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We derive a sufficient condition for the linear stability of plasma equilibria with
incompressible flow parallel to the magnetic field, B, constant mass density and
anisotropic pressure such that the quantity σd = µ0(P‖ − P⊥)/B2, where P‖ (P⊥) is
the pressure tensor element parallel (perpendicular) to B, remains constant. This
condition is applicable to any steady state without geometrical restriction. The
condition, generalising the respective condition for magnetohydrodynamic equilibria
with isotropic pressure and constant density derived in Throumoulopoulos & Tasso
(Phys. Plasmas, vol. 14, 2007, 122104), involves physically interpretable terms
related to the magnetic shear, the flow shear and the variation of total pressure
perpendicular to the magnetic surfaces. On the basis of this condition we prove that,
if a given equilibrium is linearly stable, then the ones resulting from the application
of Bogoyavlenskij symmetry transformations are linearly stable too, provided that
a parameter involved in those transformations is positive. In addition, we examine
the impact of pressure anisotropy, flow and torsion of a helical magnetic axis,
for a specific class of analytic equilibria. In this case, we find that the pressure
anisotropy and the flow may have either stabilising or destabilising effects. Also,
helical configurations with small torsion and large pitch seem to have more favourable
stability properties.

Key words: astrophysical plasmas, fusion plasma, plasma stability

1. Introduction
For favourable confinement, it is desirable that the equilibrium states of fusion

plasmas are stable and therefore their stability study is of great importance. Such low
entropy states are susceptible to numerous instabilities such as strong ideal pressure
and current driven modes, resistive instabilities often associated with magnetic
reconnection, and kinetic micro-instabilities which occur when the distribution
functions depart from Maxwellians. Also, certain instabilities are a source of
turbulence, which can drive transport. Investigation of macro-instabilities is usually
performed within the framework of ideal magnetohydrodynamics (MHD), since this
model is a good approximation in describing the plasma as a macroscopic fluid and
capturing most of the physics of the force balance.
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There are two main methods for studying MHD stability: first, for small perturba-
tions from the equilibrium, linear stability is examined by the normal mode analysis
which can calculate the perturbation growth rate and, second, the use of variational
principles, involving perturbations of arbitrary amplitude and therefore covering the
nonlinear regime, in connection with the sign of the perturbation potential energy. For
static equilibria Bernstein et al. (1958) have derived a well-known energy principle
which provides necessary and sufficient conditions for linear stability.

It is also known that plasma flows in magnetic confinement devices, either induced
by external heating sources, such as electromagnetic waves and neutral beams,
or developed intrinsically, play an important role in the formation of transport
barriers and the transitions to improved confinement regimes, such as the low-to-high
confinement (L-H) transition. In the presence of flow, however, the problem of
stability becomes much tougher because of the anti-Hermitian convective flow term
in the momentum equation. As a result, only sufficient conditions for the linear
stability of stationary equilibria were previously obtained; see Frieman & Rotenberg
(1960), Hameiri (1998), Vladimirov & Ilin (1998), Ilin & Vladimirov (2004) and
Throumoulopoulos & Tasso (2007). Particularly, in connection with the present study,
the derivation of a sufficient condition for the linear stability of ideal MHD equilibria
and plasmas of constant density, isotropic pressure and incompressible flow parallel to
the magnetic field, was initiated in Vladimirov & Ilin (1998) and Ilin & Vladimirov
(2004) and completed in Throumoulopoulos & Tasso (2007). A key element to obtain
this condition is that the pressure perturbation remains arbitrary, that is, there is no
need to express the perturbation in terms of the Lagrangian displacement vector.

Also, in high temperature plasmas, the collision time is so long that collisions can
be neglected. Owing to the low collision frequency, a high temperature plasma remains
anisotropic for a long time, once anisotropy is induced, e.g. by external heating
sources. Macroscopic equations for a collisionless plasma with pressure anisotropy
have been derived in Chew, Goldberger & Low (1956). A detailed review of the
anisotropic Chew–Goldberger-Low (CGL) model as well as of other collisionless
fluid models is provided in Hunana et al. (2019). Pressure anisotropy is usually
responsible for various instabilities, such as the firehose and the mirror instabilities.
Therefore, investigation of the stability properties of anisotropic plasmas, either static
or stationary, is also a significant objective.

In the present work we derive a sufficient condition for the linear stability of
equilibria with field-aligned incompressible flows associated with plasmas of constant
density and constant anisotropy function, σd, working along the same lines as in
Throumoulopoulos & Tasso (2007). Then, we examine the stability properties of
such anisotropic equilibria. Specifically, in § 2 we present the basic dynamical MHD
equations with anisotropic pressure and their equilibrium counterparts, while in § 3 we
linearise the time dependent equations for small perturbations around the equilibrium
quantities, and obtain a pertinent functional of the perturbation potential energy.
In § 4 the sufficient condition is obtained in the presence of pressure anisotropy,
which generalises the one of Throumoulopoulos & Tasso (2007) being valid for
isotropic pressure. To derive that condition it is also important that the perturbation
of the effective pressure, P = (P‖ + P⊥)/2, remains arbitrary. Furthermore, in § 5
we show that, whenever a given equilibrium is linearly stable, then all families of
equilibria derived by the symmetry transformations introduced in Bogoyavlenskij
(2001) and Evangelias & Throumoulopoulos (2019), are also linearly stable provided
that a parameter involved in those transformations is positive. In addition, in § 6
we apply the derived sufficient condition to a class of analytic helically symmetric
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equilibria in order to examine the impact of pressure anisotropy, flow, and certain
geometrical parameters characterising helical configurations, such as the torsion and
pitch length, on the stability of those equilibria. Finally, § 7 summarises the main
results.

2. Basic equations and background equilibria
The dynamics of a perfectly conducting plasma with anisotropic pressure is

determined by the following set of equations:

%∗(DtV∗)= J∗ × B∗ −∇ · P∗, ∂t%
∗
+∇ · (%∗V∗)= 0,

∇ · B∗ = 0, ∇× B∗ =µ0 J∗, ∂t B∗ =∇× (V∗ × B∗).

