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Background
Autism spectrum disorder (ASD) is a highly heterogeneous
disorder that affects nearly 1 in 189 females and 1 in 42 males.
However, the neurobiological basis of gender differences in ASD
is poorly understood, as most studies have neglected females
and used methods ill-suited to capture such differences.

Aims
To identify robust functional brain organisation markers that
distinguish between females and males with ASD and predict
symptom severity.

Method
We leveraged multiple neuroimaging cohorts (ASD n = 773) and
developed a novel spatiotemporal deep neural network (stDNN),
which uses spatiotemporal convolution on functional magnetic
resonance imaging data to distinguish between groups.

Results
stDNN achieved consistently high classification accuracy in dis-
tinguishing between females and males with ASD. Notably,
stDNN trained to distinguish between females and males with
ASD could not distinguish between neurotypical females and
males, suggesting that there are gender differences in the
functional brain organisation in ASD that differ from normative
gender differences. Brain features associated with motor, lan-
guage and visuospatial attentional systems reliably distinguished

between females and males with ASD. Crucially, these results
were observed in a large multisite cohort and replicated in a fully
independent cohort. Furthermore, brain features associated
with the motor network’s primary motor cortex node predicted
the severity of restricted/repetitive behaviours in females but not
in males with ASD.

Conclusions
Our replicable findings reveal that the brains of females and
males with ASD are functionally organised differently, contrib-
uting to their clinical symptoms in distinct ways. They inform the
development of gender-specific diagnoses and treatment strat-
egies for ASD, and ultimately advance precision psychiatry.
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Gender differences in autism

Autism spectrum disorder (ASD) is a pervasive and highly hetero-
geneous neurodevelopmental condition. It is becoming increasingly
apparent that systematic disentangling of this high heterogeneity is
crucial for developing more precise diagnosis and targeted treat-
ment strategies for ASD. Gender is a key source of heterogeneity
in ASD. Indeed, one of the most consistent findings of epidemio-
logical research is that ASD is diagnosed less frequently in females
than in males, with a ratio of 1 to 4.1 Additionally, converging evi-
dence from behavioural studies suggests that females are less
severely affected, especially in the restricted and repetitive beha-
viours (RRB) symptom domain, than males.2 Yet, there is limited
research examining the neurobiological differences between
females and males with ASD.3,4 Additionally, how gender differ-
ences in neurobiology relate to gender differences in the clinical
symptomatology of the disorder is also not known.3,4 Such knowl-
edge is critical both for understanding the aetiology of this hetero-
geneous disorder and for determining neuroprotective mechanisms
in females.5 These knowledge gaps are partly because extant brain
imaging studies have primarily focused on males and neglected
females or used mixed samples involving a small number of
females,3,4 making it difficult to assess gender-related effects with
adequate statistical power. Furthermore, extant studies have relied
on conventional univariate approaches that are ill-equipped to
capture robust neurobiological gender differences, necessitating
the development of new computational approaches.3

Study aims

The first aim of our study was to determine whether neurobiology,
in particular functional brain organisation, differed between females
and males with ASD. The number of studies examining gender dif-
ferences in ASD at the brain level is minimal,4 and the findings from
these studies have been largely inconsistent: some studies have
reported gender differences in functional brain organisation in
ASD, whereas others have not found any.3,4 Critically, the findings
from these studies remain poorly replicated, likely because of the
small numbers of participants, especially female participants.3,4

To address this, we examine, to the best of our knowledge, one
of the largest functional brain imaging data-sets to date of females
and males with ASD obtained from multiple sites across the
world—Autism Brain Imaging Data Exchange (ABIDE)6—along
with the data we have collected,7 as well as an independent Child
Mind Institute-Health Brain Network (CMI-HBN) cohort,8 using
a novel explainable artificial intelligence9 (XAI)-based framework.

