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Abstract

We use a change-of-variable formula in the framework of functions of bounded variation
to derive an explicit formula for the Fourier transform of the level crossing function of
shot noise processes with jumps. We illustrate the result in some examples and give some
applications. In particular, it allows us to study the asymptotic behavior of the mean
number of level crossings as the intensity of the Poisson point process of the shot noise
process goes to infinity.
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1. Introduction

In this paper we consider a shot noise process which is a real-valued random process given
by

X(t) =
∑
i∈Z

βig(t − τi), t ∈ R, (1)

where g is a given (deterministic) measurable function (it will be called the kernel function of
the shot noise), the {τi}i∈Z are the points of a homogeneous Poisson point process on the line
of intensity λ > 0, and the {βi}i∈Z are independent copies of a random variable β (called the
impulse), independent of {τi}i∈Z.

Such a process has many applications (see [16] and the references therein for instance), and
it is a well-known and well-studied mathematical model (see [5], [10], and [15] for some of its
properties).

We will be interested here in the level crossings of such a process. Usually, the mean
number of level crossings of a stochastic process is computed thanks to Rice’s formula (see
[1] or [12]), which requires some regularity conditions on the joint probability density of X
and of its derivative. This joint probability density is generally not easy to obtain or to study.
Its existence is also sometimes in question. This is why, instead of working directly with the
mean number of level crossings, we will work with the Fourier transform of the function that
maps each level α to the mean number of crossings of the level α per unit length. Thanks to
a change-of-variable formula, we relate this Fourier transform to the characteristic function of
the shot noise process (which, unlike the probability density, always exists and is explicit).
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Level crossings of shot noise processes with jumps 101

2. General result

In [3] we studied the level crossings of the shot noise process X when the kernel function g
is smooth on R. In this paper we will consider the case where g is a piecewise smooth function,
which is not necessarily continuous. We first introduce some definitions and notation.

Let I be an open interval of R, and let k ≥ 0 be an integer. A function f : I → R is said to
be piecewise Ck on I if there exists a finite set of points of discontinuity of f on I , denoted by

Sf = {s1, s2, . . . , sm} with m ≥ 1 and s1 < · · · < sm,

called the jump set of f on I , so that f is of class Ck at any point s of I such that s /∈ Sf .
We moreover assume that f admits finite left and right limits at each point of Sf . For a point
s ∈ I , we denote by

f (s+) = lim
t→s, t>s

f (t) and f (s−) = lim
t→s, t<s

f (t)

the respective right and left limits of f at s. Note that when s /∈ Sf , we simply have f (s+) =
f (s−) = f (s). We will also use the following notation: for all s ∈ I ,

f ∗(s) := max{f (s+), f (s−)}, f∗(s) := min{f (s+), f (s−)}, (2)

and
�f (s) := f (s+)− f (s−).

Finally, when k ≥ 1 or k ≥ 2, we will respectively denote by f ′ and f ′′ the functions that are
defined at all points s /∈ Sf by the usual derivatives f ′(s) and f ′′(s).

In the sequel we will need assumptions on the kernel function g and on the impulse β of the
shot noise processX defined by (1). These assumptions are grouped together into the following
condition:

(C) E(|β|) < ∞, g is piecewise C2 on R, and g, g′, g′′ ∈ L1(R).

We will also denote the jump set of g on R by

Sg = {t1, t2, . . . , tn} with t1 < · · · < tn.

As a consequence of (C), g has finite total variation on R, which means that

TV(g,R) = sup
P

nP∑
k=1

|g(ak)− g(ak−1)| =
∫

R

|g′(s)|ds +
n∑
j=1

|�g(tj )| < ∞,

where the supremum is taken over all partitions P = {a0, . . . , anP } of R with nP ≥ 1 and
a0 < · · · < anP .

Finally, we assume that the points {τi} of the Poisson point process are indexed by points
from Z in such a way that, for any k ∈ N, we have 0 < τ0 < τ1 < τ2 < · · · < τk < · · · and
0 > τ−1 > τ−2 > · · · > τ−k > · · · .

