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Abstract. In the present paper, for a large family of topological semigroups
namely, compactly cancellative and right cancellative foundation semigroups S, we
study the topological centers of the Banach algebras LUC(S)* and Ma�S�**. We
also give a generalization of a known result of Lau and Lorsert by showing that for
such topological semigroups the topological center of LUC(S)* (Ma�S�**, respec-
tively) is the same as M�S� (Ma�S�, respectively).
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In recent years there has been shown considerable interest by harmonic analysts
in the topological center problem of LUC G� �* and L1 G� �** of a locally compact
group G.

In [18] Zappa proved that, for G � R; ~Z �M R� � (the measure algebra of R),
where ~Z denote the topological center LUC G� ��. This result was extended to abelian
locally campact groups by Grosser and Losert in [6], and to all locally compact
groups by Lau in [11]. In [14] for a certain discrete group G, Parsons proved that
Z1 � `1�G�, where Z1 denotes the topological center of `1 G� �**. In [10] Isik, Pym
and UÈ lger proved that for any compact group G the topological center of L1 G� �** is
the same as L1 G� �. This result was generalized to all locally compact groups by Lau
and Losert in [12] and again through a di�erent proof by Lau and UÈ lger in [13].

It seems to the author that the topological center problem of corresponding
algebras of topological semigroups has not been touched so far. It is the aim of this
paper to generalize these results to an extensive class of topological semigroups
namely, compactly cancellative and right cancellative foundation semigroups, for
which topological groups and cancellative discrete semigroups are elementary
examples.

1. Notation and preliminaries. In this section we have collected some notation
and results which are needed for the subsequent sections. For any Banach algebra A
with a bounded approximate identity we denote by A* and A** its ®rst dual and
second dual, respectively. The ®rst Arens multiplication on A** is de®ned in three
steps as follows. For a; b in A, f in A* and m; n in A**, the elements f:a;m:f of A*
and m:n of A** are de®ned by
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h f:a; bi � h f; abi; hm:f; ai � hm; f:ai; hm:n; f i � hm; n:f i:

The basic propeties of this multiplication are as follows. For a ®xed n in A**, the
mapping m 7!ÿ m:n is weak*±weak*-continuous. For ®xed m in A**, the mapping
n 7!ÿ m:n is in general not weak*±weak* continuous unless m is in A, and so Z the
topological center of A** with respect to this multiplication, is de®ned as follows.

Z1 � m 2 A�� : the mapping n 7!ÿ m:n is weak�ÿweak� continuous on A��
� 	

:

The second Arens multiplication is de®ned as follows. For a; b in A; f in A* and
m; n in A**, the elements a�f; f�m of A* and m�n of A** are de®ned by the
equations

hb; a�f i � hba; f i; ha; f�mi � ha�f; mi; h f; m�ni � h f�m; ni:

For m ®xed in A**, the mapping n 7!ÿ m�n is weak*±weak*-continuous on A**. For
n ®xed in A**, the mapping m 7!ÿ m�n is in general not weak*±weak* continuous on
A** unless n is in A. Hence the topological center of A** with respect to this multi-
plication is de®ned as follows.

Z2 � n 2 A�� : The mapping m 7!ÿ m�n is weak�ÿweak�-continuous on A��
� 	

:

We note that with either multiplications A** de®nes a Banach algebra [1]. Further-
more for a in A and m 2 A**, a:m: � a�m and m:a: � m�a. It is clear that
A � Z1 \ Z2 and Zi i � 1; 2�� is a closed subalgebra of the Banach algebra A**
endowed with the ®rst (second) Arens multiplication.

It is also easy to see that

Z1 � n 2 A�� : m:n � m�n 8n 2 A��f g
and

Z2 � m 2 A�� : n:m � n�m 8n 2 A��f g:
An element E of A** is said to be a mixed unit if m:E � E�m � m, for all m in A**.
Note that E in A** is a mixed unit if and only if it is a weak* cluster point of some
bounded approximate identity in A; see [3: p. 146].