The field of XAI in recent years has been revolutionised by deep
neural networks (DNNs).10 DNNs, however, have been far less suc-
cessful in classification/differentiation of groups using functional
brain imaging data.11 In fact, no study has employed DNNs to dif-
ferentiate between females and males with ASD using functional
brain imaging data.3,4 This is because of the many challenges asso-
ciated with applying DNNs to brain imaging data (see
Supplementary Introduction available at https://doi.org/10.1192/
bjp.2022.13 for details). To address these challenges, we developed
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a novel spatiotemporal DNN (stDNN) model, which takes as its
input functional magnetic resonance imaging (fMRI) time series
data from brain regions of interest and models the underlying
dynamic spatiotemporal characteristics of brain activity to differen-
tiate between females with ASD and males with ASD (Fig. 1 and
Supplementary Fig. 1).

A key idea of our approach is to discover latent spatiotemporal
dynamics for classification from brain data without the need for
explicit feature engineering. Another novel feature of our stDNN
model is the use of a one-hot encoding scheme that addresses multi-
site heterogeneity in fMRI data that is common to data-sharing con-
sortia such as ABIDE. The one-hot encoding scheme enabled the
creation of a single stDNN model that handles heterogeneous
data while learning robust representations for simultaneously clas-
sifying and identifying robust neurobiologically meaningful features
that distinguish females and males with ASD. Yet another novel
aspect of our stDNN is its use of a label-distribution-aware
margin (LDAM) loss12 during model training. DNNs fare poorly
when the data-set suffers from heavy class imbalance, such as in
the present case owing to well-known male bias of ASD.1 To
improve DNN performance in such scenarios, we designed a theor-
etically principled LDAM loss motivated by minimising a margin-
based generalisation bound, which we have previously shown to
outperform the conventional cross-entropy loss under class-imbal-
ance conditions.12

We applied our stDNN model with LDAM loss function to the
multisite ABIDE6 combined with Stanford7 task-free fMRI data. We
hypothesised that stDNN would be able to accurately distinguish
between females and males with ASD in the ABIDE/Stanford cohort.

To address growing concerns about reproducibility in
neuroscience, we next applied our stDNN model with LDAM loss
to CMI-HBN cohort task-free fMRI data.8 It should be noted that
the CMI-HBN cohort data was not used for training the stDNN
model, and therefore it is a fully independent data-set for demon-
strating the generalisability of the stDNN ASD gender classification
model. This is a crucial step in which most approaches are widely
known to fail.11

We hypothesised that stDNN trained on ABIDE/Stanford
cohort would be able to accurately distinguish between females
and males with ASD in the fully independent CMI-HBN cohort.
To determine the specificity of gender differences in functional
brain organisation in ASD, we assessed whether the stDNN
model trained to distinguish between females and males with
ASD could also distinguish between neurotypical females and neu-
rotypical males. We further hypothesised that the stDNN ASD
gender classification model would not be able to accurately distin-
guish between neurotypical females and neurotypical males, reflect-
ing unique patterns of gender differences in ASD.2

The second aim of our study was to determine which aspects/
features of functional brain organisation differed between females
and males with ASD. Conventional DNN approaches are black
box models, which provide no insight into which brain features
are important for classification, nor whether the features are neuro-
biologically interpretable in the context of previous research of
gender differences in ASD.11 We address this gap by using an inte-
grated gradients method13 for identifying neurobiologically mean-
ingful features that distinguish between females and males with
ASD. This method ranks brain features that distinguish between
females and males with ASD. We hypothesised that integrated gra-
dients would reveal functional organisation patterns that are differ-
ent between females and males with ASD in multiple brain areas,
particularly those belonging to the motor and language networks.2

We further predicted that the patterns of ASD gender differences
in functional brain organisation would differ from the normative/
typical gender difference patterns.2

The third aim of our study was to examine the relationship
between the functional brain organisation patterns that differ in
females and males with ASD and their symptom severity. To our
knowledge, no previous study has examined functional brain fea-
tures that robustly predict clinical symptoms in females and males
with ASD separately without using feature engineering. We
hypothesised that the brains of females and males with ASD
would be functionally organised in ways that contribute differently
to their clinical symptoms.2
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Fig. 1 Schematic overview of multicomponent explainable artificial intelligence (XAI) framework for discovering neurobiological patterns/
fingerprints that distinguish between females andmales with autism spectrum disorder (ASD) and predict the severity of clinical symptoms. Key
steps include: Steps 1, 2: data extraction; Step 3, 4: classification; Steps 5, 6: feature identification. i.e. predictive feature weights (‘fingerprints’)
across brain regions; and Step 7: prediction of clinical symptom severity.