2.1. Piecewise regularity of the shot noise process

The shot noise process ‘inherits’ the regularity of the kernel function g. More precisely, we
have the following result.
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102 H. BIERMÉ AND A. DESOLNEUX

Theorem 1. Assume that condition (C) holds. Then the shot noise process X defined by (1) is
a stationary process which is almost surely piecewise C1 on any interval (a, b) of R. The jump
set of X on (a, b) is

SX ∩ (a, b), where SX =
⋃
i∈Z

(τi + Sg),

and, for all t /∈ SX,
X′(t) =

∑
i∈Z

βig
′(t − τi).

Proof. Note that, since E(|β|) < ∞ and g ∈ L1(R), for any t ∈ R, the random variable
X(t) is well defined and E(X(t)) = λE(β)

∫
R
g(s) ds, according to [16]. Moreover, since the

Poisson point process is homogeneous, X is a stationary process.
Let us first remark that since the jump set Sg of g contains exactly n points, we can write g as

the sum of 2n piecewiseC2 functions on R, each of them having only one discontinuity point and
having the same regularity properties as g. Therefore, we may and will assume that g has only
one discontinuity point and we write Sg = {t1}. Let i0 ∈ Z. We set Ii0 := [t1 + τi0 , t1 + τi0+1].
Then, for any t ∈ R,

X(t) =
∑
i>i0+1

βig(t − τi)+
∑
i<i0

βig(t − τi)+ βi0g(t − τi0)+ βi0+1g(t − τi0+1).

The function t �→ g(t − s) is C2 on Ii0 for any s < τi0 so that, almost surely (a.s.), for any
i < i0, the function t �→ g(t−τi) isC2 on Ii0 with g((t1 + τi0 − τi)+) = g((t1 + τi0 − τi)−).
Moreover,

E

(∑
i<i0

|βi | sup
t∈Ii0

|g′(t − τi)|
∣∣∣∣ τi0 , τi0+1

)
= λE(|β|)

∫ 0

−∞
sup
t∈Ii0

|g′(t − s − τi0)| ds,

using the fact that {τi − τi0; i < i0} is a homogeneous Poisson point process with intensity λ
on (−∞, 0), and independent of τi0 and τi0+1. Now, for any t ∈ Ii0 and s < 0,

g′(t − s − τi0) =
∫ t

t1+τi0
g′′(u− s − τi0) du+ g′(t1 − s),

so that, by the Fubini–Tonelli theorem,∫ 0

−∞
sup
t∈Ii0

|g′(t − s − τi0)| ds ≤ (τi0+1 − τi0)

∫
R

|g′′(s)| ds +
∫

R

|g′(s)| ds.

Then

E

(∑
i<i0

|βi | sup
t∈Ii0

|g′(t − τi)|
)

≤ λE(|β|)
(

1

λ

∫
R

|g′′(s)| ds +
∫

R

|g′(s)| ds

)
< ∞,

so that, a.s., the series t �→ ∑
i<i0

βig
′(t − τi) is uniformly convergent on Ii0 . Therefore, a.s.,

the series t �→ ∑
i<i0

βig(t − τi) is continuously differentiable on Ii0 with(∑
i<i0

βig(t − τi)

)′
=

∑
i<i0

βig
′(t − τi)

and
∑
i<i0

βig((t1 + τi0 − τi)+) =
∑
i<i0

βig((t1 + τi0 − τi)−).
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The same proof applies for
∑
i>i0+1 βig(t − τi). To conclude, it is sufficient to remark that,

for i ∈ {i0, i0+1}, the function t �→ g(t−τi) is continuously differentiable in the interior of Ii0 .
Moreover, g((t1 + τi0 − τi0+1)+) = g((t1 + τi0 − τi0+1)−), g((t1 + τi0 − τi0)+) = g(t1+),
and g((t1 + τi0 − τi0)−) = g(t1−). Finally, a.s.,X is continuously differentiable in the interior
of Ii0 with

X′(t) =
∑
i

βig
′(t − τi),

and X((t1 + τi0)+)−X((t1 + τi0)−) = βi0(g(t1+)− g(t1−)). This completes the proof of
the theorem since R = ⋃

i0∈Z
Ii0 .

