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We consider the tilting instability of a magnetically confined spheromak using
three-dimensional magnetohydrodynamic and relativistic particle-in-cell
calculations with an application to astrophysical plasmas, specifically those occurring
in magnetar magnetospheres. The instability is driven by the counter-alignment of the
spheromak’s intrinsic magnetic dipole with the external magnetic field. Initially, the
spheromak rotates – tilts – trying to lower its magnetic potential energy. As a result,
a current sheet forms between the internal magnetic field of a spheromak and the
confining field. Magnetic reconnection sets in; this leads to the annihilation of the newly
counter-aligned magnetic flux of the spheromak. This occurs on a few Alfvén time
scales. In the case of a higher-order (second-order) spheromak, the internal core is first
pushed out of the envelope, resulting in formation of two nearly independent tilting
spheromaks. Thus, the magnetically twisted outer shell cannot stabilize the inner core.
During dissipation, helicity of the initial spheromak is carried away by torsional Alfvén
waves, violating the assumptions of the Taylor relaxation theorem. In applications to
magnetar giant flares, fast development of tilting instabilities and no stabilization of the
higher-order spheromaks make it unlikely that trapped spheromaks are responsible for the
tail emission lasting hundreds of seconds.

Key words: plasma confinement

1. Introduction

Relaxation of a magnetized plasma is a fundamental problem in laboratory and space
plasma physics (Woltier 1958; Taylor 1974; Priest & Forbes 2000). In this work we
are particularly interested in the relaxation processes in highly magnetized astrophysical
plasmas, where the magnetic field controls the overall dynamics of the plasma, and
the dissipation of magnetic energy may power the observed high-energy emission.
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The most relevant astrophysical settings include magnetars (strongly magnetized neutron
stars possessing super-strong magnetic fields Thompson & Duncan 2001; Kaspi &
Beloborodov 2017), pulsars and pulsar wind nebulae (Gaensler & Slane 2006), jets of
active galactic nuclei and γ -ray bursters (Lyutikov 2006). All these objects are efficient
emitters of X-rays and γ -rays, and in the past two decades they have been subjects of
intensive observational study via a number of successful high-energy satellites. These
objects seem to share one important property – they include relativistic magnetized
plasmas, and often the plasma is magnetically dominated, i.e. the energy density of this
plasma is mostly contributed not by the rest mass energy of matter, but by the energy of
the magnetic field. This is dramatically different from laboratory plasmas, magnetospheres
of planets and interplanetary plasma. This extreme regime can only be probed (although,
indirectly) via observations of relativistic astrophysical sources, by unveiling the imprint
left by the magnetic field dissipation on the observed emission.

In addition to high (relativistic) magnetization, astrophysical plasmas differ from
laboratory ones by the absence of pre-arranged conducting walls. This has important
implications for stability and the applicability of the Taylor relaxation principle as we
discuss below.

2. Spheromaks and magnetohydrodynamic relaxation

Particularly important are static equilibria when magnetohydrodynamic (MHD)
equations demand

∇p = J × B, (2.1)

where p is plasma pressure, and J and B are the current density and magnetic field.
For magnetically dominated regimes, the pressure gradient is negligible, and plasma
equilibrium becomes a force-free equilibrium (Chandrasekhar & Kendall 1957)

J × B ≈ 0. (2.2)

Of particular importance is the Taylor state, where J ∝ ∇ × B = λB with spatially
constant λ. An initially turbulent plasma is expected to spontaneously relax (or
self-organize) to a simple, well-defined Taylor state. In a finite volume the system reaches a
state with the smallest possible λ (largest scale configurations). In a cylindrical geometry
the corresponding configurations – Lundquist states (Lundquist 1951) – are indeed the
endpoints of relaxation (Kadomtsev 1987). Importantly, Lundquist states are, in a sense,
connected to walls – they extend infinitely along the symmetry axis.

In a spherical geometry the force-free configurations with constant λ are called
spheromaks (Rosenbluth & Bussac 1979; Bellan 2000). Spheromaks have a number of
features that make them useful as basic plasma structures, the building blocks of plasma
models. First, spheromaks are not connected to any confining wall such as that of a
laboratory vessel or to coils and hence represent a ‘pure’ kind of plasma configuration
that could be achieved by internal plasma relaxation. Internally, spheromaks are simply
connected (not topological tori). Second, they represent a relaxed (Taylor) state – one
might expect that a turbulent plasma would spontaneously relax (or self-organize) to a
simple state resembling a spheromak.