ADI-R, autism diagnostic interview-revised; Avg, average; F, filter; fMRI, functional magnetic resonance imaging; Nc, number of brain regions; Nt, number of time points; ReLU,
rectified linear unit; S, stride; stDNN, spatiotemporal deep neural network.
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Method

Participants
ABIDE

We leveraged neuroimaging and phenotypic data from ABIDE6

(Supplementary Table 1, Supplementary Fig. 2, see Supplementary
Methods for details).

Stanford

An independent cohort of participants recruited and scanned at
Stanford University7 was used to further increase the number of
females with ASD in our sample (Supplementary Table 1,
Supplementary Fig. 3, see Supplementary Methods for details).

Written informed consent was obtained from the participant’s
legal guardian. The study protocol was approved by the Stanford
University Institutional Review Board. Specifically, the ABIDE
data was combined with the Stanford data to form the ABIDE/
Stanford cohort, which served as the primary cohort.

CMI-HBN

An independent cohort of participants from CMI-HBN8 was used
to demonstrate the robustness of our findings. (Supplementary
Table 2, Supplementary Fig. 4, see Supplementary Methods for
details).

stDNN model

We developed an innovative stDNN model to extract informative
functional brain dynamics features that accurately distinguish
between females and males with ASD (see Supplementary
Methods for details). Briefly, our stDNN model consists of two

1D-convolutional block layers, a ‘temporal averaging’ operation,
and then a sigmoid output layer (Supplementary Fig. 1). Pre-pro-
cessed regional fMRI time series from 246 brain regions defined
in the Brainnetome atlas were given as input to the first 1D-convo-
lutional block layer. To account for site-related heterogeneity, site
information encoded with a one-hot encoding scheme was given
as an input to the final layer. stDNN classified participants in the
two groups by minimising a LDAM loss function.

Fivefold cross-validation ASD gender classification
analysis of ABIDE/Stanford cohort data

To prevent bias and account for low variance, we conducted a five-
fold cross-validation to evaluate the performance (accuracy, preci-
sion, recall, and the harmonic mean of precision and recall (F1))
of our stDNN model in classifying ASD females versus ASD
males (Fig. 2; see Supplementary Methods for details).

ASD gender classification analysis of CMI-HBN cohort
data using fivefold ABIDE/Stanford cohort ASD gender
classification models

For reporting the performance of our stDNN for the CMI-HBN
cohort, we used each of the five stDNN models trained on different
subsets of the ABIDE/Stanford cohort (Fig. 2; see Supplementary
Methods for details).

Neurotypical gender classification analysis of ABIDE/
Stanford cohort data using fivefold ABIDE/Stanford
cohort ASD gender classification models

To examine the specificity of our stDNN ASD gender classification
model, we investigated whether the stDNN model trained to distin-
guish between females with ASD and males with ASD can
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distinguish between neurotypical females and neurotypical males in
the ABIDE/Stanford cohort (see Supplementary Methods for
details).

Fivefold cross-validation neurotypical gender
classification analysis of ABIDE/Stanford cohort data

We conducted a fivefold cross-validation to evaluate the perform-
ance (accuracy, precision, recall, F1) of our de novo trained
stDNN model in classifying neurotypical females versus neurotypi-
cal males (see Supplementary Methods for details).

Identifying brain features underlying ASD gender
classification

We used an integrated gradients-based feature attribution
approach13 (see Supplementary Methods for details) to identify
brain features that discriminated between females with ASD and
males with ASD.

Clinical symptom prediction in females and males with
ASD

We investigated the relationship between stDNN-identified neuro-
biological features (that distinguished between females and males
with ASD) with the severity of clinical symptoms in females with
ASD and males with ASD separately. Spearman correlations
between the autism diagnostic interview-revised (ADI-R)14 domain
scores and the brain features derived from each of the five stDNN
models were computed (see Supplementary Methods for details).

Control analyses

We performed several control analyses to demonstrate that our
findings are robust to head motion-related confounds (see
Supplementary Methods for details).