We also de®ne the subspaces A*A and A�A* of A* as follows:

A�A � f:a : f 2 A� and a 2 A
� 	

;

A�A� ÿ a�f : f 2 A� and a 2 A
� 	

:

Analoguous to A**, the topological center of A�A� �* is de®ned as follows.

~Z1 � � 2 A�A� ��: The mapping n 7!ÿ �:n is weak�ÿweak� continuous on A�A� ��� 	
:

Convention. Throughout the paper, A** will denote the Banach algebra of A**
equipped with the ®rst Arens multiplication.

Recall also that on a locally compact Hausdor� and jointly continuous topo-
logical semigroup S, Ma S� � (or ~L S� �) [2], [5], [7] denotes the space of all measures
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� 2M S� � (the space of all bounded complex Radon measures on S) for which the
mappings x 7!ÿ �j j � �x (where �x denotes the Dirac measure at x) and x 7!ÿ �x � �j j
from S into M S� � are weakly continuous. It is well known that Ma S� � is a closed
two-sided L-ideal of M S� �. A topological semigroup S is called a foundation semi-
group if [ supp �� � : � 2Ma S� �� 	

is dense in S. We also note that if S is a foundation
semigroup with identity, then Ma S� � has a bounded approximate identity and, for
every � in Ma S� �, both mappings x 7!ÿ �j j � �x and x 7!ÿ �x � �j j from S into Ma S� �
are norm continuous; (see [5]).

Let LUC S� � denote the space of bounded left uniformly continuous complex-
valued functions on S; i.e. all f in Cb S� � (the space of complex-valued bounded
continuous functions on S with the supremum norm) such that the map x 7!ÿ `x f of
S into Cb S� � is continuous when Cb S� � has the sup-norm topology, where
`x f� � y� � � f xy� � x; y 2 S� �: Then LUC S� � is a closed subalgebra of Cb S� � invariant
under translation. The space of bounded right uniformly continuous functions
RUC S� � on S is de®ned similarly. It should be noted that in standard books on
harmonic analysis in the case where S is a locally compact group, the space of
bounded right uniformly continuous complex-valued functions on S is denoted by
LUC S� �. It is well known that if S is a foundation semigroup with identity, then for
A �Ma S� �;A�:A � LUC S� � and A�A� � RUC S� �; (see Lemma 2.1 of [9]). When S
is a foundation semigroup with identity we shall identify Ma S� �* with L1 S;Ma S� �� �,
the Banach space of all bounded complex-valued �-measurable � 2Ma S� �� � func-
tions on S with the sup-norm, via the identi®cation: f 7!ÿ �f where

�f �� � �
Z
S

f x� �d� x� � f 2 L1 S;Ma S� �� �; � 2Ma S� �� �;

(see Proposition 3.6 of [16]). Note that if we denote again �f by f, then two functions
f and g are identical in L1 S;Ma S� �� � whenever f x� � � g x� � a:e: � for every � in
Ma S� �. Since, by Lemma 2.5 of [2], we have

f � � v� � �
Z
S

f � � �x� �dv x� � and f v � �� � �
Z

f �x � �� �dv x� �;

for every f 2 L1 S;Ma S� �� � and v 2M S� �, it follows that

h f:�; vi � f � � v� � �
Z
S

Z
S

f xy� �d� x� �dv y� �

�
Z
S

Z
S

f xy� �dv y� �d� x� �;
�1�

for every �; v 2Ma S� �. Similarly

h��f; vi � f v � �� � �
Z
S

Z
S

f xy� �dv x� �d� y� � �
Z
S

Z
S

f xy� �dv y� �d�

�
Z
S

Z
S

f xy� �d� y� �dv x� � �; v 2Ma S� �� �:
�2�

If we consider Ma S� � � Z1, then for every �; v 2Ma S� � and f 2 L1 S;Ma; S� �� �,
h�:f; vi � h�; f:vi � f v � �� �: Therefore, ��f � �:f and moreover from (1) and (2) it
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follows that if both � and f have compact supports, then the supports of f:� and
��f � �:f� � are compact.