Astrophysical plasmas like those found in magnetar magnetospheres (Thompson &
Duncan 2001; Lyutikov 2003; Komissarov, Barkov & Lyutikov 2006; Masada et al.
2010) are likely to evolve into a force-free configuration, effectively confined through
the creation of a system of nested poloidal flux surfaces. Given the appropriate initial
conditions, spheromaks can form spontaneously due to plasma instabilities and hence can
be hypothesized to form in an astrophysical environment. For example, it was suggested
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(a) (b)

(c) (d )

FIGURE 1. Slice in the xz plane of MHD simulation of the lowest-energy Taylor state. Times
indicated in the panels are in units of the Alfvénic crossing time tA = r0/vA. Colours indicate
plasma density while vectors depict B3D.

that spontaneous instabilities arising in plasmas can lead to a spheromak configuration,
which suggests that such configurations should occur in nature. Indeed, the magnetically
confined fireball picture has been invoked to explain coronal mass ejections arising in solar
flares (Ivanov & Kharshiladze 1985; Masada et al. 2010; Lyutikov & Gourgouliatos 2011)
and high-energy flaring/bursting activity of magnetars (Thompson & Duncan 2001;
Lyutikov 2003; Mastrano & Melatos 2008).

In this paper we are mostly interested in astrophysical applications, particularly in the
high magnetization regime. First, in that case the effects of a finite gyroradius are not
important. For example, in the magnetospheres of magnetars the magnetic field is of
the order of the quantum field, so that even at relativistic temperatures the gyro-radius
is only ∼10−11 cm, many orders of magnitude smaller than the expected overall size of
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(a) (b)

(c) (d )

FIGURE 2. Same as figure 1 but showing the value of toroidal magnetic field By (colour
scheme); vectors depict B3D.

∼106 cm. Thus, astrophysical configurations we are interested in are well in the MHD
regime. Secondly, stability of spheromaks and field-reversed configurations (FRC) in
laboratory setting depends on the arrangement of confining conducting walls (Rosenbluth
& Bussac 1979; Sato & Hayashi 1983; Belova et al. 2000, 2006). In contrast, astrophysical
configurations are generally expected to be less affected by the presence of conducting
walls. Spheromaks also present a simple analytically tractable configuration, as opposed
to FRC configurations where the initial state has to be calculated numerically.

In contrast to the cylindrical Lundquist case, the three-dimensional (3-D) magnetically
confined basic spheromaks are unstable in the absence of conducting walls (Rosenbluth &
Bussac 1979; Sato & Hayashi 1983). The basic reason for instability is that the magnetic
dipole moment of a trapped spheromak is anti-aligned with an external magnetic field. As
a result, a magnetically confined spheromak is intrinsically unstable and would prefer to
tilt to lower its magnetic potential energy. A number of authors considered the stabilizing
effects of conducting magnets on the evolution of the spheromak (Bondeson et al. 1981;
Finn, Manheimer & Ott 1981; Belova et al. 2001); see Jarboe (1994) for review of
spheromak research.

In this paper, we reanalyse the structure and time evolution of magnetically confined
spheromaks using 3-D MHD and particle-in-cell (PIC) simulations with an application to
astrophysical plasmas occurring in magnetar magnetospheres. Previously, reconnection
and particle acceleration due to current-driven instabilities in Newtonian, initially
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force-free plasmas in 2.5-D and 3-D scenarios using high-resolution simulations both
with a fixed grid and with adaptive mesh refinement were studied extensively in Ripperda
et al. (2017). In 2.5-dimensions, the two parallel repelling current channels in an initially
force-free equilibrium are first subject to a linear instability consisting of an antiparallel
displacement and thereafter undergo a rotation and twisting motion. They quantify the
growth rate of this tilting instability by a linear growth phase in the bulk kinetic energy
during which reconnection of magnetic field lines causes the formation of nearly singular
current sheets and secondary islands, leading to particle acceleration. Our 3-D MHD
simulation (§ 3.3 and figures 1 and 2) of the force-free spheromak clearly displays the
onset of a similar tilt instability and twisting motion which leads to magnetic reconnection
at the boundaries between the spheromak and the external field, causing the spheromak to
eventually dissipate.

3. Spheromak in external magnetic field
3.1. Basic spheromak

Let us first briefly recall the structure of magnetically confined spheromaks. In the
Grad–Shafranov formalism (Shafranov 1966; Grad 1967) the magnetic field can be
represented by a scalar flux function ψ in spherical coordinates

B = ∇ψ × ∇φ + λψ∇φ, (3.1)

where φ is the toroidal coordinate. An axisymmetric solution of (3.1) within a sphere of
radius r0 and constant λ is a spheromak (Rosenbluth & Bussac 1979; Bellan 2000).

Using (3.1) and the condition for the Taylor state, the Grad–Shafranov equation of
axisymmetric force-free toroidal plasma equilibrium can be represented in spherical
coordinates (Tsui 2008)

r2 ∂
2ψ

∂r2
+ sin θ

∂

∂θ

(
1

sin θ
∂ψ

∂θ

)
+ (λr)2ψ = 0 (3.2)

Equation (3.2) can be solved using separation of variables inside and outside the
spheromak.