Remark 1. Theorem 1 implies that, under condition (C), the shot noise process X a.s. has a
finite total variation on any interval (a, b) of R. By stationarity we can focus on what happens
on the interval (0, 1). Then X a.s. has a finite number of points of discontinuity in (0, 1) and
its total variation on (0, 1) is given by

TV(X, (0, 1)) =
∫ 1

0
|X′(t)| dt +

n∑
j=1

∑
τi∈(−tj ,1−tj )

|βi ||�g(tj )|.

2.2. Level crossings

We start this section with a general definition and a result on the level crossings of a piecewise
smooth function.

Let f be a piecewiseC1 function on an interval (a, b) of R. We can define its level crossings
on (a, b) by considering, for any level α ∈ R,

Nf (α, (a, b)) = #{s ∈ (a, b); f∗(s) ≤ α ≤ f ∗(s)} ∈ N ∪ {∞},
where we have used the notation given in (2) and #{·} to denote the number of elements of the
set {·}. The number Nf (α, (a, b)) may be infinite. This is, for instance, what happens if there
exists a subinterval of (a, b) on which f is constant and equal to α (the value α is then called
a critical value of f ). But, according to the Morse–Sard theorem (see [13, p. 10]), the set of
these critical values has Lebesgue measure 0. Let us also mention that a weak variant of the
Morse–Sard theorem for Lipschitz functions can be found in [8, p. 112].

Then, a change-of-variable formula for piecewise C1 functions is obtained in the following
proposition.

Proposition 1. Let a, b ∈ R with a < b and f be a piecewise C1 function on (a, b). Then, for
any bounded continuous function h defined on R,

∫
R

h(α)Nf (α, (a, b)) dα =
∫ b

a

h(f (s))|f ′(s)| ds +
∑

s∈Sf∩(a,b)

∫ f ∗(s)

f∗(s)
h(α) dα. (3)

Proof. Let us assume that Sf ∩ (a, b) = {sj ; 1 ≤ j ≤ m} with m ≥ 1 and s0 := a < s1 <

· · · < sm < sm+1 := b. Then

Nf (α, (a, b)) =
m∑
j=0

#{s ∈ (sj , sj+1); f (s) = α} +
m∑
j=1

1[f∗(sj ),f ∗(sj )](α). (4)

https://doi.org/10.1239/jap/1331216836 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1331216836
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Let h be a bounded continuous function on R. According to the change-of-variable formula for
Lipschitz functions (see [8, p. 99]), for any j = 0, . . . , m, we have∫

R

h(α)#{s ∈ (sj , sj+1); f (s) = α} dα =
∫ sj+1

sj

h(f (s))|f ′(s)| ds.

Summing these equalities over j = 0, . . . , m, and using (4), completes the proof.

Note that a change-of-variable formula for functions of bounded variation was also obtained
by Choski and Fonseca [6]. However, their formula is valid away from the jump set of f ,
whereas (3) explicitly takes into account the contribution of the jump set. Let us also mention
the fact that (3) is a kind of extension of Banach’s theorem used by Rychlik [17, p. 335]. The
main difference between our approach and that of Rychlik is that (3) involves a function h
that is not necessarily constant; however, we restrict ourselves to a piecewise C1 function f ,
whereas Banach’s theorem is valid for functions of bounded variation.

Now we consider the shot noise process X. For α ∈ R, let NX(α) be the random variable
that counts the number of crossings of the level α by the processX in the interval (0, 1). Using
(2), it is defined by

NX(α) = #{t ∈ (0, 1);X∗(t) ≤ α ≤ X∗(t)}.
We will be mainly interested in its expectation, namely in

CX(α) = E(NX(α)).

The function α �→ CX(α) is called the mean level crossing function and we compute its Fourier
transform in the following theorem. This result has to be related to the heuristic approach of
Bar-David and Nemirovsky [2] (in particular their Equation (13), in which the joint density of
X(t) and X′(t) is given by Rice’s formula, whose validity was not checked by Bar-David and
Nemirovsky). Our theorem will involve the characteristic function of the shot noise process,
which is easily computable. Actually, if we define, for all u, v ∈ R,

ψ(u, v) = E(eiuX(0)+ivX′(0)) and F̂ (u) = E(eiuβ), (5)

then it is well known (see [16] for instance) that

ψ(u, v) = exp

(
λ

∫
R

(F̂ (ug(s)+ vg′(s))− 1) ds

)
. (6)

Theorem 2. Assume that condition (C) is satisfied. Then the mean level crossing function CX
belongs to L1(R) and∫

R

CX(α) dα = E(TV(X, (0, 1))) ≤ λE(|β|)TV(g,R).