}
(2.1)

Here, B∗(r, t) is the magnetic field, J∗(r, t) the current density, µ0 the magnetic
constant, V∗(r, t) the plasma velocity, %∗(r, t) the mass density and P∗ the pressure
tensor defined as

P∗ := P∗
⊥

I +
σ ∗d

µ0
B∗B∗, (2.2)

where I is the unit tensor; ∂t denotes the time derivative, while the Lagrangian
derivative is defined as Dt ≡ ∂t + (V∗ · ∇). The pressure tensor is diagonal in a local
rectangular system with respect to B∗, and consists of the scalar pressure elements
P∗
‖
(r, t) and P∗

⊥
(r, t) along and across B∗(r, t), respectively, while the dimensionless

function

σ ∗d :=
µ0(P∗‖ − P∗

⊥
)

|B∗|2
(2.3)

is a measure of the pressure anisotropy. Particle collisions equilibrating parallel and
perpendicular energies lower the value of σ ∗d and, therefore a highly collisional plasma
is described accurately by a single scalar pressure, P∗isotropic. In view of this fact, when
pressure anisotropy is present it is useful to introduce an effective isotropic pressure,

P∗(r, t) :=
P∗
‖
+ P∗

⊥

2
, (2.4)

that reduces to P∗isotropic in the absence of anisotropy. By substituting (2.3) and (2.4)
into the momentum equation of set (2.1) we obtain

%∗(DtV∗)= (1− σ ∗d )J
∗
× B∗ −∇P∗ −

B∗

µ0
(B∗ · ∇σ ∗d )+

|B∗|2

2µ0
∇σ ∗d , (2.5)

in which the scalar pressures P∗
‖

and P∗
⊥

do not appear explicitly. This is very useful
for the stability analysis to follow in the next sections.

The counterparts to set (2.1) equilibrium equations are

%(V · ∇)V = J × B−∇ · P, ∇ · (%V)= 0,
∇ · B= 0, ∇× B=µ0 J, ∇× (V × B)= 0,

}
(2.6)

where the absence of the superscript ∗ denotes equilibrium and therefore no
dependence on time.

In the special case of collinear velocity and magnetic fields related through

V =
λ(r)
√
µ0%

B, (2.7)
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with λ an arbitrary dimensionless scalar function, the continuity equation of the set
(2.6) takes the form (B · ∇%)/%=−2(B · ∇λ)/λ; substitution of the latter relation in
the counterpart to (2.5), the equilibrium momentum equation, yields

(1− σd − λ
2)J × B = ∇

(
P + λ2 B2

2µ0

)
+

B2

2µ0
∇(1− σd − λ

2)−
B
µ0
[B · ∇(1− σd − λ

2)]. (2.8)

Equation (2.8) is valid for arbitrary functions % and σd, and therefore for compressible
flows.

Furthermore, we assume that the mass density and the anisotropy function
remain constant everywhere inside a volume D: %, σd = const. Consequently, the
corresponding field-aligned equilibrium flow becomes incompressible and the function
λ is constant on magnetic surfaces ψ = const., whenever such surfaces exist. Also,
both the magnetic and velocity fields lie on those surfaces, B ·∇λ(ψ)=V ·∇λ(ψ)=0.
It is known that the existence of three-dimensional equilibria with nested toroidal
magnetic surfaces is not guaranteed and, in general, irrespective of the existence of
magnetic surfaces, the function λ is constant on both the magnetic field lines and
the velocity streamlines. Henceforth, we will presume the existence of well-defined
equilibrium magnetic surfaces. Under these assumptions, equation (2.8) takes the
simpler form

(1− σd − λ
2)J × B=∇Ps − (λ

2)′
B2

2µ0
∇ψ, (2.9)

where the prime denotes differentiation with respect to ψ and Ps is the total effective
pressure in the absence of flow (λ= 0), defined as

Ps :=P + λ2 B2

2µ0
. (2.10)

Moreover, projection of (2.9) along B implies that the static total effective pressure
is a surface quantity, Ps=Ps(ψ), and therefore, the momentum equation (2.9) can be
cast into the useful form

J × B= g(ψ, B2)∇ψ, (2.11)

where

g(ψ, B2) := (1− σd − λ
2)−1

[
P ′s − (λ2)′

B2

2µ0

]
. (2.12)

Equation (2.11) implies that, for equilibria with field-aligned incompressible flows,
constant density and constant anisotropy function, the current surfaces coincide with
the magnetic surfaces, that is, the vectors J , B lie on common surfaces ψ = const. In
the subsequent sections we examine the stability of the aforementioned equilibria to
small three-dimensional perturbations. To this end, we define the following quantities:

N := J × B, M :=∇× N =∇g×∇ψ, (2.13a,b)

from which it follows that
N ·M = 0. (2.14)
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3. Energy principle and perturbation potential energy
In order to examine the linear stability of a given equilibrium with anisotropic

pressure and incompressible flow, ∇ ·V = 0, we assume that the equilibrium position,
r, is perturbed to a position r∗(r, t), through the usual Lagrangian displacement
vector ξ(r, t)≡ r∗ − r, so that

B∗ = B(r)+ b(r, t), V∗ = V(r)+ v(r, t), J∗ = J(r)+ j(r, t),
P∗ =P(r)+ p(r, t), %∗ = %(r)+ δ(r, t), σd

∗
= σd(r)+ ε(r, t).