Results

Classification of ASD females versus ASD males in the
ABIDE/Stanford cohort

We first trained our stDNN on the multisite ABIDE cohort data
combined with data we acquired at Stanford (ASD cohort n =
678) (Supplementary Table 1). To assess the performance of our
stDNN model, we used a fivefold cross-validation procedure in
which 80% of the sample was used for training and the other 20%
of the sample was used for validation (Fig. 2). stDNN achieved an
average accuracy of 86.0% (s.d. = 1.65%) across the five folds, and
an average precision of 0.86 (s.d. = 0.02), recall of 0.86 (s.d. = 0.02)
and F1 score of 0.83 (s.d. = 0.02) (Supplementary Table 3).
Additional analyses confirmed that the observed results were
robust to potential confounds such as head motion (see
Supplementary Results for details). These results demonstrate that
stDNN can accurately distinguish females with ASD from males
with ASD in a multisite cohort, and, furthermore, does so in a
robust and consistent manner across cross-validation folds.

Classification of ASD females versus ASD males in an
independent CMI-HBN cohort

We then evaluated the performance of our stDNN model on an
independent cohort of females with ASD and males with ASD
obtained from CMI-HBN (ASD cohort n = 95) (Supplementary
Table 2). Importantly, the stDNN was not trained on the CMI-
HBN data. We evaluated five models corresponding to each of the
folds in the cross-validation as described above (Fig. 2). stDNN

achieved an average accuracy of 83.4% (s.d. = 3.67%) across the
five folds, and an average precision of 0.85 (s.d. = 0.01), recall of
0.83 (s.d. = 0.04) and F1 score of 0.84 (s.d. = 0.02) (Supplementary
Table 4). These results demonstrate that stDNN can accurately dis-
tinguish females with ASD frommales with ASD in an independent
cohort without additional training.

Classification of neurotypical females versus
neurotypical males

To examine the specificity of our stDNN ASD gender classification
model, we investigated whether the stDNN model trained to distin-
guish between females with ASD and males with ASD can distinguish
between neurotypical females and neurotypical males in the ABIDE/
Stanford cohort (neurotypical cohort n = 976) (Supplementary
Table 1). For the neurotypical females versus neurotypical males clas-
sification, the stDNNmodel trained on the ABIDE/StanfordASD data
achieved an accuracy of 66.7% (s.d. = 0.75%) across the five folds, and
an average precision of 0.64 (s.d. = 0.01), recall of 0.67 (s.d. = 0.01) and
F1 score of 0.60 (s.d. = 0.02) (Supplementary Table 5).

These classification metric values were much lower than those
obtained by a de novo trained stDNNmodel onABIDE/Stanford neu-
rotypical data, which achieved an accuracy of 77.8% (s.d. = 0.38%),
across the five folds, and an average precision of 0.78 (s.d. = 0.01),
recall of 0.77 (s.d. = 0.01) and F1 score of 0.78 (s.d. = 0.02)
(Supplementary Table 6).

These results point to a unique pattern of gender differences in
ASD.

Identification of brain features underlying ASD gender
classification in the ABIDE/Stanford cohort

We then used an integrated gradients procedure13 to compute the
feature attributes underlying the ASD female class label in the
ABIDE/Stanford cohort. This analysis yields a measure of feature
strength associated with females with ASD versus males with ASD
classification in each brain region and at each time point. The inte-
grated gradients procedure was applied to the stDNN model that is
trained to distinguish between females with ASD and males with
ASD using ASD data from the ABIDE/Stanford cohort. This pro-
cedure also identifies an individual fingerprint of predictive features
in each participant (Fig. 3, see Supplementary Results for details).

To identify brain areas that contributed the most to classifica-
tion, we computed the median of feature scores across the five
folds and thresholded them – top 5% of features – based on the dis-
tribution of feature scores across all time points and regions. This
resulted in the identification of a distributed set of brain areas
including the primary motor cortex, supplementary motor area,
parietal and lateral occipital cortex, and middle and superior tem-
poral gyri as brain areas that contribute most significantly to pre-
dicting the ASD female class label (Fig. 4 and Supplementary
Table 7). These brain areas were distinct from those that contributed
most significantly to predicting the neurotypical female class label
(see Supplementary Results for details).