Moreover, its Fourier transform, denoted by u �→ ĈX(u), is given by

ĈX(u) = E(eiuX(0)|X′(0)|)+ λE(eiuX(0))
1

iu

n∑
j=1

(E(eiu(βg)∗(tj ))− E(eiu(βg)∗(tj )))

for u �= 0 and by

ĈX(0) = E(TV(X, (0, 1))) = E(|X′(0)|)+ λE(|β|)
n∑
j=1

|�g(tj )|

for u = 0.
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Proof. According to Theorem 1, we can apply Proposition 1 so that, a.s., for any bounded
continuous function h defined on R,∫

R

h(α)NX(α) dα =
∫ 1

0
h(X(t))|X′(t)| dt +

∑
t∈SX∩(0,1)

∫ X∗(t)

X∗(t)
h(α) dα. (7)

Taking h = 1, we obtain

∫
R

NX(α) dα =
∫ 1

0
|X′(t)| dt +

∑
t∈SX∩(0,1)

|�X(t)| = TV(X, (0, 1)).

Using the stationarity of X′, we have E(
∫ 1

0 |X′(t)| dt) = E(|X′(0)|) ≤ λE(|β|) ∫
R

|g′(s)| ds
and

E

( ∑
t∈SX∩(0,1)

|�X(t)|
)

= λE(|β|)
n∑
j=1

|�g(tj )|.

Therefore,

∫
R

CX(α) dα ≤ λE(|β|)
(∫

R

|g′(s)| ds +
n∑
j=1

|�g(tj )|
)

≤ λE(|β|)TV(g,R).

Now, taking h(α) = eiuα for some u ∈ R with u �= 0 in (7), we obtain

∫
R

eiuαNX(α) dα =
∫ 1

0
eiuX(t)|X′(t)| dt +

∑
t∈SX∩(0,1)

∫ X∗(t)

X∗(t)
eiuα dα

=
∫ 1

0
eiuX(t)|X′(t)| dt +

n∑
j=1

A(j), (8)

where

A(j) := 1

iu

∑
τi∈(−tj ,1−tj )

eiuX((tj+τi )+)(eiumax(βi�g(tj ),0) − eiumin(βi�g(tj ),0)).

Now, let us write X((tj + τi)+) = ∑
τk �=τi βkg(tj + τi − τk)+ βig(tj+) and

B(u, tj , βi) := 1

iu
(eiu(βig)∗(tj ) − eiu(βig)∗(tj )),

such that

A(j) =
∑

τi∈(−tj ,1−tj )
exp

(
iu

∑
k �=i

βkg(tj + τi − τk)

)
B(u, tj , βi).

Then, for M > max1≤j≤n |tj | + 1, we consider

AM(j) =
∑

τi∈(−tj ,1−tj )
exp

(
iu

∑
k �=i, |τk |≤M

βkg(tj + τi − τk)

)
B(u, tj , βi)
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such that AM(j) → A(j) a.s. as M → +∞. We have

AM(j)
d=
NM∑
i=1

1(−tj ,1−tj )(Ui) exp

(
iu

NM∑
k=1, k �=i

βkg(tj + Ui − Uk)

)
B(u, tj , βi),

where (Uk)k∈N is an independent and identically distributed sequence of random variables of
uniform law on [−M,M] independent of (βk)k∈N, and NM is a Poisson random variable of
parameter 2λM , independent of (Uk)k∈N and (βk)k∈N. We adopt the convention that

∑0
i=1 = 0.

Now, by conditioning we obtain

E(AM(j)) =
+∞∑
m=0

E(AM(j) | NM = m)P[NM = m],

and then computing E(AM(j) | NM = m) for all m ≥ 0, using the independence of (Uk)k∈N

and (βk)k∈N, finally leads to

E(AM(j)) = λE(B(u, tj , β))
∫ 1−tj

−tj
exp

(
λ

∫ M+x+tj

−M+x+tj
(F̂ (ug(s))− 1) ds

)
dx,

where F̂ is given by (5). As a consequence, using Lebesgue’s theorem and (6) for E(eiuX(0)),
we obtain

E(A(j)) = λE(eiuX(0))E(B(u, tj , β)).