Inside the spheromak, the magnetic field components are

Br = 2A0
λ

r
j1(λr) cos θ,

Bθ = −A0
λ

r
∂

∂r
(rj1(λr)) sin θ,

Bφ = A0λ
2j1(λr) sin θ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.3)

where, j1(λr) is spherical Bessel function of the first kind.
The radial and toroidal components of magnetic field vanish on the surface of the

spheromak which corresponds to j1(λr) = 0 at r = r0. This gives the smallest allowed
λ corresponding to the lowest-energy Taylor state

λ ≈ 4.493/r0. (3.4)

Outside the spheromak, the magnetic field is

Bex =
(

B0 cos θ − B0 cos θ
r3

0

r3
,−B0 sin θ − B0 sin θ

r3
0

2r3
, 0

)
, (3.5)
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where the magnetic field at very large distances asymptotes to a uniform field B0ẑ. Since,
the magnetic field at the surface of the spheromak is continuous, the constant A0 can be
related to the external magnetic field B0

A0 ≈ −0.342B0r2
0. (3.6)

3.2. Tilt instability of a spheromak in an external magnetic field
The basic magnetically confined spheromak is unstable. The easiest way to see this is
to note that a spheromak can be approximated as a magnetic dipole µ embedded in an
external magnetic field

µ = −B0r3
0

2
ẑ. (3.7)

Equation (3.7) shows that the magnetic moment of a spheromak is anti-aligned with the
external magnetic field and hence subject to tilt. Tilt instability of a spheromak has been
explored extensively by Bellan (2000) and Jardin (1986), both of which serve to validate
the arguments made in this paper.

In Bellan (2000) the spheromak is described as a small magnet between two large
magnets oriented anti-parallel to large external magnets, hence being unstable to tilting.
The flipping of a spheromak by 180◦ to lower its potential energy, however, causes
the external field to be such as to enhance rather than balance the spheromak hoop
force. Equilibrium is quickly lost and the spheromak will explode outwards at Alfvén
velocity. Our 3-D MHD simulations of § 3.3 show this dissipation of the spheromak after
undergoing tilt instability and aid us in estimating the dissipation time scale in units of the
Alfvénic crossing time.

In Jardin (1986), a spheromak is described simply as a rigid current carrying ring
and its various rigid instabilities like tilting, shifting and vertical motions are discussed
as modes which get activated depending on the value of the magnetic field index n =
−(r/B0)(∂B0/∂r) where B0 is the magnitude of the external vertical magnetic field. The
tilting mode is unstable for n < 1. For laboratory spheromak experiments, the growth
rate of these instabilities, which would eventually cause the spheromak to dissipate, is
estimated to be 1–10 μs. We estimate such a time scale for astrophysical plasmas using
results of our 3-D MHD simulations.

3.3. Three-dimensional MHD simulations of tilting instability
3.3.1. Numerical set-up

We perform 3-D MHD simulations of the lowest-energy Taylor state as described
by (3.3) and (3.4) as well as the 2-root spheromak with constant-density uniformly
magnetized plasma to explore their time evolution and test their stability. The simulations
were performed using a 3-D geometry in Cartesian coordinates using the PLUTO code1

(Mignone et al. 2007). PLUTO is a modular Godunov-type code entirely written in C,
intended mainly for astrophysical applications and high Mach number flows in multiple
spatial dimensions and designed to integrate a general system of conservation laws

∂U
∂t

= −∇.T (U)+ S(U), (3.8)

where U is the vector of conservative variables and T (U) is the matrix of fluxes associated
with those variables. For our ideal MHD set-up, no source terms are used and U

1http://plutocode.ph.unito.it/index.html
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and T are

U =

⎛
⎜⎜⎜⎜⎝

ρ

m

B

E

⎞
⎟⎟⎟⎟⎠ , T (U) =

⎡
⎢⎢⎢⎢⎣

ρv

mv − BB + ptI

vB − Bv

(E + pt)v − (v.B)B

⎤
⎥⎥⎥⎥⎦

T

, (3.9a,b)

where ρ, v and p are density, velocity and thermal pressure. m = ρv, B is the magnetic
field and pt = p + |B|2/2 is the total (thermal + magnetic) pressure, respectively.
Magnetic field evolution is complemented by the additional constraint ∇ · B = 0. Total
energy density E

E = p
Γ − 1

+ 1
2

( |m|2
ρ

+ |B|2
)
, (3.10)

along with an isothermal equation of state p = c2
sρ provides the closure; Γ and cs are

the polytropic index and isothermal sound speed, respectively. MP5_FD interpolation, a
third-order Runge–Kutta approximation in time, and an Harten–Lax–Van Leer Riemann
solver are used to solve the above ideal MHD equations.