}
(3.1)

Here, b, j, p, δ, ε and

v = u(r, t)+
∂ξ

∂t
(3.2)

correspond to small perturbations of the respective equilibrium quantities. Note that
we have assumed perturbations of the effective pressure, P , and the anisotropy
function, σd, instead of explicit perturbations of the scalar pressures P‖ and P⊥. Also,
on the fixed boundary ∂D surrounding a plasma domain D of interest, we adopt the
following conditions:

b · n̂= u · n̂= 0, (3.3)

where n̂ is the perpendicular outward unit vector on the boundary. Introducing
perturbations (3.1) into the dynamical equations (2.1) and employing the equilibrium
equations (2.6), we obtain the following linearised equations:

∇ · b= 0, j =
1
µ0
∇× b,

∂δ

∂t
+ V · ∇δ +∇ · (%v)= 0,

%
∂v

∂t
+ %[(V · ∇)v + (v · ∇)V ] − (1− σd)(J × b+ j × B)+∇p=G(r, t),

 (3.4)

where

G := −δ(V · ∇)V − ε J × B+
1
µ0

[
B2

2
∇ε − (B · ∇ε + b · ∇σd)B

+

(
B · b+

b2

2

)
∇σd − (B · ∇ε)b

]
. (3.5)

At this point we note that, in order that the set of dynamical equations (2.1) be
closed, one needs, in connection with the pressures P∗

‖
and P∗

⊥
, a couple of energy

equations or equations of state, e.g. the double adiabatic equations Chew et al. (1956)
associated with the known CGL model. In the present study, one such equation of
state corresponds to incompressibility in connection with an evolution with constant
mass density, %∗= %= const., (δ= 0). Also, the fact that the momentum equation can
be cast in the form (2.5) involving the pressures P∗

‖
and P∗

⊥
only implicitly through

the effective pressure, P∗, and the anisotropy function, σd, motivated us to adopt as
second equation of state the constrain that the latter function remains constant, σ ∗d =
σd = const., (ε= 0). This implies that P∗

‖
and P∗

⊥
(precisely their difference) evolve in

such a way that they keep proportional to the magnetic pressure B2/(2µ0), which, on
physical grounds, is an acceptable approximation. Consequently, equation (3.5) implies
that G= 0, while the third of the linearised equations (3.4) reduces to

∇ · v = 0. (3.6)
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In view of this relation, we consider incompressible perturbations, ∇ · ξ = 0, such that
the condition ξ · n̂= 0 is satisfied on the boundary. Then, equation (3.6) implies that
∇ · u= 0. Subsequently, the perturbations of the magnetic and velocity fields can be
expressed in terms of ξ , as

b=∇× (ξ × B), u=∇× (ξ × V), (3.7a,b)

while the linearised force balance equation of the set (3.4) is put in the form

%
∂2ξ

∂t2
+ 2%(V · ∇)

∂ξ

∂t
+∇f = F̂ξ . (3.8)

Here,

F̂ := %u× (∇× V)+ %V × (∇× u)+ (1− σd)J × b−
1
µ0

B× (∇× b), (3.9)

is the symmetric force operator and the scalar function f is defined as

f := %V · u+ p. (3.10)

The energy principle is based of the fact that the total perturbation energy

E=K +W =
1
2

∫
D
%ξ̇ 2 d3r−

1
2

∫
D

ξ · F̂ξ d3r (3.11)

is conserved, where K is the kinetic energy and W the potential energy. Stability is
related to the sign of E. Since K is quadratic in velocity, and therefore non-negative–
definite, a sufficient condition for a given equilibrium to be linearly stable is W > 0.
On account of (3.3)–(3.10), W is expected to depend only on the physical quantities of
the background equilibrium and the displacement vector, ξ , with the exception of the
perturbation, p, of the effective pressure, appearing in the gradient of the quantity f .
However, the contribution of the latter term to W vanishes due to the implied boundary
conditions on ∂D. Thus, one finds for the perturbation potential energy

W=
1
2

∫
D

{
%u · [ξ × (∇× V)] − %u2

+ (1− σd)b · (J × ξ)+
(1− σd)

µ0
b2
}

d3r. (3.12)

Now we focus our study on the investigation of the linear stability for the equilibria
with field-aligned incompressible flows, defined by (2.7). In this case (3.12) becomes

W=
1

2µ0

∫
D
{(1−σd−λ

2)[b2
+ b · (µ0 J× ξ)]−2λ(ξ ·∇λ)(ξ · [(B ·∇)B])} d3r. (3.13)

In the next section, we employ the form of W given in (3.13) to derive a sufficient
condition for the linear stability of the respective kinds of equilibria.
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4. Sufficient condition for linear stability
It is recalled that for equilibria with field-aligned incompressible flows, constant

mass density and constant pressure anisotropy function, σd, defined by (2.7)–(2.13),
the current density stays on magnetic surfaces, ψ = const. and, thus, the vectors B,
J and N = B× J , form a basis in R3 space. Accordingly, following the analysis in
Throumoulopoulos & Tasso (2007) we expand the displacement vector in this basis,
as

ξ = α(r, t)N + β(r, t)J + γ (r, t)B, (4.1)

where α, β and γ are arbitrary, appropriately dimensional scalar functions. We note
that in Throumoulopoulos & Tasso (2007) a sufficient condition was derived for
the linear stability of equilibria with field-aligned incompressible flows, isotropic
pressure and constant density; in fact, the constant density and the vacuum magnetic
permeability constant were set to unity therein. These equilibria are recovered from
the respective anisotropic pressure equilibria described in § 2 for σd = 0. Also, we
observe that the form (3.13) of the potential energy for σd = 0 (and % = µ0 = 1)
recovers the one obtained in equation (13) of Throumoulopoulos & Tasso (2007) for
respective isotropic equilibria. Thus, it is straightforward to derive, along the same
lines as in Throumoulopoulos & Tasso (2007), a sufficient condition for the linear
stability of the present anisotropic equilibria. Specifically, we decompose the potential
energy of (3.13) into two integrals as

W =W1 +W2, (4.2)

and, following step by step the procedure in the Appendix of Throumoulopoulos &
Tasso (2007), we obtain