Finally, taking the expectation of both sides of (8) and using the stationarity of X leads to the
announced result for ĈX(u).

Proposition 2. Under condition (C), if we assume moreover that E(β2) < ∞ and that g′ ∈
L2(R), then, for u �= 0,

ĈX(u) = −1

π

∫ +∞

0

1

v

(
∂ψ

∂v
(u, v)− ∂ψ

∂v
(u,−v)

)
dv

+ λψ(u, 0)
1

iu

n∑
j=1

(E(eiu(βg)∗(tj ))− E(eiu(βg)∗(tj ))),

where ψ is given by (5).

Proof. Since g′ ∈ L1(R) and since g has a finite number of discontinuity points with finite
left and right limits, it follows that g ∈ L∞(R). Consequently, g ∈ L∞(R)∩L1(R) ⊂ L2(R).
Therefore, when E(β2) < ∞ and g′ ∈ L2(R), the characteristic function ψ of (X(0),X′(0))
is C2 on R

2. Then,
∫ +∞

0 (1/v)(∂ψ(u, v)/∂v − ∂ψ(u,−v)/∂v) dv is well defined and is the
Hilbert transform of the function v �→ ∂ψ(u, v)/∂v. Moreover, the computations of Theorem 1
in our previous paper [3] yield

E(eiuX(0)|X′(0)|) = −1

π

∫ +∞

0

1

v

(
∂ψ

∂v
(u, v)− ∂ψ

∂v
(u,−v)

)
dv.

This completes the proof.
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3. A particular case

The formula for ĈX(u) can become simpler in some cases. The first particular case is when
the kernelg is piecewise constant, since thenX′(0) = 0 a.s. and, thus, the term E(eiuX(0)|X′(0)|)
vanishes. Let us also make the following remark.

Remark 2. When β ≥ 0 a.s., then, for any h1 < h2 ∈ R, the function

u �→ 1

iu
ψ(u, 0)(F̂ (uh2)− F̂ (uh1))

is the Fourier transform of the function α �→ P[α − βh2 ≤ X(0) ≤ α − βh1], where β and
X(0) are taken to be independent.

We now give a simpler formula for ĈX(u) in the case where g is piecewise nonincreasing
(meaning that g′ ≤ 0 and, thus, g is nonincreasing on each of the intervals on which it is
continuous, but it can have jumps tj such that �g(tj ) = g(tj+) − g(tj−) > 0). In that case,
we have the following proposition.

Proposition 3. Assume that condition (C) holds. Assume moreover that β ≥ 0 a.s. and that
g′ ≤ 0. Then, for all u ∈ R,

ĈX(u) = 2λψ(u, 0)
1

iu

∑
{tj : �g(tj )>0}

(F̂ (ug(tj+))− F̂ (ug(tj−))), (9)

where ψ and F̂ are given by (5). As a consequence, for almost every α ∈ R,

CX(α) = 2λ
∑

{tj : �g(tj )>0}
P[α − βg(tj+) ≤ X(0) ≤ α − βg(tj−)], (10)

where β and X(0) are taken to be independent.

Proof. Since g′ ≤ 0, we have X′(0) ≤ 0 a.s. and, consequently,

E(eiuX(0)|X′(0)|) = − E(eiuX(0)X′(0)) = i
∂ψ

∂v
(u, 0).

Now, since g is piecewise nonincreasing and belongs to L1(R), we have lim|s|→+∞ g(s) = 0
and, thus, lim|s|→+∞ F̂ (ug(s)) = 1. Then, using (6) for ψ(u, v), we obtain

∂ψ

∂v
(u, 0) = λψ(u, 0)

∫
R

g′(s)F̂ ′(ug(s)) ds

= λψ(u, 0)

(∫ t1

−∞
g′(s)F̂ ′(ug(s)) ds

+
n−1∑
j=1

∫ tj+1

tj

g′(s)F̂ ′(ug(s)) ds +
∫ +∞

tn

g′(s)F̂ ′(ug(s)) ds

)
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= λψ(u, 0)
1

u

(
F̂ (ug(t1−))+

n−1∑
j=1

(F̂ (ug(tj+1−))− F̂ (ug(tj+)))

− F̂ (ug(tn+))
)

= λψ(u, 0)
1

u

n∑
j=1

(F̂ (ug(tj−))− F̂ (ug(tj+))).