Additional analyses confirmed that the observed results were
robust to potential confounds such as head motion (see
Supplementary Results for details). These results demonstrate that
stDNN together with integrated gradients procedures automatically
identifies discriminating features without the need for ad hoc feature
engineering procedures.

Identification of brain features underlying ASD gender
classification in the CMI-HBN cohort

We then used the same procedures as described in the previous
section to determine predictive feature attributes in each female
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participant with ASD in the CMI-HBN cohort. This analysis
revealed individualised brain ‘fingerprints’ (Fig. 3, see
Supplementary Results for details), and identified the primary
motor cortex, supplementary motor area, parietal and lateral occipi-
tal cortex, and middle and superior temporal gyri as the brain areas
that contributed most significantly to predicting the ASD female
class label (Fig. 4 and Supplementary Table 8).

These results demonstrate that stDNN together with integrated
gradients procedures automatically identifies similar discriminating
features as in the ABIDE/Stanford cohort, again without the need
for ad hoc feature engineering procedures.

Predicting clinical symptoms using brain features

We investigated whether stDNN-identified brain features could
predict the severity of clinical symptoms in females and males
with ASD. The primary motor cortex was the only brain region
whose features predicted ADI-R RRB scores (P < 0.01; false discov-
ery rate-corrected) in females with ASD. No such relationship was
observed in males with ASD or for the social and communication
domains in either females or males with ASD, demonstrating the
specificity of findings related to RRB phenotypic features in
females with ASD.

Discussion

Main findings

By using one of the largest functional brain imaging cohorts of
females and males with ASD and leveraging exciting recent
advances in XAI, we examined neurobiological gender differences
in ASD. To our knowledge, this is the first use of a XAI-based
approach for uncovering robust neurobiological gender differences
in ASD. Our XAI-based approach is also a significant advance over
previous approaches to find gender differences in ASD using func-
tional brain imaging data (see Supplementary Discussion for
details). Our novel XAI-based stDNN model, which uses spatio-
temporal convolution on fMRI data to distinguish between
groups, achieved consistently high classification accuracy in distin-
guishing between females and males with ASD. Notably, the stDNN
model trained to distinguish between females and males with ASD
could not distinguish between neurotypical females and males, sug-
gesting that there are gender differences in the functional brain
organisation in ASD and these gender differences are different
from normative gender differences.

Brain features associated with motor, language and visuospatial
attentional systems reliably distinguished females with ASD from
males with ASD. Crucially, these results were observed in the
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Fig. 3 (a) t-distributed stochastic neighbour embedding (tSNE) plot of spatiotemporal deep neural network (stDNN)-derived individual feature
attribution maps/fingerprints of 30 representative females with ASD and 30 representative males with ASD from the ABIDE/Stanford cohort,
demonstrating the clustering of females with ASD and males with ASD. (b) stDNN-derived individual feature attribution maps/fingerprints in
three females with ASD from the ABIDE/Stanford cohort. (c) tSNE plot of stDNN-derived individual feature attribution maps/fingerprints of 10
representative females with ASD and 30 males with ASD from the Child Mind Institute-Health Brain Network (CMI-HBN) cohort, demonstrating
the clustering of females with ASD and males with ASD. (d) stDNN-derived individual feature attribution maps/fingerprints in three females with
ASD from the CMI-HBN cohort.
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large multisite ABIDE/Stanford cohort and replicated in a fully
independent CMI-HBN cohort. Furthermore, brain features asso-
ciated with the primary motor cortex node of the motor network
emerged as a robust predictor of the severity of RRBs in females
with ASD but not in males with ASD. Taken together, these
results, elaborated below, provide novel and robust insights into
the neurobiology of gender differences in ASD and their relation
to the core clinical symptoms of the disorder.