The plasma has been approximated as an ideal, non-relativistic adiabatic gas, one
particle species with a polytropic index of 5/3. The size of the domain is x ∈ [−2, 2]
and y ∈ [−2, 2], z ∈ [−3.3, 3.3]. To better resolve the evolution of the spheromak,
non-uniform resolution is used in the computational domain with total a number of cells
NX = NY = 312 and NZ = 520. We also check that decreasing the resolution by a factor
of two, that is, NX = NY = 156 and NZ = 260, does not affect the simulation results.
Convergence will be evident later in figures 4 and 5. Outflow boundary conditions are
applied in all three directions.

In the simulation, values for constant external magnetic field B0, radius of spheromak r0
and plasma density ρ were set to 0.3, 0.75 and 1 respectively. With a magnetization σ =
B2

0/ρ = 0.09, the Alfvén speed vA is only mildly relativistic and given by vA = B0/
√
ρ =

0.3. Our motive here is to place more stress on astrophysical applications, in particular
magnetar magnetospheres, where the Alfvén velocity is expected to be relativistic; B0, r0
and ρ are used to estimate a time scale of propagation of magnetic oscillations within
the spheromak in terms of the Alfvénic crossing time tA = r0/vA = 2.5. The time scale
over which the spheromak disrupts is estimated later in units of tA. Projections of total
magnetic field and current density in the xz plane are denoted by B3D and J respectively.
All quantities are given in code units which are normalized cgs values

ρ = ρcgs

ρn
, v = vcgs

vn
, p = pcgs

ρnv2
n

, B = Bcgs√
4πρnv2

n

, (3.11a–d)

where ρ, v, p and B are density, velocity, pressure and magnetic field. Time is given in
units of tn = Ln/vn. The normalization values used are ρn = 1.67 × 10−23 gr cm−3, Ln =
3.1 × 1018 cm and vn = 105 cm s−1.

3.3.2. Tilting instability of basic spheromak
We perform two types of simulations: one with resolution 312 × 312 × 520 (I) and

another with resolution 156 × 156 × 260 (II). The following discussion describes results
for simulation (I). Figures 1, 2 and 3 display the time evolution of a basic magnetically
confined spheromak. Shown are the 2-D (xz plane) slices of a 3-D simulation. Vectors
in figures 1 and 2 denote the total magnetic field projected in the xz plane and those in
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(b)(a)

(d )(c)

FIGURE 3. Same as figure 1 showing the value of the toroidal current density Jy (colour) and
vectors J . Panel (c) clearly shows the formation of a surface current sheet as the spheromak
rotates.

figure 3 depict total current density projected in the xz plane. Colour bars in figure 1 show
plasma density, those in figure 2 show toroidal magnetic field By and those in figure 3 show
toroidal current density Jy. Starting from t = 0, the spheromak is captured at subsequent
time instants where significant changes to its morphology can be observed.

Initially, at t = 0, the constant density plasma is in the relaxed lowest-energy state –
a spheromak composed of magnetic islands shown by red and blue blobs in figure 2
symmetrical on either side of the x = 0 (z) axis, depicting poloidal and toroidal
components of magnetic field. Magnetic field at the centre of spheromak is −B0ẑ, that
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(a) (b)

(c)

FIGURE 4. (a) Time evolution of the tilt angle θ in log–linear scale. (b) Time evolution of
〈E2

tot〉/〈E2
m〉 in log–linear scale. (c) Time evolution of Etot at the centre of spheromak in log–linear

scale. In all three, a clear phase of exponential growth can be seen (green dotted line). From the
plots, (π − θ) ∝ exp (0.64vAt/r0), 〈E2

tot〉/〈E2
m〉 ∝ exp (0.8vAt/r0) and Etot ∝ exp (0.6vAt/r0).

The spheromak dissipates in ∼20tA over which instability grows linearly with a growth rate
of 0.64/tA. Vertical dashed lines indicate the time snapshots used for figures 1 and 2.

(a) (b)

FIGURE 5. (a) Time evolution of box-averaged total magnetic energy for the two different
resolutions. Total magnetic energy is plotted in terms of 〈B2

tot〉/〈B2
m〉. Approximately 30 % of

the initial magnetic energy in the simulation box is dissipated when the spheromak tilts and
starts dissipating, eventually hitting the walls. (b) Time evolution of rate of magnetic energy
release. Initially, there is a steady increase in the rate until 
8tA after which magnetic energy is
released at a constant rate throughout the duration of tilt instability growth. Green dashed lines
indicate the time snapshots used for figures 1 and 2.
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is, the spheromak’s magnetic moment is anti-aligned with the external magnetic field. A
basic spheromak is thus unstable against tilt.