W1 =
1

2µ0

∫
D
(1− σd − λ

2)(b+ αµ0 J × N)2 d3r, (4.3)

and
W2 =

1
2µ0

∫
D
A(
√

2gα)2 d3r, (4.4)

where

A := −(1− σd − λ
2){|µ0 J ×∇ψ |2 − (µ0 J ×∇ψ) · [(∇ψ · ∇)B]}

+
µ0

2
[ln(1− σd − λ

2)]′|∇ψ |2∇ψ · ∇

(
P⊥ +

B2

2µ0

)
. (4.5)

Equations (4.3) and (4.4) imply that W is non-negative if both quantities 1 − σd −

λ2 and A are also non-negative–definite in D. Thus, we conclude with the following
statement: an equilibrium with anisotropic pressure with σd= const., of a field-aligned
incompressible flow in connection with a constant plasma density is linearly stable if
both of the following conditions are satisfied:

1− σd − λ
2 > 0, (4.6)

A> 0. (4.7)

Conditions (4.6) and (4.7) can be applied to any steady state without geometrical
restriction. They generalise the ones derived in Throumoulopoulos & Tasso (2007)
for isotropic pressure, since for σd = 0 condition (4.6) reduces to sub-Afvénic flows,
λ2 < 1, while (4.7) reduces to equation (22) in Throumoulopoulos & Tasso (2007).
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In fact, the expression (4.5) is more compact because it consists of three terms, instead
of the four terms in equation (22) of Throumoulopoulos & Tasso (2007). The first of
these terms,

A1 =−(1− σd − λ
2)|µ0 J ×∇ψ |2, (4.8)

is negative and therefore always destabilising, in potential connection with current-
driven modes. The second term,

A2 = (1− σd − λ
2)(µ0 J ×∇ψ) · [(∇ψ · ∇)B], (4.9)

is related to the magnetic shear (i.e. it depends on the variation of B across the
magnetic surfaces), and can be either stabilising or destabilising. The third term,

A3 =
µ0

2
[ln(1− σd − λ

2)]′|∇ψ |2∇ψ · ∇

(
P⊥ +

B2

2µ0

)
, (4.10)

can be regarded as a flow term, although it is affected by anisotropy, since it vanishes
in the absence of flow (λ= 0). Note that it relates to the variation of the total pressure
perpendicular to the magnetic surfaces; indeed, on account of (2.7) and (2.10) one
finds

P⊥ +
B2

2µ0
=Ps(ψ)︸ ︷︷ ︸

static

−
1
2
%V 2︸ ︷︷ ︸
flow

+ (1− σd)
B2

2µ0︸ ︷︷ ︸
magnetic

, (4.11)

which involves all three pressures, static effective, flow and magnetic, the latter
being influenced by the pressure anisotropy through the factor (1 − σd). In addition,
satisfaction of condition (4.6) in the absence of flow, σd 6 1, implies that the
corresponding static anisotropic equilibria are stable under the firehose instability
(see Cheviakov & Bogoyavlenskij 2004).

Before closing this section we note that every equilibrium state with incompressible
flow and an anisotropy function that is uniform on the magnetic surfaces, σd = σd(ψ)
having certain continuous geometrical symmetry, is governed by a generalised
Grad–Shafranov (GS) equation for the flux function ψ , e.g. equation (28) in
Evangelias, Kuiroukidis & Throumoulopoulos (2018) governing helically symmetric
equilibria. That equation contains a quadratic |∇ψ |2-term. For this reason we have
introduced the integral transformation,

U(ψ)=
∫ ψ

0

√
1− σd(x)− λ2(x) dx, 1− σd − λ

2 > 0, (4.12)

under which the respective transformed GS equation, becomes free of a quadratic term
as |∇U|2, and can be solved by analytical techniques in the U-space. Transformation
(4.12) does not change the topology of the magnetic surfaces, but just relabels
them by the flux function U, and consists of a generalisation of the transformation
in Clemente (1993) for static anisotropic equilibria (λ = 0) and that in Simintzis,
Throumoulopoulos & Pantis (2001) for respective stationary, isotropic equilibria
(σd = 0). Under transformation (4.12), condition (4.6) is trivially satisfied, while
condition (4.7), valid for σd = const., is expressed in U-space as

A = −|µ0 J ×∇U|2 + (µ0 J ×∇U) · [(∇U · ∇)B]

+
µ0

2(1− σd − λ2)

d ln(1− σd − λ
2)

dU
|∇U|2∇U · ∇

(
P⊥ +

B2

2µ0

)
. (4.13)

Condition A> 0 in connection with form (4.13) will be employed in § 6 to examine
the stability of specific helically symmetric equilibria.
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5. Stability under symmetry transformations

In a recent work (Evangelias & Throumoulopoulos 2019) a set of symmetry
transformations that map anisotropic plasma equilibria with field-aligned incompressi-
ble flows was introduced; specifically, these transformations, when applied to a
given equilibrium with parallel incompressible flow and anisotropy function, σd,
uniform on the magnetic surfaces labelled by the function ψ , {B, %(ψ), V =
λB/(√µ0%), P, σd(ψ)}, produce an infinite family of respective equilibria with
field-aligned incompressible flows, but a density and anisotropy function that may
vary on the magnetic surfaces, {B1, %1,V 1,P1, σd1}. These transformations are defined
by

B1 =
b1(r)
n1(r)

B, V 1 =
c1(r)
√

1− σd

a1(r)
√
µ0%

B,

%1(r)= a2
1(r)%, P1 =CP + (1− σd)(C− b2

1(r))
B2

2µ0
,

σd1 = 1− n2
1(r)(1− σd), C=

[b2
1(r)− c2

1(r)](1− σd)

1− σd − λ2
= const. 6= 0,


(5.1)

where a1, b1, c1 and n1 are scalar functions, which must satisfy the relations

B · ∇
(

b1

n1

)
= 0, B · ∇(a1c1)= 0. (5.2a,b)

Transformations (5.1), consisting a generalisation of those introduced in
Bogoyavlenskij (2001) for respective equilibria with isotropic pressure, preserve
the topology of the magnetic surfaces, ψ ≡ψ1 = const., between the original and the
transformed equilibrium, i.e. B · ∇ψ = B1 · ∇ψ . It was also proved in Evangelias
& Throumoulopoulos (2019) that these transformations can break the geometrical
symmetry of a given equilibrium only when the fields B and V are purely poloidal.

