dynamics with no reference to the molecular diffusion coefficients, not even 
to their ratio, the Prandtl number. However the implication is not that obvious. 
Molecular coefficients can play a role in building up small scale structures, mostly 
in internal boundary layers, delimiting convective eddies, thermals or plumes. 
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2. On the effective Prandt l number 

The most popular parameterization technique is to take instead of the molecular 
value its turbulent analogue, the turbulent Prandtl number at = Vt/Kt, where vt 

and Kt are eddy transport coefficients for momentum and heat. A proper definition 
of the scalar quantities vt and «< can only be made for isotropic turbulence or for 
some prescribed geometries - free shear flows, near wall turbulence, axisymmetric 
jets, etc. - where the eddy coefficients have a very precise meaning; otherwise vt 

and Kt become tensorial quantities. From a large amount of measurements for 
different flows and geometries the conclusion might be that at takes a value close 
to one, with the most frequent values in the range at — 0.6 — 0.9. See Launder 
(1978) for an authoritative review. 

It is thought that taking a ~ 1 instead of the true a in the Navier-Stokes 
equation is a safe procedure for describing the large scale dynamics, but it is 
not. Two flows computed with different a values may show the same at value but 
different large scale dynamics. The relevant question to ask is about the existence of 
an asymptotic value aas such that computing the flows for any a < aas, everything 
else being unchanged, produces indistinguishable large scale dynamics. So far the 
question is still open, though existing numerical work puts an upper bound aaa < 
0.1 to this asymptotic value. In Massaguer and Mercader (1988) and Massaguer et 
al. (1990) this asymptotic limit is conjectured from the onset of an instability to 
be described below. In Toomre et al. (1990) it has been found, for highly stratified 
fluids, that changing the Prandtl number in the range a = 0.1 — 1 results in a 
significant change in the size of the observed structures. And the latter authors 
also report, from an unpublished work by J. Herring that, even in the Boussinesq 
convection, changing a in that range produces significant changes in the large 
scale structure. Neither of the previously quoted works is conclusive, and indeed 
the whole subject is still open. But it is remarkable that Kraichnan (1962), from a 
discussion based on a mixing-length treatment, conjectured for the Prandtl number 
of the transition between high and low Prandtl number regimes a value that he 
estimates "with low confidence as about 0.1". His model is based on a detailed 
study of the thermal and viscous boundary layers, and the estimate depends on 
the value of the ratio Rex/P^T between the Reynolds and Peclet numbers at the 
edge of the thermal layer. But he warns the reader that "if the value turns out to 
be greater than the nominal value 10 which we have used, the effect of the theory 
would be to lower the value of a which separates the low and high Prandtl number 
ranges... values of Rer/Per greater than 10 would not be surprising". 

Such a low separating value of a will originate in the turbulent shear bound
ary layers existing at the edge of the big eddies, where large scale isotropy and 
homogeneity will break down. In order to quantify such an effect, we can borrow 
some ideas from subgrid scale modeling. As discussed, for instance, by Lessieur 
(1987) in a chapter on Large Eddy Simulation, the contribution to the large scale 
dynamics by modes with wavenumbers k > kc, with kc in the inertial range, can 
be described by the eddy coefficients 
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ut(ke) = 0.28 

Kt(kc) = 0.42 

thus giving <jt — 0.67. But the Prandtl number entering the equations is a = 
(u + vt)/{K + Kt). In the limit of small a this expression can be approximated as 

, ( * „ ) - ° - 2 8 P e ^ 
1 + 0.42Pe(ifcc) 

where Pe = V£/K is a Peclet number denned by v = -\/kcE(kc) and I = k~x 

and kc is a wavenumber in the inertial range. Shear layers put a strong constraint 
on the value of kc. Following a suggestion from Kraichnan's paper, we can define 
the edge of one such layer as a point where diffusion and advection of heat take 
the same value, implying Pe(kc) = 0.5 and <r(kc) ~ 0.1 in agreement with papers 
quoted above. The asymptotic value aas corresponds to the maximum value of kc. 