A topological semigroup S is called a �-semigroup if there exists a continuous
map � : S! S such that x�� � x and xy� ��� y�x� for all x; y in S. Finally, a topo-
logical semigroup S is called compactly cancellative if CDÿ1 and Cÿ1D are compact
subsets of S for every two compact subsets C and D of S, where

CDÿ1 � z 2 S : zd 2 C for some d in Df g;
Cÿ1D � z 2 S : cz 2 D for some c in Df g:

The set Cfygÿ1 �y 2 S� will be denoted by Cyÿ1.
Throughout the rest of this paper we shall denote the topological center of

Ma S� �** and LUC S� �* by Z1 and ~Z1, respectively.

2. The topological center of LUC(S)*. The aim of the present section is to extend
a result of Lau [11] from locally compact groups to compactly cancellative and right
cancellative foundation semigroups with identity by proving that for such semi-
groups the topological center of LUC S� �* is the same as M S� �.

It should be noted that Lau's proof for locally compact groups depends heavily
on the existence of the inverse operation on groups.

Our starting point of this section is the following lemma whose proof is
straightforward.

Lemma 2.1. Let S be a foundation semigroup with identity such that Cÿ1D is a
compact subset of S for every two compact subsets C and D of S. Let f in
L1 S;Ma S� �� � and � in Ma S� � both have compact supports. Then the support of f:� is
compact.

Notation. We denote by L10 S;Ma S� �� � the sup-norm closure of the space of all
functions in L1 S;Ma S� �� � with compact support. We also denote by MK

a S� � the
space of all measures in Ma S� � with compact support.

The proof of the following lemma is omitted, since it is straightforward.

Lemma 2.2. Let S be a foundation semigroup with identity e. Let U0 be a ®xed
neighbourhood of e with compact closure and let � denote the set of all neighbourhoods
of e contained in U0. Suppose that � is directed downwards and, for each � 2 �; �� is
chosen so that �� � 0; ��k k � 1 and �� S n �� � � 0: Let g in L1 S;Ma S� �� � be con-
tinuous at e. Then lim�h��; gi � g e� �:

Remark 2.3. The net ��� � in the statement of the preceding lemma de®nes a
bounded approximate identity for Ma S� � (see, Proposition 5.16 of [15]).

Lemma 2.4. Let S be a foundation semigroup with identity and let m 2 Z1. Then
there exists a net �a� � in MK

a S� � such that for every f in L1 S;Ma S� �� �,
f��� ÿ f�m
 

1! 0: In particular, f�m is in LUC S� � and hx; f�mi � hm; rx f i; for
every x 2 S.

Proof. Let C denote the convex set of all v 2MK
a S� � with vk k � mk k: By Gold-

stine's theorem and the norm density of MK
a S� � in Ma S� �, there exists a net v�

ÿ �
in C
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that converges to m in the weak*-topology of Ma S� �**. For every n in Ma S� �** and f
in L1�S;Ma S� ��, since Ma S� � � Z1, we have

lim
�
hn; f�v�i � lim

�
hv��n; f i � lim

�
hv�:n; f i

� lim
�
hv�; n:f i � hm; n:f i

� hm:n; f i � hm�n; f i
� hn; f�mi:

Now, for every m0 2 L1 S;Ma S� �� �� we de®ne �m0 : L1 S;Ma S� �� � ! L1 S;Ma S� �� � by
�m0 f� � � f�m0. Then �m0 is in B L1 S;Ma S� �� �� � (the space of bounded linear operators
on L1 S;Ma S� �� � with �m0k k � mk k. From the above equalities it follows that �v� ! �m
in the weak operator topology of B L1 S;Ma S� �� �� �. Since ~C � ~v : v 2 Cf g is also
convex, from Corollary 5 on page 477 of [4] it follows that ~m is in the closure of ~C
with respect to the strong operator topology. Hence there is a net ��� � in C such that
f��� ÿ f�m
 