From (5.1) it readily follows that the transformed collinear velocity and magnetic
fields are related through

V 1 =
λ1
√
µ0%1

B1, λ1 =
c1n1

b1

√
1− σd, (5.3a,b)

and thus, the transformed equilibria satisfy a force balance equation analogous
to (2.8)

(1− σd1 − λ
2
1)J1 × B1

=∇

(
P1 + λ

2
1

B2
1

2µ0

)
+

B2
1

2µ0
∇(1− σd1 − λ

2
1)−

B1

µ0
[B1 · ∇(1− σd1 − λ

2
1)]. (5.4)

With the aid of (5.1) and (5.3) we obtain the useful relations

1− σd1 − λ
2
1 =C

(
n1

b1

)2

(1− σd − λ
2), (5.5)

P1 + λ
2
1

B2
1

2µ0
=C

(
P + λ2 B2

2µ0

)
=CPs, (5.6)
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under which equation (5.4) reduces to(
n1

b1

)2

J1 × B1 = J × B+
B2

1

2µ0
∇

(
n1

b1

)2

. (5.7)

Now, presume that the original equilibrium belongs to the family described in § 2 for
which (2.11) holds; then (5.7) becomes(

n1

b1

)2

J1 × B1 = g(ψ, B2)∇ψ +
B2

1

2µ0
∇

(
n1

b1

)2

. (5.8)

Projection of (5.8) along J1 yields

J1 · ∇ψ =−
B2

1

2µ0

[
J1 · ∇

(
n1

b1

)2
]
, (5.9)

and thus, it turns out that the transformed current density, J1, remains on the magnetic
surfaces if and only if the ratio n1/b1 is uniform on those surfaces

n1

b1
:= y(ψ). (5.10)

In this case, the transformed vectors, J1, B1, and N1 ≡ J1 × B1, form a basis in R3,
and thus, for constant %1 and σd1 , sufficient conditions for the linear stability of the
transformed equilibria, satisfying (5.1), (5.3) and (5.10), analogous to (4.6) and (4.7)
can be derived

1− σd1 − λ
2
1 > 0, (5.11)

A1 > 0, (5.12)

where

A1 = −(1− σd1 − λ
2
1){|µ0 J1 ×∇ψ |

2
+ (µ0 J1 ×∇ψ) · [(∇ψ · ∇)B1]}

+
µ0

2
[ln(1− σd1 − λ

2
1)]
′
|∇ψ |2∇ψ · ∇

(
P⊥1 +

B2
1

2µ0

)
. (5.13)

In order to investigate the stability of the aforementioned transformed equilibria, we
presume that the original equilibrium has constant density and anisotropy functions
(% = const., σd = const.) and is stable under small three-dimensional perturbations;
therefore, conditions (4.6) and (4.7) are satisfied in D. Note that in this case the
scalar functions of transformation (5.1) must have a structure of the form: a1= const.,
n1 = const., b1 = b1(ψ), c1 = c1(ψ); as a result, breaking potential geometrical
symmetry of the original equilibrium is not possible by the transformation even
for purely poloidal B and V fields. In Ilin & Vladimirov (2004) the stability of
respective isotropic equilibria was examined; in particular, it was stated therein that
all equilibrium families resulting from the application of the respective isotropic
transformations introduced by Bogoyavlenskij to given equilibria of field-aligned
incompressible flows, with isotropic pressure and constant mass density, are linearly
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stable, if either the original equilibria is stable and C > 0, or the original equilibria
is unstable and C< 0. A straightforward calculation shows that

A1 =CA, (5.14)

so that conditions (5.11) and (5.12) assume the form

C
(

n1

b1

)2

(1− σd − λ
2)> 0, (5.15)

CA> 0. (5.16)

By inspection of the later relations, we come to the conclusion that the transformed
equilibrium is linearly stable if, either (i) the original one is linearly stable and C> 0,
or (ii) neither of the conditions (4.6), (4.7) are satisfied and C < 0. However, when
C is negative equation (5.6) in the absence of flow (λ = 0) yields the physically
unacceptable relation

P1

P
< 0. (5.17)

Thus, we finally conclude with the formulation of the following statement:

The infinite class of equilibria, obtained from the application of the symmetry
transformations (5.1) for the case %1 = const. and σd1 = const. to given respective
equilibria which are linearly stable (by satisfying the sufficient conditions (4.6)–(4.7)),
are also linearly stable if the transformation constant C is positive definite.

This statement corrects and generalises the respective statement in Ilin & Vladimirov
(2004) for isotropic equilibria (σd = σd1 = 0, n1 = 1).

6. Linear stability of helically symmetric equilibria
In this section we consider helically symmetric equilibria with field-aligned

incompressible flows and the anisotropic pressure derived in Evangelias et al. (2018),
for which the following relations hold:

B= I(U)h+ (1− σd −Mp(U)2)−1/2h×∇U(r, u), V =
Mp(U)
µ0%

B,

%= const., σd = const., P =Ps(U)−M2
p(U)

B2

2µ0
.

 (6.1)

Here, the function U(r, u) labels the magnetic surfaces, where (r, u, z) are helical
coordinates defined through the usual cylindrical ones (ρ, φ, ζ ) as r= ρ, u= z− ηφ,
z= ζ ; I relates to the helicoidal magnetic field; Ps is the static effective pressure; Mp
is the Alfvén Mach function for the poloidal field, defined as Mp := (

√
µ0%|V pol|)/Bpol,

which for parallel flows equals to the total Mach function (M = λ =
√
µ0%|V |/B).