Spheromak begins to tilt immediately after t = 0. At t ∼ 14.4tA, the plasma density
inside the spheromak decreases slightly. This is because once dissipation starts, some of
the trapped magnetic energy is converted into heat and at the same time magnetic tension
within the spheromak decreases. As a result, the spheromak expands and plasma density
decreases. At t ∼ 22.4tA, tilting is clearly visible; spheromak starts to rotate about the
centre and tries to align its magnetic moment with the external field to lower its energy.
As the spheromak tilts, the matching of internal and external magnetic fields no longer
holds, resulting in a current sheet formation on its surface and the onset of magnetic
reconnection. The current density plot in figure 3(c) clearly shows the formation of this
current sheet on the surface of spheromak. It should be noted that while there is no
resistivity in ideal MHD, the process responsible for dissipation, current sheet formation
and magnetic reconnection is numerical resistivity arising due to errors introduced by
spatial and temporal discretization.

The simulation terminates at t ∼ 30.4tA, when plasma hits the walls of the simulation
domain. In this quasi-final state, which marks the partial disruption of the spheromak,
plasma becomes less dense, magnetic islands rotate fully and magnetic field lines near the
centre are aligned with the z-axis. In figure 1, smaller magnetic islands are still seen about
the centre and the magnetic field at their edges is opposite to the external field. Current
sheets are still visible around these residual magnetic islands, as seen in figure 3(d). If the
simulation is made to run longer, these magnetic islands will also reconnect at the edges
and dissipate. The three-dimensional MHD simulation of the lowest-energy Taylor state
is concurrent with the argument made in § 3.2 that a spheromak confined in an external
magnetic field is intrinsically unstable; it first tries to tilt to lower its energy and eventually
dissipates.

3.3.3. Tilt instability growth rate and magnetic energy dissipation
Figure 4 depicts the time evolution of θ , 〈E2

tot〉/〈E2
m〉 and Etot for the two different

resolutions (I) and (II) and also show convergence. Here, θ is the tilt angle defined as the
angle between the total magnetic field at the origin and the z-axis, 〈E2

tot〉 is the box-averaged
squared of total electric field, 〈E2

m〉 is the maximum value of 〈E2
tot〉 and Etot is the total

electric field at the centre of the spheromak. We choose to normalize the box-averaged
squared total electric field by its maximum value in the box assuming the maximum value
to remain constant for the duration of the simulation. This helps to visualize the behaviour
of the electric field for both resolutions simultaneously. We also checked the behaviour of
the y component of the electric field Ey at the spheromak’s centre and box-averaged 〈E2

y〉
and they show the same trend as Etot at the centre and box-averaged 〈E2

tot〉 respectively.
Panel (a) shows an initially anti-aligned spheromak with θ ≈ π radians. For

simulation (I), a straight line fit to the linear phase of the plot clearly depicts an
exponential growth of instability within the spheromak from t 
 5tA to t 
 24tA where
θ

′ = (π − θ) ∝ exp (0.64vAt/r0). We can quantify the growth rate of tilting through an
angle θ ′ by

γt = 1
θ

′
dθ ′

dt
(3.12)

giving γt = 0.64/tA.
The time scale of dissipation of the spheromak is ∼20tA. Similar fits to the linear phase

of (b,c) give 〈E2
tot〉/〈E2

m〉 ∝ exp (0.8vAt/r0) and Etot ∝ exp (0.6vAt/r0). Here, we use three
distinct measures to estimate the instability growth rate and it is seen that they are slightly
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(a) (b) (c)

FIGURE 6. Qualitative evolution of tilting instability. Plotted are poloidal magnetic field lines
in the xz plane. Initial spheromak (a) is unstable to tilting, so that the spheromak flips over (b),
creating current sheets on the surfaces (highlighted in red-dashed lines). At the core the field
inside the spheromak is aligned with the external field (grey circle at the centre). Reconnection
at the surface connects the internal field lines to the external field (c) – newly reconnected field
lines are highlighted in red. At the same time the external field connects to the fields close to
the centre. At this stage there is a donut-shaped toroidal configuration with still counter-aligned
fields – this is clearly seen in simulations, panel (d) in figures 1 and 2.

different but consistent with each other. These results are also in good agreement with the
analysis using PIC simulation, which will be shown in § 3.6.

We also plot the time evolution of box-averaged total magnetic energy in terms of
〈B2

tot〉/〈B2
m〉 and time evolution of rate of magnetic energy release for the two different

resolutions. Here, 〈B2
tot〉 is the box-averaged squared total magnetic field, 〈B2

m〉 is the
maximum value of 〈B2

tot〉 and EB is the magnetic energy in the box. Figure 5 shows that the
results are independent of resolution. Panel (a) shows that approximately 30 % of the total
magnetic energy is dissipated from the box during the entire evolution of the spheromak
from t = 0 to t = 30.4tA. Interestingly, as shown in panel (b), the rate of magnetic energy
release stays almost constant during the exponential growth of instability.

For simulation (I), we can also estimate an initial magnetic flux in the xy plane by
summing the value of the z component of magnetic field over an xy slice at t = 0; we find
that it is smaller than the value of B0 × Nx × Ny, the total magnetic flux in the box without
an embedded spheromak. This is due to the fact that magnetic field lines effectively get
pushed out of the simulation box once a spheromak is introduced. Thus, it is not very
physical to track the time evolution of excess energy in the box (e.g. the difference between
the total magnetic energy within the box in the presence of spheromak and energy in the
constant magnetic field).