Consequently, by Theorem 2 we obtain

ĈX(u) = λψ(u, 0)
i

u

n∑
j=1

(F̂ (ug(tj−))− F̂ (ug(tj+)))

+ λψ(u, 0)
1

iu

∑
{tj : �g(tj )>0}

(F̂ (ug(tj+))− F̂ (ug(tj−)))

+ 1

iu

∑
{tj : �g(tj )<0}

(F̂ (ug(tj−))− F̂ (ug(tj+)))

= 2λψ(u, 0)
1

iu

∑
{tj : �g(tj )>0}

(F̂ (ug(tj+))− F̂ (ug(tj−))).

This completes the proof of (9). Equation (10) follows from Remark 2, completing the proof
of the proposition.

A particular case of Proposition 3 is obtained by making the additional assumption that the
function g is positive and that it has only one positive jump at t1 = 0 from the value g(0−) = 0
to the value g(0+) > 0. Equation (9) then simply becomes

ĈX(u) = 2λψ(u, 0)
1

iu
(F̂ (ug(0+))− 1). (11)

This framework corresponds to the case studied by Hsing [11], who considered upcrossings
that are defined in the following way: the point t is an upcrossing of the level α by the process
X if it is a point of discontinuity of X and if X(t−) ≤ α and X(t+) > α. Then, Hsing proved
that the expected number of such points in (0, 1), denoted by U

(J)

X (α), is given by

U
(J)

X (α) = λP[α − βg(0+) < X(0) ≤ α], (12)

where β and X(0) are taken to be independent. Note that the left strict inequality comes from
the way Hsing defined upcrossings of the level α. Now, let us consider the usual definition
of upcrossings of the level α (see [7, p. 192]): the point t is an upcrossing of the level α
by the process X if there exists ε > 0 such that X(s) ≤ α in (t − ε, t) and X(s) ≥ α in
(t, t + ε); let us denote by UX(α) their expected number in (0, 1). In a similar way we can
define downcrossings of the level α. Let us remark that, since X is piecewise nonincreasing,
if moreover X is a.s. not identically equal to α in any interval of (0, 1) (this is satisfied, for
instance, when P[X(0) = α] = 0), then the crossings of the level α are either upcrossings as
defined by Hsing or downcrossings of the level α. Moreover, by stationarity of the process X,
the expected number of downcrossings of the level α is equal to UX(α) and the result of Hsing
yields

CX(α) = 2UX(α) = 2λP[α − βg(0+) < X(0) ≤ α]. (13)

https://doi.org/10.1239/jap/1331216836 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1331216836


Level crossings of shot noise processes with jumps 109

The result of Hsing given in (12) is stronger than the similar formula (10) because his formula
is valid for all levels α and moreover he needed weaker assumptions on the regularity of g.
On the other hand, his proof strongly relied on the facts that g has only one jump and that g is
identically 0 before that jump, and, thus, it cannot be generalized to other kernel functions g.

Finally, let us end this section by mentioning that we have studied here the case of a piecewise
nonincreasing kernel function g, but that, of course, similar results hold for a piecewise
nondecreasing kernel.

4. High intensity and Gaussian limit

We assume here that the assumptions of Proposition 2 hold. It is then well known (see [10]
and [15] for instance) that, as the intensity λ of the Poisson point process goes to infinity, the
normalized process Zλ defined by

t �→ Zλ(t) = Xλ(t)− E(Xλ(t))√
λ

,

whereXλ denotes a shot noise process (as defined by (1)) with intensity λ for the homogeneous
Poisson point process, converges to a centered Gaussian process with covariance R(t) =
E(β2)

∫
R
g(s)g(s − t) ds.