1! 0: Since for every �; v 2Ma S� �; ��v � �:v; it follows that
f�� � f:�; for every f 2 L1 S;Ma S� �� �. Therefore f�m 2 LUC S� �, by what was
mentioned in the preliminaries. Let �0�

ÿ �
be a net as in the statement of Lemma 2.2.

Then �0�
ÿ �

converges to a right identity E of Ma S� �** in the weak*-topology, so that

he; f�mi � lim
�
h�0�; f�mi � lim

�
hm��0�; f i

� lim
�
hm:u0�; f i � hm:E; f i

� hm; f i:

By a similar argument one can easily prove that hx; f�mi � hm; rxf i x 2 S� �:

Lemma 2.5. Let S be a compactly cancellative foundation semigroup with identity.
Then Z1 \ C0 S� �?� L10 S;Ma S� �� �?:

Proof. Let m 2 Z1 \ C0 S� �?. To show that m 2 L10 S;Ma S� �� �? we only need to
prove that m f� � � 0, for every f in L1 S;Ma S� �� � with compact support. Fix such an
f in L1�S;Ma�S��. Then, as in the proof of the preceeding lemma,

hm; f i � he; f�mi � lim
�
h�0�; f�mi �� lim

�
hm��0�; f i

� lim
�
hm:�0�; f i � lim

�
hm; �0�:f i � 0;

since supp �0�:f
ÿ �

is compact and �0�:f � �0��f 2 RUC S� �. &

The proof of the next result is similar to that of Lemma 1 of [11] and therefore it
is omitted.

Lemma 2.6. Let S be a non-compact locally compact semigroup such that Cÿ1D
and Dyÿ1 are compact subsets of S for every two compact subsets C;D of S and y in S.
Then there is a net Ka : � 2 If g of compact subsets of S which is closed under the for-
mation of ®nite unions of its members and such that S �S�2I K

0
� (K0

� denotes the

FOUNDATION SEMIGROUPS 339

https://doi.org/10.1017/S0017089500030020 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030020


interior of K�). Furthermore, there are two nets y�� ��2I and z�� ��2I in S such that the
families K�y� : � 2 I

� 	
and K�z� : � 2 If g are pairwise disjoint.

Remark. The following result is an analogue of Theorem 1 of Lau [11]. It
should be noted that Lau's proof is not valid for weakly cancellative discrete semi-
groups as claimed, since the two functions f 0 and f 00 in his proof are not well-de®ned
for such semigroups.

Theorem 2.7. Let S be a right cancellative foundation semigroup with identity
such that Cÿ1D and Cyÿ1 are compact subsets of S, for any y 2 S and any two com-
pact subsets C and D of S. Then Z1 \ C0 S� �?� 0f g.

Proof. Let m 2 Z1 \ C0 S� �?. If m 6� 0; then we may assume that mk k � 1. Sup-
pose 0 < " < 1

6 is given. Choose f 2 L1 S;Ma S� �� � such that f
 

1� 1 and
hm; f i�� �� > 1ÿ ": Choose the family K� : � 2 If g of compact subsets of S, the nets
y�� ��2I and z�� ��2I as in the statement of Lemma 2.6. De®ne the two functions f 0 and
f 00 on S by f 0 xy�� � � f 00 xz�� � � f x� � if x 2 K� and zero otherwise. Since the families
K�y� : � 2 I
� 	

and K�z� : � 2 If g are pairwise disjoint and S is also right cancella-
tive, we infer that f 0 and f 00 are well de®ned. By Lemma 2.4 there exists a measure �
in MK

a S� � such that �k k � 1 with f��ÿ f�m
 

1< "; f 0��ÿ f 0�m
 

1< "; and
f 00��ÿ f 00�m
 

1< ": Thus there exists �0 2 I such that supp �� � � K�0 : Let
g0 � ry�0 f

0 and g00 ÿ ry�0 f
00. Since g0 x� � � f 0 xy�0

ÿ � � f x� �; for all x 2 K�0 ; we have

h f 0��; y�0i ÿ h f 0�m; y�0i
�� �� � h�; f i ÿ hm; g0i�� �� > ":