3.4. Qualitative picture of spheromak instability
The time evolution of lowest-energy Taylor state described in § 3.3.2 by 3-D MHD
simulations can be described qualitatively, see figure 6. Approximately, the spheromak
first flips by 180◦, and then reconnects the part of the magnetic flux counter to the external
magnetic field.

Let us discuss the properties of the configuration after the spheromak flips but before
any substantial dissipation sets in. In the equatorial plane θ = π/2 there exists a disk of
radius r∗ = 2.74/λ, defined by the condition Bθ = 0 (it is depicted by the grey circle at the
centre of panels a,b in figure 6) within which all field lines point along the external field
and whose boundary separates it from the region where the field lines are opposite to the
external field. This poloidal magnetic field which is directed opposite to the external field
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(a) (b) (c)

(d) (e)

FIGURE 7. Slice in the xz plane of MHD simulation of 2-root spheromak with λ ≈ 7.725/r0.
Times are indicated in the panels in units of the Alfvénic crossing time tA = r0/vA. Colours
indicate plasma density while vectors depict B3D. The 2-root spheromak goes from being
symmetrical to the inner spheromak almost totally detaching from the outer one in ∼9.6tA.

constitutes a poloidal flux ψopp in the equatorial plane that would eventually reconnect
with the external field. We estimate this flux using (3.3) in the following discussion.

The total poloidal flux through the spheromak is zero,
∫ r0

0 Bθ2πr dr = 0, composed of
two counter-aligned contributions at r < r∗ and r > r∗, each of value

ψopp =
∫ r∗

0
Bθ2πr dr = 2.26B0r2

0. (3.13)

This is the amount of poloidal flux in the equatorial plane that reconnects and eventually
dissipates. Panel (c) in figure 6 shows partial dissipation of the spheromak where newly
connected field lines are highlighted in red. At the same time external field connects to the
fields close to the centre. At this stage there is a donut-shaped toroidal configuration with
still counter-aligned fields. This is clearly seen in the last panels of 3-D MHD simulations
of figures 1 and 2.

3.5. Evolution of the second-order spheromak
In addition to the lowest-energy Taylor state, we also simulated the second-order
spheromak, corresponding to the second zero of the spherical Bessel function, λ ≈
7.725/r0, see figure 7. This case can be thought of as an example of a twisted magnetic
configuration (the inner core), confined by another twisted configuration (the outer shell).
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(a) (b)

FIGURE 8. (a) Time evolution of box-averaged total magnetic energy in terms of 〈B2
tot〉/〈B2

m〉.
Approximately 23 % of the initial magnetic energy in the simulation box is dissipated when
the 2-root spheromak goes from being symmetrical to the inner spheromak almost totally
separating from the outer one. (b) Time evolution of rate of magnetic energy release. There
is a gradual increase in the rate throughout the entire evolution. Green dashed lines indicate the
time snapshots used for figure 7.

In these simulations the size of the domain is x ∈ [−2, 2], y ∈ [−2, 2] and z ∈ [−2, 2].
Uniform resolution is used in the computational domain with total number of cells NX =
NY = NZ = 520. At time ∼7tA, the inner spheromak starts to get expelled from the outer
one. By the time ∼9.6tA, the smaller inner spheromak almost totally disconnects from the
outer spheromak; the density within it decreases considerably due to magnetic dissipation.
After the expulsion of the inner core the two spheromaks evolve nearly independently,
similar to the basic spheromak case considered in § 3.3.3.

Similar to the basic spheromak, we show the time evolution of box-averaged total
magnetic energy in terms of 〈B2

tot〉/〈B2
m〉 and time evolution of rate magnetic energy release

in figure 8. Panel (a) shows that approximately 23 % of the total magnetic energy is
dissipated from the box during the entire evolution of the 2-root spheromak from t = 0
to t = 9.6tA. Panel (b) depicts that magnetic energy is released at an increasing rate
throughout the evolution, unlike the basic spheromak where there was a nearly flat phase
during the instability growth.

3.6. PIC simulation of basic spheromak
We have supplemented our MHD simulations with PIC simulations performed with the
3-D electromagnetic PIC code TRISTAN-MP (Buneman 1993; Spitkovsky 2005). We
employ a 3-D cube with 1440 cells on each side, and periodic boundary conditions in
all directions. The domain is initialized with a uniform density of cold electron–positron
plasma, with 2 computational particles per cell. The skin depth c/ωp is resolved with 2.5
cells. The radius r0 of the spheromak is 50 c/ωp = 125 cells. The strength of the magnetic
field B0 is calibrated such that the magnetization σ = B2

0/(4πn0 mc2) = 10, where n0 is
the total particle density, m the electron (or positron) mass and c the speed of light. This
implies that the Alfvén speed vA = c

√
σ/(1 + σ) 
 0.95c.