Now, how does the number of level crossings of Zλ behave as λ goes to +∞ ? To answer
this, we first determine the asymptotic expansion of the Fourier transform of CZλ as λ → +∞.

For u ∈ R, we have

ĈZλ(u) = 1√
λ
ĈXλ

(
u√
λ

)
e−iuE(Xλ(t))/

√
λ

= 1√
λ

E(eiu(Xλ(0)−E(Xλ(0)))/
√
λ|X′

λ(0)|)

+ λ

iu
E(eiu(Xλ(0)−E(Xλ(0)))/

√
λ)

n∑
j=1

(E(eiu(βg)∗(tj )/
√
λ)− E(eiu(βg)∗(tj )/

√
λ)).

From Section 4 of [3] we know that the first term on the right-hand side admits a limit as
λ → +∞, and, more precisely, as λ → +∞,

1√
λ

E(eiu(Xλ(0)−E(Xλ(0)))/
√
λ|X′

λ(0)|) =
√

2m2

π
e−m0u

2/2 + o(1),

wherem0 = E(β2)
∫

R
g2(s) ds andm2 = E(β2)

∫
R
g′2(s) ds. The second term is the product of

two terms and each admits an asymptotic expansion as λ → +∞. Indeed, assuming moreover
that g ∈ L3(R) and E(|β|3) < ∞, we have

E(eiu(Xλ(0)−E(Xλ(0)))/
√
λ) = exp

(
λ

∫
R

(
F̂

(
u√
λ
g(s)

)
− 1

)
ds − iu

√
λE(β)

∫
R

g(s) ds

)

= exp

(
−m0u

2

2
− im3u

3

3
√
λ

+ o

(
1√
λ

))

= e−m0u
2/2

(
1 + 2ium3

3m0
√
λ

)
+ o

(
1√
λ

)
,
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where m3 = E(β3)
∫

R
g3(s) ds. For a given jump number j, 1 ≤ j ≤ n, we have

√
λ

iu
(E(eiu(βg)∗(tj )/

√
λ)− E(eiu(βg)∗(tj )/

√
λ))

= E(|β|)|�g(tj )| + iu

2
√
λ

E(β2)|�g2(tj )| + o

(
1√
λ

)
.

Finally, we thus have

ĈZλ(u) = √
λe−m0u

2/2 E(|β|)
n∑
j=1

|�g(tj )|

+
(√

2m2

π
+ 2ium3

3m0
E(|β|)

n∑
j=1

|�g(tj )| + iu

2
E(β2)

n∑
j=1

|�g2(tj )|
)

e−m0u
2/2

+ o(1).

Let us comment on this result. When there are no jumps, ĈZλ(u) converges, as λ goes to ∞, to
(
√

2m2/π)e−m0u
2/2. This implies that CZλ(α) weakly converges to (

√
m2/π

√
m0)e−α2/2m0 ,

which is the usual Rice formula for the mean number of level crossings of Gaussian processes
(see [7, p. 194] for instance). Now, when there are jumps, the behavior of ĈZλ(u) is different,
since the main term in

√
λ does not vanish anymore. More precisely, ĈZλ(u)/

√
λ goes to

e−m0u
2/2 E(|β|)∑n

j=1 |�g(tj )|, which implies that

1√
λ
CZλ(α) → 1√

2πm0
e−α2/2m0 E(|β|)

n∑
j=1

|�g(tj )| as λ → ∞

in the sense of weak convergence.
Note also that taking u = 0 in the asymptotic formula for ĈZλ(u) gives the asymptotic

behavior of the total variation of Zλ. Indeed, we then have

E(TV(Zλ, (0, 1))) = ĈZλ(0) = √
λE(|β|)

n∑
j=1

|�g(tj )| +
√

2m2

π
+ o(1).

This kind of asymptotic behavior has also been studied by Galerne [9] in the framework of
random fields of bounded variation.

5. Some examples

5.1. Step functions

We start this section with some examples of explicit computations in the case of step
functions.

Example 1. Consider the simple example of a step function where the kernel g is a rectangular
function: g(t) = 1[0,a](t) with a > 0. Note that this is a very simple framework, which also
fits in the results of Hsing [11]. In this particular case X is piecewise constant a.s.