All these functions are uniform on the magnetic surfaces. In addition, the vector
h := (−η/(k2r2

+ η2))gz points along the helical direction, where η is an arbitrary
constant, and gi= ∂r/∂i (i= r, u, z) are the covariant helical basis vectors. According
to Evangelias et al. (2018), equilibria (6.1) are governed by the following generalised
GS equation

LU +
1
2

d
dU
[(1− σd −M2

p)I
2
] +µ0(k2r2

+ η2)
dPs

dU
+

2η
k2r2 + η2

(1− σd −M2
p)

1/2I = 0,

(6.2)
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where the elliptic operator involved is defined as L := (r2
+ η2)[∇ · (∇/(r2

+ η2))]. In
fact, equation (6.2) constitutes a reduced form of the more general one (Evangelias
et al. (2018), equation (30)) valid in general for non-collinear V and B, with the
replacement of the parameters m and k therein by −η and −1, respectively, here.
Under the following linearising ansatz for the free function terms,

(1− σd −M2
p)

1/2I =w1U, Ps =w2 − 2w2
3
U2

µ0
, (6.3a,b)

the GS equation (6.2) reduces to the form

1
r2

∂2U
∂u2
+

1
r
∂

∂r

(
r

r2 + η2

∂U
∂r

)
+

(
w2

1

r2 + η2
+

2w1η

(r2 + η2)2
− 4w2

3

)
U = 0, (6.4)

where w1, w2 and w3 are arbitrary constants. Partial differential equation (PDE) (6.4)
was solved analytically in Bogoyavlenskij (2000) and the exact solution obtained
therein is

UNql = e−w3r2
{fNR0N(s)+ rqRql(s)[cql cos(qu/η)+ dql sin(qu/η)]}, (6.5)

where N, q, l are arbitrary integers > 0 satisfying the condition 2N> 2l+ q; fN, cql, dql
are arbitrary coefficients, and s = 2w3r2; the form of the polynomial functions
Rql(s) involves derivatives of the Laguerre polynomials Lq+l(s) (see Bogoyavlenskij
(2000), equations (3.7)–(3.8)), and R0N is the respective polynomial for q = 0,
l=N 6= 0. On account of solution (6.5), different classes of exact helically symmetric
MHD equilibria describing astrophysical jets with isotropic pressure (σd = 0) were
constructed in Bogoyavlenskij (2000). For such equilibria, the magnetic field, the
flow velocity and the current density fall rapidly to zero at r → ∞, while the
pertinent isotropic pressure takes a limiting constant value therein. We have to note
that solution (6.5) can also accurately describe helically symmetric CGL anisotropic
pressure equilibria, with σd being a surface quantity (or constant), and incompressible
flow. This is due to the fact that although the MHD and CGL models are established
through different physical assumptions for the particle collisions, the form of the
generalised GS equations governing them are identical, such that passing from the
one equilibrium equation to the other is mathematically convenient.

In order to construct specific equilibria, we restrict our analysis to solution (6.5)
for N = 2, q = 1, l = 0 and w1 = 7/(6η), which assumes the simpler form (see
Bogoyavlenskij (2000), equation (4.2))

U(r, u)= e−w3r2
[1− 10w3r2

+ 8w2
3r4
+ c10 cos(u/η)]. (6.6)

Solution (6.6) of the GS equation (6.2), associated with the relations (6.1) and the
profiles (6.3), defines a special class of exact helically symmetric equilibria with
incompressible flows with constant density and anisotropy functions, valid for any
functional dependence of M2

p(U). Therefore, to completely determine an equilibrium,
we employ the following profile for the Mach function:

M2
p(U)=M2

p0
U2, (6.7)

where Mp0 is an arbitrary parameter. The magnetic surfaces of the above constructed
equilibria on the Cartesian plane z= 0, for w3= 0.01, c10= 0.5,w2= 2 and η= 2.318,
are shown in figure 1; all dimensional quantities present in this section are measured
in appropriate SI units. Also, the profile of the flux function U along the x-axis is
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FIGURE 1. Poloidal cut of helicoidal magnetic surfaces U(x, y, z = 0) = const. for the
helically symmetric equilibrium solution (6.6).

FIGURE 2. Profile of the function U(x, y= 0, z= 0)= const. for the helically symmetric
equilibrium solution (6.6).

given in figure 2. In figures 1 and 2 it can be seen that the plasma domain consists of
two sub-domains: an outer one consisting of magnetic surfaces with circular poloidal
cross-sections extending up to infinity (r→∞), and an inner sub-domain containing
three lobes and a couple of saddle points (X-points). The inner X-point, corresponding
to a maximum of U, is located at x = −17.6. Then on the right-hand side of this
first X-point are located, successively, two lobes, then the second X-point and farther
outwards the third lob. The respective magnetic axes of the lobes are located at x=
−7.07, x= 2.31 and x= 15.3 while the second X-point is located at x= 7.07. Each
helix composing such a helically symmetric configuration is characterised by a pitch
length, equal to 2πη, and a torsion given by

τ =
η

r2 + η2
. (6.8)
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14 A. Evangelias and G. N. Throumoulopoulos

(a)

(b)

FIGURE 3. The profiles of the scalar pressures (a) P⊥(x, y= 0, z= 0) and (b) P‖(x, y=
0, z= 0) for the constructed stationary equilibria, for M2

p0
= 10−3. The blue dashed curve

corresponds to σd = 0.1, while the red dotted one to σd =−0.1.