Also, since

hm; f i;ÿh�; f i;�� �� � h f�m; ei ÿ h f��; ei�� ��
� f�mÿ f��
 

1< ";

it follows that h�; f i�� �� > 1ÿ 2": Consequently m g0� ��� �� > 1ÿ 3": Similarly m g00� ��� �� >
1ÿ 3":

Let K � K�0y�0
ÿ �

yÿ1�0
S

K�0z�0
ÿ �

zÿ1�0 : Then K is compact. Since the support of g0g00

is contained in K, from Lemma 2.5 it follows that m g0g00� � � 0. Hence

h g0 1ÿ g00� ��� ��; mj ji � hg0 1ÿ g00� �;mi�� �� � m g0� ��� �� > 1ÿ 3";

and

h g00 1ÿ g0� ��� ��; mj ji � hg00 1ÿ g0� �;mi�� �� � m g00� ��� �� > 1ÿ 3";

(see [17 p. 40]). Adding the above equations we obtain

h g0 � g00
�� �� 1ÿ g0g00

�� ��; mj ji > 2ÿ 6" > 1;

since 0 < " < 1
6 : But g0 � g00

�� �� 1ÿ g0g00
�� ��  � 1: This contradicts the assumption

mk k � mj jk k � 1. &

Remark. We remark that the hypothesis of the above theorem does not force S
to be a sub-semigroup of any group. To see this, let S0 � 1; 2; . . . ; nf g n 2 N� �: De®ne
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the multiplication on S0 by 1k � k1 � k for every k 2 S0 and k` � k for k 6� 1 and
` 6� 1: Let G be any locally compact group. Then S � S0 � G with the product
topology and coordinatewise multiplication de®nes a foundation semigroup (see [5,
p. 43] that satis®es the hypothesis of the preceding theorem. It is also clear that S is
not a subset of any group.

We also note that if S is a right cancellative foundation semigroup, then the
conclusion of the above theorem is not valid. To see this, let S be an in®nite set, for a
®xed element e in S we de®ne ex � xe � x, for all x 2 S; and for all x; y 2 Sn ef g we
de®ne xy � x. Then S de®nes a right cancellative foundation semigroup with iden-
tity for which Cÿ1D and Cyÿ1 are not in general compact subsets of S for every two
compact subsets C;D of S and y 2 S: But it is clear that C0 S� �? is a non-zero sub-
space of Z1.

The following is the main result of this paper.

Theorem 2.8. Let S be a right cancellative foundation semigroup with identity
such that, for every two compact subsets C and D of S and y 2 S;Cÿ1D and Cyÿ1 are
compact. Then ~Z LUC S� ��� � �M S� �.

Proof. It is clear that M S� � � ~Z; by Lemma 3 of [12]. If S is compact, then
M S� � � LUC S� ��, and thus ~Z �M S� �. Hence we may assume that S is not compact.
By Theorem 2 of [8], LUC S� ���M S� � � C0 S� �? and C0 S� �? is also a left ideal in
LUC S� �*. Let m 2 ~Z: Then m � ��m1 for some � 2M S� � and m1 2 C0 S� �?: Since
C0 S� �? is a left ideal in LUC S� �*, it follow that v:m1 is C0 S� �?, for every v 2Ma S� �:
On the other hand v:m1 2 Z1 Ma S� ���� �, by part (c) of Lemma 3.1 of [13]. Thus
v:m1 2 C0 S� �?\Z1 Ma S� ���� �. Therefore v:m1 � 0, by Theorem 2.6. Hence
hv:m1; hi � 0; for all h 2 L1 S;Ma S� �� � and v 2Ma S� �. Let f 2 LUC S� �: Then
f � h:v, for some h 2 L1 S;Ma S� �� � and v 2Ma S� �. Hence

hm1; f i; � hm1; h:vi � hm1; h�vi
� hv�m1; hi � hv:m1; hi � 0

and so m1 � 0. This completes the proof.