• If β = 1 a.s., we will prove that

CX(α) =
+∞∑
k=0

2λe−λa (λa)k

k! 1(k,k+1)(α) for all α ∈ R \ N. (14)
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Note that X takes values in N a.s., so CX is constant on any interval (k, k + 1) with
k ∈ N. Moreover, ψ(u, v) = exp(λa(eiu−1)), which shows, on the one hand, thatX(0)
follows a Poisson distribution with parameter λa so that CX(α) = +∞ for all α ∈ N.
On the other hand, by (11),

ĈX(u) = 2λ exp(λa(eiu − 1))
eiu − 1

iu
.

We recognize here the product of two Fourier transforms, a Poisson distribution and the
indicator function of [0, 1], from which we deduce (14).

• If the impulse β follows an exponential distribution of parameter µ > 0 then F̂ (u) =
µ/(µ− iu) and a simple computation gives ψ(u, v) = exp(λaiu/(µ− iu)). On the one
hand, the law of X(0) can be computed as

PX(0)(dx) = e−2aλδ0(dx)+
+∞∑
k=1

e−aλ (2aλ)k

k! fµ,k(x) dx,

where fµ,k is the probability density of the gamma distribution of parameters µ and k,
and δ0 is the Dirac measure at point 0. Then, P[X(0) = 0] > 0 so that CX(0) = +∞
and, for all α > 0, P[X(0) = α] = 0 so that, according to (13), CX is continuous on
(0,+∞). On the other hand,

ĈX(u) = 2λ exp

(
λa

iu

µ− iu

)
1

µ− iu
.

We recognize here the Fourier transform of a noncentral chi-square distribution, and,
thus, for all α > 0,

CX(α) = 2λµe−aλ−µαI0(2
√
aλµα),

where I0 is the modified Bessel function of the first kind of order 0; it is given by

I0(x) = 1

π

∫ π

0
ex cos θ dθ =

+∞∑
m=0

x2m

4m(m!)2 .

Example 2. Consider a ‘double rectangular’ function given by g(t) = 1[−1,0)(t)− 1[0,1)(t).
Note that this case does not fit into the framework of Hsing [11]. However, X is still piecewise
constant a.s.

• If β = 1 a.s. then simple computations show that

ĈX(u) = 4λ
sin u

u
exp(2λ(cos u− 1)).

The last term above is the characteristic function of the difference of two independent
Poisson random variables of the same parameterλ (it is also called a Skellam distribution).
Thus, as previously, we obtain CX(α) = +∞ for all α ∈ Z and, for all α ∈ R \ Z,

CX(α) =
+∞∑
k=−∞

4λpk 1(k,k+1)(α),
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where, for all k ∈ Z,

pk = e−2λ
+∞∑
n=0

λk+2n

n! (k + n)! .

• If β follows an exponential distribution of parameter µ, we can also explicitly compute

ĈX(u) = 4λµ

µ2 + u2 exp

(
−2λ

u2

µ2 + u2

)
.

5.2. Exponential kernel

In this subsection we consider an example that has been widely studied in the literature: the
impulse β follows an exponential distribution of parameter µ > 0, and the kernel function g is
given by g(t) = e−t 1[0,+∞)(t).

A simple computation gives the joint characteristic function of X(0) and X′(0) as

ψ(u, v) = µλ

(µ− iu+ iv)λ
for all u, v ∈ R.

Then, on the one hand, X(0) follows a gamma distribution so that P[X(0) = α] = 0 for all
α ∈ R, and CX is a continuous function on R according to (13). On the other hand, by (11) we
obtain

ĈX(u) = 2λµλ

(µ− iu)λ+1 .

We recognize here the Fourier transform of another gamma probability density. Thus,

CX(α) = 2λµλαλe−µα

�(λ+ 1)
1[0,+∞)(α) for all α ∈ R.

In the case where λ is an integer, an explicit formula for the mean number of level crossings
CX(α)was given by Orsingher and Battaglia [14] (but they used a completely different approach
based on the property that in the particular case of an exponential kernel, the process is
Markovian). Finally, let us also mention the work of Borovkov and Last [4], who gave a
version of Rice’s formula for the mean number of level crossings in the framework of piecewise-
deterministic Markov processes with jumps.
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