Figure 9 shows the evolution of the magnetic field By/B0 in the xz plane passing
through the centre of the spheromak. Arrows represent the Bx and Bz components in
that plane. The top left panel presents the initial state of the system. At early times
(panel b), the configuration is still close to the initial conditions, while at later times
(panel c) the spheromak starts to tilt, in analogy with the MHD simulations presented
above. The final state of the system (panel d) is also similar to the MHD results.

https://doi.org/10.1017/S0022377820000768 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000768


14 R. Mehta, M. Barkov, L. Sironi and M. Lyutikov

(a) (b)

(c) (d )

FIGURE 9. PIC simulation of the time evolution of the lowest-order Taylor state. Times are
indicated in the panels in units of the Alfvènic crossing time tA = r0/vA. Colours indicate the
value of By/B0 in the xz plane going through the centre of the spheromak, while arrows indicate
the Bx and Bz components.

Further insight into the growth of the tilt instability is presented in figure 10, where
we show the evolution of box-averaged 〈E2

y〉/B2
0, where Ey is the y-component of electric

field. Vertical dashed lines indicate the time snapshots used for figure 9. A clear phase of
exponential growth can be seen from t/tA 
 3 to t/tA 
 6, with an 〈E2

y〉 growth rate 
vA/r0

(dotted line). We have checked that the growth rate scales as r−1
0 by performing a similar

simulation with r0 = 75 c/ωp. The measured growth rate of the instability is in agreement
with that estimated from MHD simulations.
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FIGURE 10. From the PIC simulation of the lowest-order Taylor state, we show the time
evolution of box-averaged 〈E2

y 〉/B2
0 in log–linear scale, where Ey is the y-component of electric

field. Vertical dashed lines indicate the time snapshots used for figure 9. A clear phase of
exponential growth can be seen from t/tA 
 3 to t/tA 
 6, with 〈E2

y 〉 ∝ exp (vAt/r0) (dotted
line).

4. Discussion and conclusions

In this paper we consider the tilting instability of magnetically confined spheromaks
using 3-D MHD and PIC simulations. We consider the astrophysically important mildly
relativistic regime, when the Alfvén velocity approaches the velocity of light. In addition
to the basic spheromak (Ripperda et al. 2017) we also consider a second-order spheromak,
as an example of a magnetically twisted configuration (the inner core) confined by the
magnetically twisted shell.

We find that in all cases confined spheromaks are highly unstable to tilting instabilities.
The instability is driven by the fact that, initially, the magnetic moment of the spheromak
is counter-aligned with the confining magnetic field. As a result, the spheromak
flips, indicative of a tilt instability. This creates current layers at the boundary. The
resulting reconnection between the internal and confining magnetic fields leads to partial
annihilation of the spheromak’s poloidal magnetic flux with the external magnetic field. At
the same time, the toroidal magnetic field and the associated helicity (or relative helicity
Jarboe 1994; Bellan 2018) of the initial configuration are carried away by torsional Alfvén
waves (in the sense that the initial configuration has finite helicity, while the eventual final
configuration – just straight magnetic field lines – has zero helicity).

The evolution of the basic spheromak is generally consistent with previous results. The
tilting instability of a spheromak in a cylindrical geometry has been explored by Bondeson
et al. (1981) and Finn et al. (1981) where they analyse the growth rate of tilting as a function
of elongation L/R (see figure 4 in both) and derive a threshold value L/R ≈ 1.67. For our
case, L/R = 2 and the growth rate of 0.64/tA is consistent with the growth rates implied
from their figure 4, namely ∼0.1/tA (Bondeson et al. 1981) and ∼10/tA (Finn et al. 1981).
An experimental identification of the tilting mode of a spheromak plasma and its control
is discussed in Munson et al. (1985). A clear exponential growth rate of tilting is visible
in their figure 1 and is strikingly similar to our figure 4(a).

A characteristic time scale of the tilting instability is 
20tA, during which the
spheromak dissipates after losing a significant fraction of its energy, which is in good
agreement with Sato & Hayashi (1983) where they study spheromak dynamics for a
force-free plasma by a 3-D MHD code and estimate a growth rate of the order of 10tA.
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Interestingly, their results also show that the tilting angle saturates at 90◦ unlike our
results where the spheromak almost entirely undergoes a 180◦ rotation – it flips. The
90◦ tilt stabilization of Sato & Hayashi (1983) is facilitated by a cylindrical vacuum
vessel – a toroidal flux core having a small enough aspect ratio so that further tilting
is energetically unfavourable (Bellan 2018). A similar characteristic growth time of tilt
around the magnetic axis and use of a flux conserver to stabilize the tilt mode is suggested
in Jarboe (1994), which also provides an excellent review on formation and stability of
spheromaks.