3. The topological center of Ma(S)** of certain foundation �-semigroups. In the
present section we shall generalize Lau's result of the topological center L1 G� ��� of
locally compact groups G to cancellative foundation �-semigroups S with identity
for which Cÿ1D and Cyÿ1 are compact for every two compact subsets C and D of S
and y 2 S. We have concluded this section with an example of such a �-semigroup
which is not a subsemigroup of any locally group.

We start with the following result which is a generalization of Lemma 2.3 of [10].

Lemma 3.4. Let S be a foundation semigroup with identity. Let f 2 L1 S;Ma S� �� �
be such that for every two pair ei� �; �e0j� of positive bounded approximate identities in
Ma S� �; limih f; eii � limjh f; e0ji: Then f is identical to a function g in L1 S;Ma S� �� � that
is continuous at the identity.

Proof. Without loss of generality we may assume that f is real. Suppose f is not
(apart from the zero function in L1 S;Ma S� �� � continuous at e. Then every neigh-
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bourhood V of e contains two sets V0 and V00 which are not Ma S� � negligible (i.e.
there exist �0 and �00 in Ma S� � such that �0 V0� � 6� 0 and �00 V00� � 6� 0) with f � 1 on V0

and f � 1 on V00. Choose probability measures �V0 and �V00 in Ma S� � such that
�V0 SnV0� � � 0 and �V00 SnV00� � � 0. By Proposition 4.16 of [15] each of the nets �V0� �
and �V00� � de®nes a bounded approximate identity, whenever each of the collections
of the sets V0's and V00's is directed downwards. Therefore lim inf� �V0 h f; �V0 i � 1 and
lim sup� �V0 h f; �V00 i � 0: This contradicts the hypothesis.

As an application of the above lemma, by a method similar to that of Theorem
5.4 of [13] one can easily obtain the following generalization of that theorem. The
details are omitted.

Theorem 3.2. Let S be a foundation semigroup with identity and let A �Ma S� �.
Then for m in A��, the following are equivalent.

(a) m is in A.
(b) (i) Am � A. (ii) For each E:m � m. (iii) For each f in A�;m:f is in AA�.

An argument similar to the proof of Corollary 5.5 of [13] with the aid of
Theorem 2.7 and Theorem 2.8 gives the following generalization of that corollary.

Corollary 3.2. Let S be a cancellative foundation �-semigroup with identity such
that Cÿ1D is a compact subset of S for every two compact subsets C and D of S. Then
Z Ma S� ���� � �Ma S� �.

Remark. Let S be the set of all 2�2 matrices of the form
a b
0 c

� �
with a; b; c in

0; 1; 2; . . .f g and a 6� 0; c 6� 0: Then with the usual multiplication, the involution

a b
0 c

� ��
� c b

0 a

� �
and the discrete topology, S de®nes a non-commutative cancel-

lative foundation �-semigroup with the identity
1 0
0 1

� �
such that Cÿ1D is a com-

pact subset of S for every two compact subsets C and D of S. It is clear that with this
involution S is not a subsemigroup of any group G such that x� � xÿ1 for every
x 2 S, where xÿ1 denotes the inverse of x in G. Note that if G is any locally compact
group, then S� G (with the product topology and the involution s; g� ���
s�; gÿ1
ÿ �

s 2 S; g 2 G� �) also satis®es the hypothesis of the preceding theorem.
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