The above equilibrium can model helically symmetric jets with anisotropic pressure,
tending to become isotropic at very long distances (r→∞). In more detail, for any
σd= const. 6= 0 inside D, the scalar pressures parallel and perpendicular to B are given
by the relations

P⊥ =P − σd
B2

2µ0
, P‖ =P + σd

B2

2µ0
, (6.9a,b)

indicating that when σd > 0, its increase results in an enhancement of P⊥ while P‖
decreases, and vice versa for σd < 0, as can be seen at the profiles of P‖ and P⊥
shown in figure 3. In the limit of r →∞ the magnetic field, current density and
velocity vanish and therefore the scalar pressures become equal to each other, i.e.
P⊥=P‖=w2= const. because of the second of (6.3) and (6.9). Thus, the configuration
becomes, in this limit, isotropic. Note that this is compatible with a non-zero value
of σd on account of the definition (2.3), which makes σd indefinite in the limit of
r→∞. Profiles of the magnetic field magnitude, B, and the helicoidal component
of the current density, Jh, are shown in figure 4. The values of B become greater
(lower) for σd> 0 (σd< 0), in connection with a diamagnetic (paramagnetic) behaviour.
The helicoidal current density, Jh, reverses near the origin and becomes more peaked
(hollow) for σd > 0 (σd < 0). In addition, profiles of the helicoidal velocity component,
Vh and the Mach function, M2

p , are provided in figure 5. It is noted that Vh reverses in
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(a)

(b)

FIGURE 4. Variation of (a) |B(x, y= 0, z= 0)| and (b) Jh(x, y= 0, z= 0), for the stationary
equilibria constructed here, for M2

p0
= 10−3 and the impact of pressure anisotropy on them

for positive and negative values of σd.

the region of the left lobe, where U becomes negative, and that the flow in terms of
the Mach function, M2

p , strengthens the impact of pressure anisotropy for σd > 0, due
to the factor 1− σd −M2

p (cf. (6.2)). In this respect, it is expected that the increase of
the parameter M2

p0
has the same impact on Vh as that shown in figure 5(a) for σd > 0.

In what follows, we employ the derived suffiecient condition by calculating the
quantity A = A1 + A2 + A3 of (4.13) (in connection with (4.5), (4.8)–(4.10) in the
ψ-space) for the helically symmetric equilibria, defined by the relations (6.1), (6.3)
and (6.6)–(6.9), in order to examine the impact of the pressure anisotropy, flow and
torsion on their linear stability, through the variation of the parameters σd,Mp0 and η,
respectively. We recall that the aforementioned relations were obtained by applying
the integral transformation (4.12) (see Evangelias et al. 2018); in this respect the
condition (4.6) is trivially satisfied. Figure 6(a) shows that the condition A > 0 in
the absence of pressure anisotropy and flow, σd = M2

p0
= 0, is satisfied in a broad

region including the outer domain and the two magnetic axes located on the left
and right sides of the origin (x = y = 0). In these regions, the term A2, being
stabilising, surpasses the destabilising term A1, as shown in figure 6(b) (while in this
case the flow term A3 vanishes). However, the condition is satisfied neither near the
central magnetic axis, where Jh reverses and U is negative, nor in a small region
located on the left side of the magnetic axis of the left lobe, in which Vh reverses;
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(a)

(b)

FIGURE 5. Profiles of (a) the helicoidal velocity component for M2
p0
= 0.06, and the

impact of pressure anisotropy through σd, and (b) the Mach function along the x-axis for
different values of the flow parameter M2

p0
.

in this respect it should be noted that, since the condition is only sufficient, the
white coloured regions in figure 6(a) and in the figures to follow, where A < 0, do
not necessarily imply instability. Thus, we will consider only regions in which the
condition A> 0 is satisfied.

The presence of pressure anisotropy does not affect the isotropic stability map of
figure 6(a), as is clearly indicated in the profiles of figure 7. However, it affects
the values of A. Specifically, in the regions where A > 0, for P‖ > P⊥ (σd > 0)
the anisotropy has a stabilising impact, in the sense that the maximum values of A
become larger than the respective isotropic ones, and a destabilising effect for σd < 0
occurs. These characteristics are illustrated in figure 7. In addition, it is found that the
flow in terms of M2

p has a peculiar effect on stability. Specifically, on the one hand,
it results in shrinking of the orange coloured area located on the left-hand side of the
first lobe, where the helicoidal velocity reverses, as can be seen in figure 8(a,b). This
shrinking is connected with a destabilising effect of M2

p0
on both terms A1 and A2, as

shown in figure 9(a,b). On the other hand, the flow has a stabilising effect, similar to
that of σd > 0, because the respective maximum values of A get larger in this area as
M2

p increases, as can be seen in figure 8(c). Also, the flow gives rise to a stabilising
contribution via the term A3. However, this contribution in the region of interest is an
order of magnitude lower than the destabilising impact of M2

p on A1 and A2, as can
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FIGURE 6. (a) For the static anisotropic helically symmetric equilibrium (σd =M2
p0
= 0)

the stability condition A > 0 is satisfied in the orange coloured regions. (b) The term
A2 has a stabilising effect (red-dotted curve) which counteracts the destabilising one of
A1 (blue-dashed curve), so that the quantity A= A1 + A2, indicated by the black-straight
curve, becomes positive in the aforementioned orange coloured regions.

be seen in figure 9(c). Because of the stronger impact of the pressure anisotropy on
A than the destabilising effect of the flow, the presence of both anisotropy and flow
has an overall stabilising effect in terms of the region where the condition A> 0 is
satisfied and the maximum values of A. This is shown in figure 10.

Finally, as concerns the impact of the torsion, τ , on the quantity A, for a specific
helix, defined by the equations r= rc= const., u= uc= const. (in helical coordinates),
equation (6.8) implies that τ depends only on the parameter η, which characterises
the pitch of that helix. Inspection of (6.8) implies that τ has an extremum for
η = rc, corresponding to the maximum torsion, τmax = 1/2rc. For example, for the
static, isotropic equilibrium of figure 1 the helical magnetic axis of the central
lobe intersects the plane z = 0 at the position xc = 2.318, yc = 0, corresponding
to rc = 2.318, and has maximum torsion, τmax = 0.2157. Therefore, there can exist
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(a)

(b)

(c)

FIGURE 7. The impact of pressure anisotropy on the quantities (a) A, (b) A1 and (c) A2 in
the absence of flow (Mp0 = 0) for σd = 0.2 (blue-dashed curves) and σd =−0.2 (red-dotted
curve). For comparison, also given are the respective isotropic black continuous curves. In
the regions where A> 0, this impact is stabilising for σd > 0 and destabilising for σd < 0.