We have also studied the evolution of a second-order magnetically confined spheromak
as an example of a configuration (the inner core) confined by the twisted magnetic field
(the outer shell). Very quickly (∼10tA) the inner core separates from the outer shell and
completely detaches. As a result two nearly independent dissipative structures are formed.
No stabilization occurs.

Our results disfavour models of magnetically confined structures for the origin of tail
oscillations in magnetar flares (Lyutikov 2003; Mastrano & Melatos 2008), as we discuss
next. Magnetars are young (∼103–104 years) and highly magnetized (surface magnetic
fields ∼1014–1015 G) neutron stars exhibiting X-ray and γ -ray activity. The most dramatic
giant flare to date was exhibited by SGR 1806-20 on December 27, 2004 (Mereghetti et al.
2005; Palmer 2005) in which the main spike that lasted ∼0.5 seconds was followed by
a ∼380 s pulsating tail. This is ∼50 cycles of high-amplitude pulsations at the SGR’s
known rotation period of 7.56 s. The long pulsating tails of giant flares originate in a
‘trapped fireball’ that remains confined to the star’s closed magnetic field lines.

In magnetar magnetospheres, the Alfvén speed through a plasma of density ρ is nearly
relativistic (Gedalin 1993)

vA

c
=

(
B2/4π

ε + P + B2/4π

)1/2

≈ 1, (4.1)

where c is the speed of light, ε = ρc2 is the total energy density of plasma particles and P
is the total plasma pressure. For a magnetically dominated plasma, P, ε << B2/4π. Thus,
the Alfvén time within the magnetar’s magnetosphere

tA = RNS

vA
≈ 3 × 10−5 s, (4.2)

where RNS = 10 km is the radius of a neutron star. Our results demonstrate that
stabilization even of higher-order spheromaks does not occur, so that the time scale over
which a spheromak confined in the magnetar’s magnetosphere would dissipate is too short
to explain the tail duration

tdiss ∼ 20tA ≈ ×10−3 s. (4.3)

Finally, let us comment on the applicability of the Taylor relaxation principle to
astrophysical plasmas. It was suggested in Bellan (2000) that a spheromak is a Taylor
state, so that the evolution of the system will lead to the largest possible spheromak. The
Taylor relaxation principle assumes that the plasma is surrounded by a wall impenetrable
to helicity escape. This can be achieved in a laboratory, with arrangements of conducting
walls. This is not possible in astrophysical surroundings, as we argue next.

First, according to Shafranov’s virial theorem (e.g. Bellan 2006) it is not possible
to have an isolated self-contained MHD equilibrium – there must always be some
external confining structure. It is possible to have purely unmagnetized external confining
structures – one can construct spheromak-type configurations confined by external
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pressure (Gourgouliatos, Braithwaite & Lyutikov 2010). The configurations considered
by Gourgouliatos et al. (2010) are not force free, but they look very similar to
spheromaks. They are stable to current-driven instabilities. It seems the case considered by
Gourgouliatos et al. (2010) is the only case where the Taylor relaxation principle would be
applicable to astrophysical plasmas – if there is non-zero B-field in the confining medium
the spheromak will try to flip and will reconnect. This will generally happen very fast, on
a few Alfvén time scales. The helicity will then be emitted as Alfvén shear waves; this
then violates the Taylor principle of conserved helicity.

Thus, astrophysical magnetic configurations belong more naturally to a class called
‘driven magnetic configurations’ by Bellan (2018) – they are generally magnetically
connected to some outside medium. As a result of this connection helicity will leave the
system in the form of torsional Alfvén waves. This will violate the assumptions of the
Taylor relaxation scheme.

We explore a possible astrophysical application of our numerical results. Using the
energetics of SGR 1806-20, the estimated dissipation time scale of a magnetically confined
spheromak is of the order of a millisecond, whereas the quasi-periodic oscillations in the
SGR’s giant flare release energy for ∼400 s. The formation and spontaneous dissipation
of a spheromak in a magnetar’s magnetosphere do not allow for such prolonged energy
release. It would be worthwhile to explore coalescence instability in turbulent plasmas.
It has been suggested in Reiman (1982) that, by Taylor’s theory, repeated coalescence
of n spheromaks of equal size increases the radius of the spheromak by a factor of n1/4

whereas the total magnetic energy of the final spheromak will be n−1/4 times the sum of
the energies of the initial spheromaks. We speculate that such a mechanism might stabilize
the spheromak over longer time scales. Another important investigation would be to look
for effects of plasma rotation on the tilt mode stability in the context of a spheromak
using arguments similar to those made in Mohri (1980), Ishida, Momota & Steinhauer
(1988) and Ji et al. (1998) in which it is shown that plasma rotation in the θ direction
can help stabilize the tilt mode, but in FRCs. Finally, it would be useful to explore if both
coalescence and rotation together could have stabilizing effects to sustain a spheromak
over longer time scales.
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