3. Shear dynamics 

Shear layers can modify scalings substantially, but including them in the balances 
is a hard task. In order to explain where difficulties lie, let us consider thermal 
convection in a Boussinesq fluid. The velocity v is a solenoidal field, and can 
be split into a poloidal vp = V x V x (<j>ez) and a toroidal v r = V x (t/>ez) 
component, v = vp + VT, where ez is a unit vector antiparallel to gravity and 
the scalars <j> and %j) are associated to the vertical components of the velocity and 
vorticity fields. As a physical picture for the poloidal velocity field we can think 
of a vertical disk rotating around its horizontal axis. With a string of such a disks 
we can reproduce the flow inside rolls and hexagons, the best known convective 
structures. Toroidal flows can be represented by horizontal disks rotating around 
their vertical axis. In most contexts left-handed and right-handed toroidal flows 
are required so as to cancel the vertical component of the angular momentum 
and, depending on the geometry of the container, vertically rotating disks will 
be paired off either horizontally or vertically. A final patchwork with such pairs 
will always result in important shear stresses A crucial step in understanding shear 
processes in thermal convection is to realize that, besides boundary effects, thermal 
convection can always be modeled as a poloidal flow. The poloidal flow is always 
an exact solution of the Navier-Stokes equation, though it may be unstable. Most 
known scalings, with Kraichnan's exception, reflect global balances for the poloidal 
component. A recent attempt by Castaing et al. (1989) to include shear stresses 
is also to be mentioned. 

The poloidal velocity field scales, roughly speaking, as vp ~ K/£ and the 
Reynolds number takes a value Re = vpi/n ~ a~x. Decreasing a increases Re 
without bound, and at low a any poloidal field is expected to be shear unstable. 
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The onset of this shear instability has been examined in Massaguer and Mercader 
(1988) and an asymptotic regime for small a has been found. It is also worth 
mentioning that near the onset of instability the flow turns out to be chaotic with 
components vp and VT uncorrelated (Massaguer et al., 1990). Therefore, the flow 
is chaotic in time and intermittent in space. The toroidal velocity field arises as 
a secondary flow, and its description requires a previous knowledge of the non
linear dynamics of the poloidal flow, mostly of its geometry. So it is not surprising 
that most early attempts at modeling turbulent convection simply neglected the 
contribution of the toroidal component. In Malkus' theory of turbulence, for in
stance, - see Spiegel's (1962) reformulation - the vertical vorticity component is 
treated as a damped mode, implying v? = 0. A similar difficulty arises in Canuto 
et al. (1987) extension of Ledoux, Schwarzchild Sz Spiegel's spectral model. A pre
liminary attempt to include secondary instabilities can be found in Canuto et al. 
(1990). 

3.1 Dimensional analysis 

Introducing a scale of inhomogeneity £ — k~l associated with the internal bound
ary layers, as we have done before, results in an additional degree of freedom 
in the well known dimensional analysis - see Massaguer (1990) and references 
therein. It is widely agreed that at low a values the large scale dynamics should 
be independent of the molecular viscosity v. And the Nusselt number N - i.e.: 
the non-dimensional heat flux - becomes N = N(Rao,£/d), where Ra is the 
Rayleigh number and d is the layer thickness. For an homogeneous and isotropic 
flow £/d ~ 1, the molecular diffusion of heat should be negligible, K « nt(kc), 
and the the heat flux cannot depend on K. The only possible power-law for N is 
the classical mixing-length scaling N oc (Rao)1!2. 

If thin internal boundary layers are present in the flow, £/d « 1, the heat flux 
will be partially controlled by them. Let us assume the extreme situation where 
the flux is completely independent of the top and bottom wall boundaries. If the 
temperature gradient is dzT, the gravity g and the expansion coefficient a, 

agd4dzT 
Racr = r 

then the only power-law for N independent of d - i.e. controlled by £ - is N oc 
£/d(Ra<j)1'i. At this point we must recall that for large a values the heat flux 
behaves as TV oc Ra1/3, which corresponds to a flow controlled by wall boundary 
layers; and also, that recent experiments with gaseous helium (a ~ 1) by Threlfall 
(1975), and Castaing et al. (1989) give N oc Ra2/7, which corresponds, according 
to the scaling done by the latter authors, to a shared control of both internal and 
wall boundary layers. The increasing value of the exponents 1/4 < 2/7 < 1/3 
corresponds to an increasing dominance of the wall boundary layers with respect 
to internal boundary layers - please, notice that 2/7 is the simplest integer ratio 
between 1/4 and 1/3. 

The lack of well defined criteria for choosing the exponent n in the expression 
N oc (Raa)n is a real shortcoming for stellar convection. The above discussion 
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shows n to be in the range n = 0.25 — 0.50, with some preference for the smaller 
values, but the physics depends on the evaluation of very subtle balances, and 
detailed modeling is required. 

3.2 A final remark 

Shear layers are induced by the presence of a toroidal component in the turbu
lent flow, and this may also result in the enhancement of the horizontal velocity 
components of the Reynolds stresses. Clear indications of non-equipartition of en
ergy between the poloidal and toroidal velocity components have been reported by 
Massaguer et al. (1990). Such a large scale anisotropic transport has been invoked 
a number of times as a mechanism for redistributing angular momentum on the 
solar surface, mostly in the context of the differential rotation but, to the best of 
our knowledge, low a modeling has not even been attempted. 
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