Interpretation of our findings

The first key finding of our study is that females with ASD have a
functional brain organisation that differs significantly from males
with ASD. Gender differences in functional brain organisation in
ASD reported to date have beenmixed and, to the best of our knowl-
edge, no studies have attempted model-based validation and repli-
cation of findings. stDNN allowed us to perform cross-validation
analysis, a powerful approach for validating research findings, and
its use for demonstrating generalisation and reproducibility is
now increasingly advocated in psychiatry.15 Notably, stDNN
also allowed us to develop a model based on one data-set
(ABIDE/Stanford) and test it on another ‘independent’ data-set
(CMI-HBN) without further training. This is a crucial step in
whichmost approaches in other domains are widely known to fail.15

Our stDNN model learned functional brain organisation pat-
terns that could distinguish between females and males with ASD
with a high cross-validation classification accuracy in the multisite
ABIDE/Stanford cohort, despite the considerable heterogeneity in
data acquisition protocols and a wide range in age (mean age =
13.2 years, s.d. = 5.9) and symptom profiles. Notably, stDNN
achieved a high classification accuracy in an independent CMI-
HBN cohort (mean age = 11.8 years, s.d. = 3.9) that was not used

in the training of stDNN. These results further demonstrate
robust gender differences in functional brain organisation in ASD.

stDNN also enabled us to seamlessly determine whether func-
tional brain patterns that distinguished between females and
males with ASD could also classify by gender in data from neuroty-
pical peers. We found that the stDNN model trained to distinguish
between females and males with ASD could not distinguish between
neurotypical females and males. These results point to unique neu-
rofunctional patterns of gender differences in ASD.

The second main finding of our study is the identification of
functional brain features that distinguish between females and
males with ASD. Our stDNN-based integrated gradients analysis
identified the primary motor cortex and supplementary motor
area, which anchor the motor network, as brain areas whose dynam-
ical functional properties most clearly distinguished between
females and males with ASD in both cohorts. Aberrancies in the
extended motor network have been consistently reported in ASD,
when compared with neurotypical individuals.16 An open unad-
dressed question is whether these same brain areas also show
gender-specific differentiation, which our findings help resolve in
a robust manner across multiple cohorts. This question is important
because aberrancies in key nodes of the motor network and their
dynamic functional interactions have been linked to fine and
gross motor deficits in ASD,16 and there is increasing evidence for
gender differences in motor deficits in ASD.17

Previous studies have reported ASD-related gender differences
in grey matter morphometry of the motor network, albeit using
small sample sizes.2 Our findings, using a large sample of females
and males with ASD, extend these results by providing novel and
robust evidence that the functional brain organisation of the
motor system, which has been consistently shown to differ
between ASD and their neurotypical peers, is also different
between females and males with ASD.

0 5,5399
×10–5

0 5,5369
×10–5

0 2,2827
×10–5

ABIDE/Stanford cohort

CMI-HBN cohort

(a) (b)

(c) (d)

0 2,2827
×10–5

Fig. 4 (a) Feature attribution map showing the top 5% features that underlie females with ASD versus males with autism spectrum disorder
(ASD) classification in the ABIDE/Stanford cohort. Spatiotemporal deep neural network (stDNN) with integrated gradients identified brain
features that distinguish females with ASD from males with ASD. The algorithm automatically identified distinguishing features in the primary
motor cortex and the supplementary motor area, which anchor the motor network, middle and superior temporal gyri, which anchor the
language network, as well as the visuospatial attentional system (see Supplementary Table 7 for a detailed listing of brain areas and predictive
feature weights). (b) Visualisation of (unthresholded) featureweights across the whole brain in the ABIDE/Stanford cohort. (c) Feature attribution
map showing the top 5% features showing replication of predictive motor network, language network, and visuospatial attention features in the
ChildMind Institute-Health Brain Network (CMI-HBN) cohort (see Supplementary Table 8 for a detailed listing of brain areas and predictive feature
weights). (d) Visualisation of (unthresholded) feature weights across the whole brain in the CMI-HBN cohort.
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In both cohorts, our analysis also identified bilateral middle and
superior temporal gyri, which anchor the language system, as brain
areas whose features clearly distinguished between females and
males with ASD. Impairments in temporal cortex areas associated
with language processing are a prominent feature of ASD.18,19

Language systems anchored in the middle and superior temporal
gyri facilitate speech processing and semantic comprehension, pro-
cesses known to be impaired in ASD.20