two different helically symmetric configurations with the same torsion but different
pitches, one for η< rc and the other η> rc. However, the same torsion does not imply
that these configurations have necessarily the same stability properties. The region
in which the condition A > 0 is satisfied for the equilibrium of figure 1 is shown
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FIGURE 8. Impact of the flow through M2
p0

in the central orange coloured region where
the stability condition A> 0 is satisfied in comparison with the respective static isotropic
equilibrium. The maximum used value of the parameter Mp0 , for which all the pressures
remain positive, is 0.08.
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(a)

(b)

(c)

FIGURE 9. The impact of the flow parameter M2
p0

on the terms (a) A1, (b) A2 and
(c) A3, for σd = 0.

in figure 6. We found the respective stability maps for the three pairs of equilibria,
shown in figure 11. Each pair corresponds to the same torsion, τ < τmax but different
pitch lengths, η< rc and η> rc. Specifically, the torsion and pitch values we employed
in connection with these equilibrium pairs are the following: (upper pair consisting
of figure 11a,b) τ(a),(b) = 0.207, η(a) = 1.75, η(b) = 3.07, (middle pair consisting of
the figure 11c,d) τ(c),(d) = 0.157, η(c) = 1, η(d) = 5.37 and (lower pair consisting of
the figure 11e, f ) τ(e),( f ) = 0.089, η(e) = 0.5, η( f ) = 10.75. The stability maps indicate
that the condition A> 0 is satisfied in a wider region as the torsion decreases from
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FIGURE 10. The overall stabilising impact of pressure anisotropy in combination with
flow on the stability of the constructed helically symmetric equilibria. The pertinent
parametric values employed are as follows: (straight black curve) σd = M2

p0
= 0, (blue

dashed curve) σd = 0, M2
p0
= 0.07, (red dotted curve) σd = 0.07, M2

p0
= 0 and (green

dot-dashed curve) σd =M2
p0
= 0.07.

its maximum value and for a given torsion A it gets larger as the pitch length
η > rc increases. Thus, we conclude that helical configurations with smaller torsion
and bigger pitch lengths may have improved stability characteristics. This result is
reasonable if one considers the limit of zero torsion and infinite pitch length in which
a helically symmetric plasma column degenerates into an one-dimensional, cylindrical
θ -pinch. It is well known that such a configuration has favourable stability properties,
since the safety factor approaches infinity. However, confinement in a θ -pinch is
not possible in the presence of toroidicity because the axial magnetic field becomes
purely toroidal.

7. Conclusions

We have derived a sufficient condition for the linear stability of plasma equilibria
for field-aligned incompressible flows in connection with plasmas of constant density
and pressure anisotropy such that the pressure difference P∗

‖
− P∗

⊥
be proportional to

the magnetic pressure, by employing an energy principle. Specifically, we have shown
that the linear stability of such equilibria is guaranteed when the functional of the
perturbation potential energy relates to the sign of a function A (equation (4.5)) which
depends only on equilibrium quantities. According to that condition, any equilibrium
is linearly stable to small three-dimensional perturbations whenever (i) the sum of
the anisotropy function plus the Mach function of the equilibrium velocity colinear
with the magnetic field is not larger than unity (equation (4.6)) and (ii) A is non-
negative (equation (4.7)). This condition generalises the sufficient condition derived
in Throumoulopoulos & Tasso (2007) for respective equilibria with isotropic pressure.

The aforementioned condition can be applied to any plasma steady state without
geometrical restriction, that is, it can be employed for three-dimensional equilibria.
The quantity A involved consists of three physically interpretable terms. The first of
these terms, being always negative and therefore destabilising, may relate to current
driven instabilities. The other two terms may make either a positive or negative
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FIGURE 11. The impact of the torsion of the magnetic axis and of the pitch on the linear
stability of helically symmetric equilibria. Each pair of figures illustrates configurations
that have same torsion, but different pitch values, as explained in the text.
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contribution to A depending on the characteristics of the background equilibria. The
second term relates to the magnetic shear, while the third term relates to the velocity
shear and to the variation of the total pressure perpendicular to the magnetic surfaces;
the latter term vanishes for static equilibria.

In addition, we have shown that, if a given equilibrium with field-aligned
incompressible flows of constant mass density and constant pressure anisotropy
function fulfils the aforementioned condition, and therefore is linearly stable, then all
the families of equilibria obtained by the application of the symmetry transformations
presented in Evangelias & Throumoulopoulos (2019) to the original equilibrium, are
also linearly stable, provided that a parameter, C, appearing in these transformations,
is positive–definite.

At last, we applied the aforementioned sufficient condition to a special class of
helically symmetric equilibrium solutions describing astrophysical jets in order to
examine the impact of flow, pressure anisotropy as well as of the torsion and pitch
of certain equilibrium configuration helices on stability. For this class of equilibria
we have found that both the flow and the anisotropy can have noticeable impact on
stability, which in different plasma regions can be either stabilising or destabilising;
the impact of pressure anisotropy is stronger than that of the flow. Specifically, in the
regions where the stability condition A > 0 is satisfied, the combined effect of flow
and anisotropy is stabilising when P‖ > P⊥. Finally, the results indicate that helically
symmetric equilibrium configurations with smaller torsion and larger pitch length are
favoured in terms of stability.

It is interesting to pursue potential extensions of the sufficient condition derived
here to steady states with compressible flows or/and more physically relevant pressure
anisotropy. This requires replacing incompressibility and the assumption of a constant
pressure anisotropy function by alternative equations of state on the understanding
that finding self-consistently more appropriate equations of state (or energy equations)
associated with the pressure tensor elements P‖ and P⊥ relates to the tough closure
problem of a hybrid fluid-kinetic model, e.g. Snyder, Hammett & Dorland (1997),
Ramos (2015).
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