Surprisingly, our analysis also identified the dorsal parietal
cortex as a brain area whose features distinguished between
females and males with ASD in both cohorts. Specific loci included
the superior parietal lobule and the adjoining posterior human
intraparietal area 3 (hIP3) subdivision of the intraparietal
sulcus, which play a crucial role in visuospatial attention.21,22

Moreover, these parietal areas, encompassing the dorsal visual
stream pathway, have strong connections with the lateral occipital
gyrus21 whose features also distinguished between females and
males with ASD. Together, these regions constitute key elements
of the dorsal and ventral visual pathways involved in attending to
the location of objects in space.23 This finding of gender-related
differences is noteworthy because of conflicting evidence in the
extant literature about co-occurring parietal and lateral occipital
cortex impairments in ASD.18,19

Taken together, these results identify gender differences in
motor and language systems that are known to be impaired in the
disorder as well as dorsal parietal and lateral occipital cortex regions
that have not been reported previously in the literature as being
affected in ASD. Interestingly, although default mode network and
salience network aberrancies have been consistently reported in
ASD,24,25 gender differences were not reliably observed in these
regions, suggesting that aberrancies in the default mode network
and salience network may be common to females and males with
ASD. More broadly, our findings suggest that brain characteristics
of gender differences in ASD overlap only partly with overall brain
aberrancies in ASD, emphasising the convergent and distinct under-
lying mechanisms of gender differences in the disorder.

These observations parallel findings from neuroanatomical
studies that suggest that the overall ASD neuroanatomy in
females and males does not simply differ quantitatively in the
same brain regions/circuitries but also differs qualitatively.26 The
extent to which abnormalities in the brain systems identified in
the present study differentially have an impact on the acquisition
of motor, visuospatial and social communication skills in females
and males with ASD remains to be investigated.

A third important finding of our study is that we found that the
primary motor cortex node of the motor network was the only brain
area whose dynamic functional circuitry predicted scores on the
RRB domain of the ADI-R. They were not related to the scores
on the social and communication scores of the ADI-R, indicating
domain-specific effects associated with RRBs – a core clinical
phenotype of ASD that has been most consistently reported to
differ between genders.2 Surprisingly, these relationships were
observed in females, but not in males, with ASD. The neurofunc-
tional mechanisms underlying the heterogeneity of RRB symptoms
in males with ASD remain to be investigated. A potential avenue for
investigation might be to examine the relationship between RRBs in
males with ASD and the functional organisation of other compo-
nents of the motor network, including the basal ganglia and cerebel-
lum, which we recently found to be predictive of repetitive motor
behaviours in a predominantly male ASD sample.7

Implications

Our findings reveal that the brains of females and males with ASD
are functionally organised differently, contributing to their clinical

symptoms in distinct ways. Our discovery of robust neurobiological
gender differences in ASD psychopathology has the potential to
transform our understanding of the diverse aetiologies of the dis-
order, as well as inform the development of gender-specific diagno-
sis and treatment strategies. Our approach, in general, provides new
XAI-based tools for investigating the robust neurobiological bases
of psychiatric disorders and the accompanying clinical symptoms,
with the potential to inform precision psychiatry.
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Extra
Auschwitz: dreaming the nightmare of day – Dr Miklós Nyiszli (A-8450)

Greg Wilkinson

‘Sick at heart, and physically ill, I started my long journey homeward… I felt that I should rest, try to regain my strength. But, I kept asking myself, for what?
On the one hand, illness rackedmy body; on the other, the bloody past frozemy heart. My eyes had followed countless innocent souls to the gas chambers,
witnessed the unbelievable spectacle of the funeral pyres. And I myself, carrying out the orders of a demented doctor, had dissected hundreds of bodies, so
that a science based on false theories might benefit from the deaths of those millions of victims. I had cut the flesh of healthy young girls and prepared
nourishment for the mad doctor’s bacteriological cultures. I had immersed the bodies of dwarfs and cripples in calcium chloride, or had them boiled so
that the carefully prepared skeletons might safely reach the Third Reich’s museums to justify, for future generations, the destruction of an entire race.
And even though all this was now past, I would still have to cope with it in my thoughts and dreams. I could never erase these memories from my mind.’1
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